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Abstract

Background: The detection and quantification of skeletal asymmetries is a fundamental component to diagnosis
and treatment planning in orthodontics. The purpose of this study was to identify and quantify the characteristics
of facial and dental asymmetries in a normal, adolescent population using 3D imaging.

Methods: Thirty consecutive Class I patients (mean age 14.32 years, SD 1.67) meeting the inclusion criteria were
analyzed by three-dimensional cone-beam computed tomography (CBCT). Dental, maxillary, mandibular, and
cranial base variables were measured with Dolphin 3D. CBCT analysis consisted of the localization of 34 anatomical
landmarks. All reference points were digitized in 3D and analyzed using 67 skeletal and dental measurements.
Student's t tests for paired samples were used with a significance level of p < 0.05.

Results: Minor right-left discrepancies were noted in all planes. The most anterior point of the glenoid fossa and
most condylar points were positioned more superior and lateral on the right side, compared to the left side. Porion
was also located more superiorly on the right side relative to the left side. The posterior nasal spine was found to
be located to the right of the midsagittal plane. Slight dental midline discrepancies were found, and the dental arch
lengths were slightly longer on the left side compared to the right. The height of the ramus, in both 3D and 2D,
and the inclination of the ramus were greater on the right than that on the left side.

Conclusions: The findings of this study suggest minor asymmetries exist and are likely a common occurrence in
the normal human craniofacial complex. Additionally, a natural compensatory mechanism may exist which controls
the size and shape of specific tissues in order to maintain functional symmetry.
Background
Dentofacial asymmetries can pose a significant challenge
to orthodontic treatment and an accurate diagnosis is
key to localize the asymmetry and determine the best
treatment strategy. Severe forms of dentofacial deform-
ities, such as those caused by syndromes like hemifacial
microsomia, cleft palate, or hemimandibular hyperplasia,
have been well described in the literature [1-3]. However,
minor asymmetries are significantly more common in
the general population but have not been studied as ex-
tensively. Asymmetries have been traditionally diagnosed
through the analysis of postero-anterior (PA) X-rays,
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photographs and dental models [2,4,5]. Radiographs offer
the benefit of measuring the skeletal component of an
asymmetry, but 2D images, like PA cephalograms, are lim-
ited due to the presence of numerous artifacts, overlap-
ping structures and magnification distortion [6,7]. The
advent of three-dimensional imaging through cone-beam
computed tomography (CBCT) offers the possibility of
accurate localization and quantification of asymmetries
without distortion. In patients with significant mandibular
asymmetry, CBCT has been employed to quantify the de-
gree of asymmetry with a high degree of accuracy com-
pared to two-dimensional images [8-11]. No studies have
yet been published with normative 3D values of asym-
metry for patients with normal occlusions. The purpose of
this study was to identify and quantify dentofacial asym-
metries in a normal, adolescent population.
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Methods
Subjects
This study was conducted in accordance with a protocol
approved by the Institutional Review Board of the
University of Connecticut (IRB #08-298-1). CBCT scans
and records from two orthodontic offices (Dr. Rigali
and Dr. Roy) that routinely use 3D imaging for compre-
hensive orthodontic diagnosis and treatment planning
were reviewed. CBCT images, clinical examination re-
cords, dental models, and photographs were reviewed
and subjects were selected based on the following inclu-
sion criteria: (1) Class I molar relationship, (2) teeth in
occlusion from second molar to second molar, (3) no
malformed or missing teeth, (4) coincident dental and
facial midlines, (5) no dental or skeletal asymmetries on
clinical exam, (6) no previous orthodontic treatment,
(7) no crossbites, (8) no history of facial trauma or med-
ical conditions that may have altered growth, (9) sym-
metrical spacing or crowding up to 3 mm per arch, (10)
age from 10 to 18. The final study sample was deter-
mined by two investigators (PHR and DS) and consisted
of 30 consecutive patients (16 boys, 14 girls) with an
Figure 1 Volumetric images of each of the 30 Class I subjects include
average age of 14.32 years (SD 1.67 years). The sample in-
cluded 28 Caucasians, 1 Asian, and 1 African-American.
Figure 1 shows volumetric frontal views for each patient
included in this study.

CBCT acquisition
Full-head CBCT scans (i-CAT Classic, Imaging Sciences
International, Hatfield, PA, USA) were acquired with pa-
tients in maximum intercuspation. A 16.0 cm (diameter) ×
13.0 to 22.0 cm (height) field of view at a resolution of
0.4 mm voxels was used for each volumetric data set
with an acquisition setting of 120 kVp and 5 mA based
on the manufacturer's specifications. The scan times
ranged from 20 (13.0 cm) to 40 s (22.0 cm) depending
on the vertical height of the field of view selected by the
clinician based on patient factors like the skull size and
height. Reconstructed data (by Xoran i-CAT software,
version 2.1.22) was exported as a 12-bit-depth digital
imaging and communications in medicine (DICOM) file.
Final analysis of the DICOM data was completed using
Dolphin 3D (version 10.5, Dolphin Imaging, Chatsworth,
CA, USA).
d in the study.
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CBCT orientation and landmark identification
Orientation of each data set was completed in three
planes of space (x, y, and z) using volumetric rendering
and multiple planar views within Dolphin 3D (Figure 2).
First, the sagittal plane (x) was constructed bisecting
paired midfacial anatomic structures (i.e., orbits, frontal
process of the maxilla, and frontozygomatic suture). The
Figure 2 Volumetric renderings of the reference planes used in
the study.
axial plane (y) was then constructed as a line connecting
the most superior point of the external acoustic meatus
(porion) with the most inferior point of the infraorbital
rim (orbitale) on the right and left sides, which would
correspond similarly to the Frankfort horizontal plane in
2D. Finally, the coronal plane (z) was constructed using
the transporionic line and fixed perpendicular to the
axial and sagittal planes. Using modified orthodontic
cephalometric landmarks, 34 anatomic landmarks were
defined and digitized (Table 1) [12]. Coordinate data for
each defined landmark was exported to an Excel data-
base (Excel 2007, Microsoft, Redmond, WA, USA) and
orthogonal, linear, and angular measurements were
calculated.

Measurements
Orthogonal measurements were defined using sagittal,
axial, and coronal planes and measured as perpendicular
millimeter distances from the specific 3D landmark to
each of the reference planes. Dental and dentoalveolar
asymmetry, mandibular morphologic asymmetry, and
condylar morphologic asymmetry were expressed as lin-
ear and angular measurements in millimeters and de-
grees, respectively (Table 2).

Statistical analysis
One investigator (DS) completed all measurements and
intrarater reliability was assessed using the intraclass
correlation coefficient (ICC) on a random sample of 10
patients, with each variable measured at two time points,
2 weeks apart. Once intrarater reliability was established,
right-left and absolute measurements were analyzed
using Student's t tests for paired samples in the SPSS
software program (version 14.0.1, SPSS, Chicago, IL,
USA) with a significance of p < 0.05.

Results
Intrarater reliability was measured, with high ICC values
for each variable in all three reference planes as reported
previously [12]. Measurements are presented as mean
values ± the standard deviation for each point described.
For orthogonal differences relative to the axial plane
(Table 3), glenoid fossa anterior (GlA) was found to be
placed 0.47 ± 1.08 mm superiorly on the right side rela-
tive to the left (p < 0.05). In addition, porion (Po) was
also found to be positioned 0.37 ± 0.88 mm superiorly
on the right side (p < 0.05). Measurements to the coronal
plane were all found to be non-significant (Table 4).
Significant differences were seen within the condylar

and glenoid fossa points in the measurements to the sa-
gittal plane (Table 5). Among the condylar measure-
ments, the medial pole (CdM), anterior pole (CdA), and
posterior pole (CdP) were all found to be more laterally
placed on the right side compared to the left, with a



Table 1 Study landmarks and reference planes

Landmarks Definition Sagittal slice Axial slice Coronal slice

Dental Mx1 Maxillary central
incisors

Incisal contact point of the maxillary
central incisors

Inferior-most point Contact point Incisal embrasure

Md1 Mandibular central
incisors

Incisal contact point of the mandibular
central incisors

Inferior-most point Contact point Incisal embrasure

Mx3R and Mx3L Maxillary canine Cusp tip of the maxillary canine Inferior-most point First point that appears Inferior-most point

Md3R and Mx3L Mandibular canine Cusp tip of the mandibular canine Superior-most point First point that appears Superior-most point

Mx6R and Mx6L Maxillary first molar Mesiobuccal cusp tip of the maxillary
first molar

Inferior-most point First point that appears Middle-inferior-most point

Md6R and Mx6L Mandibular first molar Buccal groove of the mandibular
first molar

Inferior-most point between
the buccal cusps

First point that appears Superior-most point in line
with the buccal cusps

Midface ANS Anterior nasal spine The most anterior midpoint of the
anterior nasal spine of the maxilla

Lateral-most point Superior-most point First point that appears

PNS Posterior nasal spine The most posterior midpoint of the
posterior nasal spine of the palatine bone

Lateral-most point Inferior-most point First point that appears

OrR and OrL Orbitale The most inferior point on the infraorbital
rim of the maxilla

Inferior-most point of the
infraorbital rim

Anterior-most point Inferior-most point of the
infraorbital rim

FZSR and FZSL Frontozygomatic
suture

The most superior and medial point on
the frontozygomatic suture

Superior-most point Anterior-most point Medial-superior most point

FPMR and FPML Frontal process of
maxilla

Intersection of the frontal process of
the maxilla, frontal bone and lacrimal bone

Superior-most point Anterior-most point Medial-superior most point

Mandible Me Menton The most inferior midpoint of the chin
on the outline of the mandibular symphysis

Inferior-most point First point that appears Middle-most point along
the inferior border

Pg Pogonion The most anterior midpoint of the chin
on the outline of the mandibular symphysis

Inferior-most point Superior-most point First point that appears

GoR and GoL Gonion The midpoint on the angle of the mandible,
half way between the corpus and ramus

Middle-most point along the
angle of the mandible

Middle-inferior-most point Middle-inferior-most point

CdSR and CdSL Condyle superior The most superior point of the condylar
head

Superior-most point First point that appears Superior-most point

CdLR and CdLL Condyle lateral pole The most lateral point of the condylar
head

First point that appears Lateral-most point of the widest
section of the condyle

Lateral-most point

CdMR and CdML Condyle medial pole The most medial point of the condylar
head

First point that appears Medial-most point of the widest
section of the condyle

Medial-most point

CdAR and CdAL Condyle anterior The most anterior point of the condylar
head

Anterior-most point Middle-most point on the anterior
surface of the widest section of
the condyle

Medial-most point

CdPR and CdAL Condyle posterior The most posterior point of the condylar
head

Posterior-most point Middle-most point on the posterior
surface of the widest section of
the condyle

N/A
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Table 1 Study landmarks and reference planes (Continued)

Temporal bone GlSR and GlSL Glenoid fossa superior The most superior point of the glenoid
fossa of the temporal bone

Superior-most point First point that appears Superior-most point

GlAR and GlAL Glenoid fossa Anterior The most inferior point of the articular
eminence of the temporal bone

Inferior-most point on the
articular eminence

Anterior-most point Superior-most point

PoR and PoL Porion The most superior point of the external
acoustic meatus

Superior-most point of the
external acoustic meatus

First point that appears Superior-most point of the
external acoustic meatus

Reference planes

Axial plane A plane that connects the most superior point of the external acoustic meatus with the most inferior point of the infraorbital rim on the right and
left sides

Sagittal plane A plane constructed using paired midfacial anatomic structures (eg., the orbits, frontal process of the maxilla, frontozygomatic suture)

Coronal plane A plane constructed from the transporionic line
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Table 3 Orthogonal left-right differences from axial plane

Variable Mean SD 95% confidence interval p value

Lower Upper

Dental Mx3 (y) to the axial plane (mm) −0.11 0.96 −0.46 0.25 0.55

Md3 (y) to the axial plane (mm) 0.00 0.62 −0.24 0.23 0.98

Mx6 (y) to the axial plane (mm) 0.12 0.90 −0.22 0.46 0.47

Md6 (y) to the axial plane (mm) −0.01 0.88 −0.34 0.32 0.95

Midface Or (y) to the axial plane (mm) −0.09 0.75 −0.37 0.19 0.52

Go (y) to the axial plane (mm) 0.5 1.43 −0.03 1.03 0.07

Mandible CdS (y) to the axial plane (mm) −0.22 0.93 −0.56 0.13 0.21

CdL (y) to the axial plane (mm) 0.03 1.12 −0.39 0.45 0.9

CdM (y) to the axial plane (mm) −0.14 1.07 −0.54 0.26 0.49

CdA (y) to the axial plane (mm) −0.02 1.01 −0.4 0.36 0.91

CdP (y) to the axial plane (mm) −0.05 1.02 −0.43 0.33 0.79

Temporal bone GlS (y) to the axial plane (mm) −0.12 0.76 −0.4 0.17 0.41

GlA (y) to the axial plane (mm) −0.47 1.08 −0.87 −0.06 0.025*

Po (y) to the axial plane (mm) −0.37 0.88 −0.7 −0.04 0.03*

*p < 0.05.

Table 2 Definition of measurements

Variable Definition

Dental A-P molar differential (mm) The difference of Mx6 (z) and Md6 (z)

Midline differential (mm) The absolute difference of Mx1 (x) and Md1 (x)

Overbite (mm) Mx1 (y) minus Md1 (y)

Overjet (mm) Mx1 (z) minus Md1 (z)

Maxillary arch length (mm) Distance (x, y, z) between Mx6 and Mx1

Mandibular arch length (mm) Distance (x, y, z) between Md6 and Mx1

Midface Palatal plane to the sagittal plane (o) Angulation (x, z) between ANS-PNS and the sagittal plane

Mandibular Mandibular length in 3D (mm) Distance (x, y, z) between CdS and Pg

Mandibular length in 2D (mm) Distance (y, z) between CdS and Pg

Ramus height in 3D (mm) Distance (x, y, z) between CdS and Go

Ramus height in 2D (mm) Distance (y, z) between CdS and Go

Corpus length in 3D (mm) Distance (x, y, z) between Go and Pg

Corpus length in 2D (mm) Distance (y, z) between Go and Pg

Gonial angle (o) Angulation (y, z) between CdS, Go, and Pg

Mandibular plane angle (o) Angulation (y, z) between Go-Pg and the Frankfort horizontal

Ramus inclination to the sagittal plane (o) Angulation (x, y) between CdL-Go and the sagittal plane

Dental and chin inclination (o) Angulation (x, y) between Md1-Me and the sagittal plane

Condylar Mediolateral diameter of condylar head in 3D (mm) Distance (x, y, z) between CdL and CdM

Mediolateral diameter of condylar head in 2D (mm) Distance (x, y) between CdL and CdM

Anteroposterior diameter of condylar head in 3D (mm) Distance (x, y, z) between CdA and CdP

Anteroposterior diameter of condylar head in 2D (mm) Distance (y, z) between CdA and CdP

Superior joint space in 3D (mm) Distance (x, y, z) between CdS and GlS

Superior joint space in 2D (mm) Distance (x, y) between CdS and GlS

Condylar head inclination to the coronal plane (o) Angulation (x, z) between CdL-CdM and the coronal plane

Condylar head inclination to the axial plane (o) Angulation (x, y) between CdL-CdM and the axial plane
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Table 4 Orthogonal left-right differences from coronal plane

Variable Mean SD 95% confidence interval p value

Lower Upper

Dental Mx3 (z) to the coronal plane (mm) 0.00 0.94 −0.35 0.35 0.94

Md3 (z) to the coronal plane (mm) −0.01 0.77 −0.30 0.27 0.93

Mx6 (z) to the coronal plane (mm) 0.03 1.00 −0.34 0.41 0.86

Md6 (z) to the coronal plane (mm) 0.00 0.98 −0.37 0.36 0.99

Midface Or (z) to the coronal plane (mm) −0.02 1.48 −0.58 0.53 0.93

Go (z) to the coronal plane (mm) 0.06 1.66 −0.56 0.68 0.84

Mandible CdS (z) to the coronal plane (mm) 0.10 2.35 −0.78 0.97 0.82

CdL (z) to the coronal plane (mm) 0.02 2.12 −0.77 0.81 0.96

CdM (z) to the coronal plane (mm) 0.13 2.33 −0.74 1.00 0.77

CdA (z) to the coronal plane (mm) −0.54 2.11 −1.32 0.25 0.17

CdP (z) to the coronal plane (mm) −0.07 2.01 −0.82 0.68 0.84

Temporal bone GlS (z) to the coronal plane (mm) −0.08 2.39 −0.97 0.81 0.86

GlA (z) to the coronal plane (mm) −0.82 2.24 −1.65 0.02 0.06

Po (z) to the coronal plane (mm) 0.19 1.72 −0.45 0.83 0.54
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discrepancy of 0.62 ± 1.28 mm for CdM (p < 0.05), 1.34 ±
1.47 mm for CdA (p < 0.001), and 0.9 ± 1.51 mm for CdP
(p < 0.01). The GlA was also more laterally placed, by
1.73 ± 1.52 mm, on the right side relative to the left side
(p < 0.001).
Midline structures were also measured to the sagittal

plane (Table 6). Posterior nasal spine (PNS) was found
to be 0.22 ± 0.54 mm to the right of the sagittal plane.
No significance was noted with other midline structures.
Table 5 Orthogonal left-right differences from sagittal plane

Variable Mean

Dental Mx3 (x) to the saggital plane (mm) −0.02

Md3 (x) to the saggital plane (mm) −0.25

Mx6 (x) to the saggital plane (mm) 0.25

Md6 (x) to the saggital plane (mm) 0.29

Midface Or (x) to the saggital plane (mm) −0.05

Go (x) to the saggital plane (mm) 0.48

Mandible CdS (x) to the saggital plane (mm) −0.19

CdL (x) to the saggital plane (mm) −0.55

CdM (x) to the saggital plane (mm) −0.62

CdA (x) to the saggital plane (mm) −1.34

CdP (x) to the saggital plane (mm) −0.90

Temporal bone GlS (x) to the saggital plane (mm) 0.24

GlA (x) to the saggital plane (mm) −1.73

Po (x) to the saggital plane (mm) −0.35

*p < 0.05, **p < 0.01, ***p < 0.001.
For absolute measurements, distances between two
landmarks on each side were measured and the difference
compared between the right and left sides (Table 7). Den-
tal midline differential (MLD), defined as the absolute dif-
ference between the incisal embrasure of the maxillary
central incisors (Mx1) and the incisal embrasure of the
mandibular incisors (Md1) from the sagittal plane, showed
a significant discrepancy of 0.15 ± 0.20 mm (p < 0.0001).
Maxillary (MXA) and mandibular (MDA) arch lengths
SD 95% confidence interval p value

Lower Upper

1.11 −0.43 0.40 0.94

1.46 −0.79 0.30 0.36

1.13 −0.17 0.67 0.24

1.07 −0.11 0.69 0.16

1.70 −0.69 0.58 0.87

1.89 −0.22 1.19 0.17

1.81 −0.86 0.49 0.57

1.56 −1.14 0.03 0.06

1.28 −1.10 −0.14 0.013*

1.47 −1.89 −0.80 0.0001***

1.51 −1.47 −0.34 0.003**

1.54 −0.33 0.81 0.4

1.52 −2.30 −1.16 0.0001***

1.66 −0.97 0.27 0.25



Table 6 Orthogonal measurements of midline structures to sagittal plane

Variable Mean SD 95% confidence interval p value

Lower Upper

Dental Mx1 (x) to the saggital plane (mm) −0.11 0.51 −0.3 0.09 0.26

Md1 (x) to the saggital plane (mm) −0.11 0.56 −0.32 0.1 0.29

Midface ANS (x) to the saggital plane (mm) −0.16 0.48 −0.34 0.02 0.08

PNS (x) to the saggital plane (mm) −0.22 0.54 −0.43 −0.02 0.032*

Mandible Me (x) to the saggital plane (mm) 0.11 0.68 −0.14 0.36 0.38

Pg (x) to the saggital plane (mm) 0.2 0.67 −0.05 0.45 0.11

*p < 0.05.

Sanders et al. Progress in Orthodontics 2014, 15:26 Page 8 of 11
http://www.progressinorthodontics.com/content/15/1/26
were found to be longer on the left side (p < 0.05), with
the MXA left-right differential being 0.28 ± 0.66 mm and
MDA equivalent to 0.33 ± 0.68 mm. Ramus height, de-
fined as the distance between the most superior point of
the condylar head (CdS) and gonion (Go), was found to be
significantly greater on the right side (p < 0.05) using both
3D (RH3) and 2D (RH2) calculations. Absolute measure-
ment differences between the left and right sides were
0.81 ± 1.65 for RH3 and 0.75 ± 1.60 mm for RH2. From
the frontal aspect, ramus inclination (RI), measured as the
angulation between most lateral point on the condylar
head (CdL) and Go to the sagittal plane was significantly
more obtuse on the right side by 1.22° ± 2.92° (p < 0.05).
Table 7 Absolute measurements of left-right differences

Variable Mean

A-P molar differential (mm) 0.04

Midline differential (mm) 0.15

Maxillary arch length (mm) 0.28

Mandibular arch length (mm) 0.33

Mandibular length in 3D (mm) −0.43

Manibular length in 2D (mm) −0.21

Ramus height in 3D (mm) −0.81

Ramus height in 2D (mm) −0.75

Corpus length in 3D (mm) 0.09

Corpus length in 2D (mm) 0.08

Gonial angle (°) 0.48

Mandibular plane angle (°) 0.57

Ramus inclination to the saggital plane (°) −1.22

Mediolateral diameter of the condylar head in 3D (mm) 0.06

Mediolateral diameter of the condylar head in 2D (mm) 0.07

Anteroposterior diameter of the condylar head in 3D (mm) −0.24

Anteroposterior diameter of the condylar head in 2D (mm) −0.23

Superior joint space in 3D (mm) −0.03

Superior joint space in 2D (mm) 0.08

*p < 0.05, ****p < 0.0001.
Discussion
The primary objective of this study was to measure the de-
gree of asymmetry in patients who were otherwise defined
as symmetric by clinical and radiographic examinations.
The findings of this study show that skeletal asymmetries,
while minor, may exist in otherwise clinically symmetric
patients, confirming previous studies using 2D imaging
and photography [6,13,14]. With the advent of CBCT
technology, these small discrepancies can be localized to
distinct sites. This data alludes to the possibility that dur-
ing even the most tightly coupled processes, minor right-
left discrepancies may be reflections of minute skeletal
compensations that occur as growth is directed.
SD 95% confidence interval p value

Lower Upper

0.28 −0.07 0.14 0.484

0.20 0.07 0.23 0.000****

0.66 0.04 0.53 0.025*

0.68 0.08 0.58 0.012*

1.53 −1.00 0.14 0.132

1.53 −0.78 0.36 0.452

1.65 −1.42 −0.19 0.012*

1.60 −1.34 −0.15 0.016*

1.27 −0.38 0.57 0.690

1.67 −0.55 0.70 0.801

2.48 −0.44 1.40 0.297

1.66 −0.06 1.19 0.073

2.92 −2.32 −0.13 0.029*

1.22 −0.39 0.52 0.781

1.22 −0.38 0.52 0.752

0.85 −0.55 0.08 0.141

0.86 −0.55 0.09 0.149

0.78 −0.32 0.26 0.820

0.63 −0.16 0.31 0.505
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The asymmetries from this sample of patients showed
either a mild right-side predominance or a mild left-side
deficiency in the auriculo-temporal and condylar regions.
The glenoid fossa was more laterally displaced on the right
side and, along with the porion, was more superior in rela-
tion to the axial plane compared to the left side. Addition-
ally, the condylar points were all more laterally displaced
and the ramus heights were longer on the right side in
both 3D and 2D. The ramus inclination was also more ob-
tuse on the right side compared to the left, and the PNS
point was shown to lie to the right of the midsagittal
plane. The only measurements increased on the left side
were maxillary and mandibular arch lengths. The slight
right-side predominance seen in this study is consistent
with a number of studies which have also shown an in-
creased tendency for right side laterality, albeit with vary-
ing degrees of significance [6,8,13,15,16].
While the MLD showed a minor discrepancy in the

maxillary and mandibular midlines, it should be noted
that the lateral positions of menton (Me) and pogonion
(Pg) relative to the midsagittal plane were not significant.
This suggests that other compensations are likely to
have occurred which adapted to the increased laterality
and different vertical positions of the glenoid fossa and
condylar points.
The intricate biological processes that direct growth and

result in skeletal asymmetries have yet to be fully dis-
sected. In his classic work, Woo proposed that minor
asymmetries were due to skeletal compensations for asym-
metric growth of the brain [17] and Burke theorized that
right-left discrepancies were adaptive changes in response
to asymmetric muscular and masticatory function [18]. At
the molecular level, a number of genes and factors have
been associated with asymmetric growth, identified in
models of severe asymmetry associated with such syn-
dromes as hemifacial microsomia, craniosynostosis and
craniofacial clefts [19]. While genes, like Msx1, Goosecoid,
TWIST, and TCOF1 have been linked to a number of cra-
niofacial syndromes, no single gene has been identified as
the sole cause of the skeletal abnormalities [20-23]. It is
possible that a number of genes found within similar
chromosomal loci are involved in these syndromes due to
compromise during the embryonic period. Protein factors
such as IGF-I, BMP-2 and TGF-β1 have been shown to be
highly expressed in specific regions of the condylar cartil-
age in patients with condylar hyperplasia, a primary cause
of skeletal asymmetry [24]. Proper functioning and regula-
tion of these genes and factors is likely to promote normal
symmetric growth. It is possible that minor, localized gene
expression differences or altered growth factor activity
may result in the small skeletal discrepancies noted in the
normal patients in this study. Further research is needed
in this area to better understand the complex biologic
pathways involved in normal growth and to determine
which molecular alterations lead to increased degrees of
asymmetry in patients.
This study was the first of its kind to utilize CBCT to

evaluate asymmetries in a normal, Class I, adolescent
population. Previous studies in Class III patients have
shown a tendency towards significant asymmetry, specific-
ally with deviation of the lateral position of menton to the
mid-sagittal plane when measured on PA cephalograms
[25]. A study by Sievers and colleagues using CBCT im-
aging showed minor asymmetries in Class I and Class II
patients using an asymmetry index (AI), a mathematical
derivation which combined measurements from each
landmark to the x-, y-, and z-planes [26]. The degree of AI
was similar between both groups, which were character-
ized according to ANB angle. A recent study of 10 human
dry skulls defined as exhibiting apparent symmetry were
also shown to have minor asymmetries by CBCT analysis,
with measurements highly accurate when compared to
the gold standard, physical measurements [8]. In the same
study, PA cephalograms where shown to have inconsisten-
cies in measurements, likely due to the difficulty in visual-
izing key structures in the 2D view.
In addition to the skeletal component, the soft tissue

plays an important role in asymmetry and requires further
study. A number of studies have used standardized photo-
graphs and stereophotogrammetry to assess soft tissue
asymmetry [16,18,27]. A hierarchy for anatomic land-
marks has been previously established for constructing the
soft tissue midline, with the natural dental midline and the
tip of philtrum being most reliable for measuring soft tis-
sue asymmetries in 2D [28]. The tip of the nose and soft
tissue nasion have been shown to be less reliable in photo-
graphic measurements. The accuracy of soft tissue mea-
surements with CBCT enables 1:1 accuracy and the ability
to more clearly define soft tissue landmarks through
superimposition on cranial structures [29]. Soft tissue
asymmetry has yet to be measured in class I patients with
CBCT, and this would help further understand the soft-
tissue compensations that overcome the minor skeletal
discrepancies we observed in this study.
There were a number of limitations of this study that

should be considered. The right-left discrepancies de-
tected in this sample of patients were very minor, with
most less than 1.0 mm. For this reason, there is potential
for some of these differences to be attributed to meth-
odological error. Firstly, correct orientation of the CBCT
in all three planes could have been a source of error.
The method of sequential reference plane selection, par-
ticularly the use of paired midfacial structures for the
midsagittal plane, was based on previously published
studies [30,31]. While the sagittal plane was selected
first, images also had to be corrected for roll to ensure
the paired midfacial structures were correctly aligned
vertically. The axial plane was then aligned for pitch and



Sanders et al. Progress in Orthodontics 2014, 15:26 Page 10 of 11
http://www.progressinorthodontics.com/content/15/1/26
perpendicular to the sagittal plane followed by the cor-
onal plane which was perpendicular to the sagittal and
coronal planes and the best fit to the transporionic line.
The ‘best fit’ of the three planes was determined by a
single examiner at one timepoint. While the ICC for
intrarater measurements was high, any minor inaccuracy
in orientation of the CBCT at the initial stage could have
resulted in some of the measured right-left differences
seen in this study.
Landmark identification was another potential source of

error in this study. Previous studies have shown the med-
iolateral dimension to be the least reproducible of the
three dimensions with regards to landmark selection
[26,32]. Particular anatomic landmarks pose challenges
due to variation in morphology and convexity, such as
condylion, gonion, and porion and there can be a greater
degree of variability in the selection as shown by intra- and
interrater reliability measures [33,34]. It is possible that
utilizing a volumetric rendering view in conjunction with
multiplanar views, as was used in this study, may minimize
the degree of landmark selection error [35]. A number of
the landmarks showing significant differences in this study
were associated with these morphological challenges and
thus could be skewed to show a right-left predominance or
lack of predominance based on landmark selection.
The findings of this study reveal that very minor

asymmetries may exist in otherwise symmetric patients,
confirming previous studies that suggest that these
discrepancies are normal and may be a reflection of
a homeostatic mechanism during growth and bone
remodeling.

Conclusions
Minor asymmetries are present in all planes by CBCTana-
lysis in a normal, adolescent population. The craniofacial
complex may have a natural compensatory mechanism to
control the size and shape of specific tissues in order to
maintain functional symmetry and homeostasis. Further
studies are needed to better understand the soft tissue
component to asymmetries in this population of subjects.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DS carried out the study, collected the CBCT images, and made the
measurements. TC drafted the manuscript and was involved in data analysis
and final submission. FU was a primary advisor on the study and was
involved in the design of the study and data analysis, as well as manuscript
preparation. PR provided the CBCT records and was an advisor, meeting
routinely on design and data collection. RN was an advisor on the study and
involved in the manuscript preparation as well as guidance throughout the
study on design and implementation. All authors read and approved the
final manuscript.

Acknowledgements
We would like to thank Dr. Paul Rigali, Wallingford, CT and Dr. Carl Roy,
Virginia Beach, VA for providing the CBCT data for this study and to Dr.
William P. Neace former Assistant Professor in the Department of Psychology
at the University of Hartford, Hartford, CT for performing the statistical
analyses.

Disclosure
The authors would like to emphasize that the CBCT data analyzed in this
study was acquired using existing records from two private offices. We in no
way intend to promote the routine acquisition of CBCT images in
orthodontic patients.

Author details
1Private Practice, Miami, FL, USA. 2Division of Orthodontics, Department of
Craniofacial Sciences, University of Connecticut, School of Dental Medicine,
263 Farmington Avenue, Farmington CT 06030, USA. 3Private Practice,
Woodstock, VT, USA. 4Department of Craniofacial Sciences, Alumni Endowed
Chair, University of Connecticut, School of Dental Medicine, Farmington CT
06030, USA.

Received: 10 September 2013 Accepted: 16 January 2014

References
1. Proffit WR, White RP, Sarver DM. Contemporary treatment of dentofacial

deformity. 4th ed. Maryland Heights, Missouri: Mosby; 2003.
2. Bishara SE, Burkey PS, Kharouf JG. Dental and facial asymmetries: a review.

Angle Orthod. 1994; 64(2):89–98. doi:10.1043/0003-3219(1994)064<0089:
DAFAAR>2.0.CO;2.

3. Pirttiniemi P. Normal and increased functional asymmetries in the
craniofacial area. Acta Odontol Scand. 1998; 56(6):342–5.

4. Burstone CJ. Diagnosis and treatment planning of patients with
asymmetries. Semin Orthod. 1998; 4(3):153–64.

5. Sheats RD, McGorray SP, Musmar Q, Wheeler TT, King GJ. Prevalence of
orthodontic asymmetries. Semin Orthod. 1998; 4(3):138–45.

6. Shah SM, Joshi MR. An assessment of asymmetry in the normal
craniofacial complex. Angle Orthod. 1978; 48(2):8–141.
doi:10.1043/0003-3219(1978)048<0141: AAOAIT>2.0.CO;2.

7. Nanda R, Snodell SF, Bollu P. Transverse growth of maxilla and mandible.
Semin Orthod. 2012; 18(2):100–17. doi:10.1053/j.sodo.2011.10.007.

8. de Moraes ME, Hollender LG, Chen CS, Moraes LC, Balducci I. Evaluating
craniofacial asymmetry with digital cephalometric images and cone-beam
computed tomography. Am J Orthod Dentofacial Orthop. 2011;
139(6):e523–31. doi:10.1016/j.ajodo.2010.10.020.

9. AlHadidi A, Cevidanes LH, Mol A, Ludlow J, Styner M. Comparison of two
methods for quantitative assessment of mandibular asymmetry using
cone beam computed tomography image volumes. Dentomaxillofac
Radiol. 2011; 40(6):351–7. doi:10.1259/dmfr/13993523.

10. Alhadidi A, Cevidanes LH, Paniagua B, Cook R, Festy F, Tyndall D. 3D
quantification of mandibular asymmetry using the SPHARM-PDM tool box.
Int J Comput Assist Radiol Surg. 2012; 7(2):265–71. doi:10.1007/s11548-011-0665-2.

11. Damstra J, Fourie Z, Ren Y. Evaluation and comparison of postero-anterior
cephalograms and cone-beam computed tomography images for the
detection of mandibular asymmetry. Eur J Orthod. 2013; 35(1):45–50.
doi:10.1093/ejo/cjr045.

12. Sanders DA, Rigali PH, Neace WP, Uribe F, Nanda R. Skeletal and dental
asymmetries in Class II subdivision malocclusions using cone-beam
computed tomography. Am J Orthod Dentofacial Orthop. 2010;
138(5):542. e1-20; discussion −3. doi:10.1016/j.ajodo.2010.02.027.

13. Peck S, Peck L, Kataja M. Skeletal asymmetry in esthetically pleasing faces.
Angle Orthod. 1991; 61(1):8–43. doi:10.1043/0003-3219(1991)061<0043:
SAIEPF>2.0.CO;2.

14. Vig PS, Hewitt AB. Asymmetry of the human facial skeleton. Angle Orthod.
1975; 45(2):9–125. doi:10.1043/0003-3219(1975)045<0125: AOTHFS>2.0.CO;2.

15. Farkas LG, Cheung G. Facial asymmetry in healthy North American
Caucasians. An anthropometrical study. Angle Orthod. 1981; 51(1):7–70.
doi:10.1043/0003-3219(1981)051<0070: FAIHNA>2.0.CO;2.

16. Haraguchi S, Iguchi Y, Takada K. Asymmetry of the face in orthodontic
patients. Angle Orthod. 2008; 78(3):421–6. doi:10.2319/022107-85.1.

17. Woo TL. On the asymmetry of the human skull. Biometrika. 1931; 22:21.
18. Burke PH. Stereophotogrammetric measurement of normal facial

asymmetry in children. Hum Biol. 1971; 43(4):536–48.
19. Kronmiller JE. Development of asymmetries. Semin Orthod. 1998; 4(3):134–7.



Sanders et al. Progress in Orthodontics 2014, 15:26 Page 11 of 11
http://www.progressinorthodontics.com/content/15/1/26
20. el Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D,
Bourgeois P, Bolcato-Bellemin AL, Munnich A, Bonaventure J. Mutations
of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet. 1997;
15(1):42–6. doi:10.1038/ng0197-42.

21. Kelberman D, Tyson J, Chandler DC, McInerney AM, Slee J, Albert D, Aymat
A, Botma M, Calvert M, Goldblatt J, Haan EA, Laing NG, Lim J, Malcolm S,
Singer SL, Winter RM, Bitner-Glindzicz M. Hemifacial microsomia: progress
in understanding the genetic basis of a complex malformation syndrome.
Hum Genet. 2001; 109(6):638–645. doi:10.1007/s00439-001-0626-x.

22. Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and
abnormalities of craniofacial and tooth development. Nat Genet. 1994;
6(4):348–56. doi:10.1038/ng0494-348.

23. Su PH, Liu YF, Yu JS, Chen JY, Chen SJ, Lai YJ. Facial asymmetry and
clinical manifestations in patients with novel insertion of the TCOF1
gene. Clin Genet. 2011; 82(5):460–5. doi:10.1111/j.1399-0004.2011.01765.x.

24. Meng Q, Long X, Deng M, Cai H, Li J. The expressions of IGF-1, BMP-2 and
TGF-beta1 in cartilage of condylar hyperplasia. J Oral Rehabil. 2011;
38(1):34–40. doi:10.1111/j.1365-2842.2010.02125.x.

25. Haraguchi S, Takada K, Yasuda Y. Facial asymmetry in subjects with
skeletal Class III deformity. Angle Orthod. 2002; 72(1):28–35.
doi:10.1043/0003-3219(2002)072<0028: FAISWS>2.0.CO;2.

26. Sievers MM, Larson BE, Gaillard PR, Wey A. Asymmetry assessment using
cone beam CT. A Class I and Class II patient comparison Angle Orthod. 2012;
82(3):410–7. doi:10.2319/041711-271.1.

27. Severt TR, Proffit WR. The prevalence of facial asymmetry in the
dentofacial deformities population at the University of North Carolina.
Int J Adult Orthodon Orthognath Surg. 1997; 12(3):171–6.

28. Bidra AS, Uribe F, Taylor TD, Agar JR, Rungruanganunt P, Neace WP. The
relationship of facial anatomic landmarks with midlines of the face and
mouth. J Prosthet Dent. 2009; 102(2):94–103. doi:10.1016/S0022-3913(09)60117-7.

29. Cevidanes LH, Motta A, Proffit WR, Ackerman JL, Styner M. Cranial base
superimposition for 3-dimensional evaluation of soft-tissue changes.
Am J Orthod Dentofacial Orthop. 2010; 137(4 Suppl):S120–9. doi:10.1016/j.
ajodo.2009.04.021.

30. Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A. A new method
of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference
system. J Craniofac Surg. 2006; 17(2):314–25.

31. van Vlijmen OJ, Berge SJ, Swennen GR, Bronkhorst EM, Katsaros C, Kuijpers-
Jagtman AM. Comparison of cephalometric radiographs obtained from
cone-beam computed tomography scans and conventional radiographs.
J Oral Maxillofac Surg. 2009; 67(1):92–7. doi:10.1016/j.joms.2008.04.025.

32. Ludlow JB, Gubler M, Cevidanes L, Mol A. Precision of cephalometric
landmark identification: cone-beam computed tomography vs
conventional cephalometric views. Am J Orthod Dentofacial Orthop. 2009;
136(3):312. e1-10; discussion −3. doi:10.1016/j.ajodo.2008.12.018.

33. Lagravere MO, Low C, Flores-Mir C, Chung R, Carey JP, Heo G, Major PW.
Intraexaminer and interexaminer reliabilities of landmark identification
on digitized lateral cephalograms and formatted 3-dimensional cone-beam
computerized tomography images. Am J Orthod Dentofacial Orthop. 2010;
137(5):598–604. doi:10.1016/j.ajodo.2008.07.018.

34. Schlicher W, Nielsen I, Huang JC, Maki K, Hatcher DC, Miller AJ. Consistency
and precision of landmark identification in three-dimensional cone
beam computed tomography scans. Eur J Orthod. 2012; 34(3):263–75.
doi:10.1093/ejo/cjq144.

35. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG.
Linear accuracy and reliability of cone beam CT derived 3-dimensional
images constructed using an orthodontic volumetric rendering program.
Angle Orthod. 2008; 78(3):387–95. doi:10.2319/122106-52.1.

doi:10.1186/s40510-014-0026-0
Cite this article as: Sanders et al.: Quantification of skeletal asymmetries
in normal adolescents: cone-beam computed tomography analysis.
Progress in Orthodontics 2014 15:26.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Subjects
	CBCT acquisition
	CBCT orientation and landmark identification
	Measurements
	Statistical analysis

	Results
	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Disclosure
	Author details
	References

