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Abstract 

Ancient murals are precious cultural heritages. They suffer from various damages due to man-made destruction 
and long-time exposure to the environment. It is urgent to protect and restore the damaged ancient murals. Virtual 
restoration of ancient murals aims to fill damaged mural regions by using modern computer techniques. Most exist-
ing restoration approaches fail to fill the loss mural regions with rich details and complex structures. In this paper, 
we propose a virtual restoration network of ancient murals based on global–local feature extraction and structural 
information guidance (GLSI). The proposed network consists of two major sub-networks: the structural information 
generator (SIG) and the image content generator (ICG). In the first sub-network, SIG can predict the structural infor-
mation and the coarse contents for the missing mural regions. In the second sub-network, ICG utilizes the predicted 
structural information and the coarse contents to generate the refined image contents for the missing mural regions. 
Moreover, we design an innovative BranchBlock module that can effectively extract and integrate the local and global 
features. We introduce a Fast Fourier Convolution (FFC) to improve the color restoration for the missing mural regions. 
We conduct experiments over simulated and real damaged murals. Experimental results show that our proposed 
method outperforms other three comparative state-of-the-art approaches in terms of structural continuity, color 
harmony and visual rationality of the restored mural images. In addition, the mural restoration results of our method 
can achieve comparatively high quantitative evaluation metrics.
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Introduction
Ancient murals are important human cultural herit-
ages, which record large amounts of contents related to 
the social, religious, artistic life of various ethnic groups, 
and some historical events [1, 2]. Due to the degradation 
caused by long-time environmental exposure and human 
activities, many ancient murals are suffering from seri-
ous diseases such as cracks, scratches, corrosion, paint 
loss, and even large-area falling off. These diseases may 

destroy the integrity of the mural contents that are of 
historical, cultural, religious and artistic values. There-
fore, the protection and restoration of ancient murals has 
become an urgent work for the cultural heritage commu-
nities all over the world.

Physical restoration of the damaged murals is very 
difficult and time-consuming, which relies on the profi-
ciency level of mural repair experts, and may cause irre-
versible damages to the mural heritages. In recent years, 
virtual restoration techniques of ancient murals attempt 
to fill the missing or deteriorated regions of the damaged 
murals by using intelligent computer algorithms. The 
restored mural images not only serve as references to the 
physical repair work, but also offer a permanent and rep-
licable database for these precious cultural heritages.
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The goal of virtual restoration of ancient murals is to 
fill the missing or diseased mural areas with semantically 
continuous and visually reasonable contents. Traditional 
mural restoration methods mainly include diffusion-
based methods and patch-based methods. The diffusion-
based methods achieve image restoration by deriving 
information near the damaged area [3]. Cheng et al. [4] 
proposed a curvature-driven diffusion model based on 
adaptive control and smooth fusion to repair complex 
shapes and irregular scratches of the murals. The diffu-
sion-based methods can effectively restore the murals 
with narrow and long cracks, but are unsuitable for large-
area damages. The patch-based methods fill the missing 
regions by matching and copying the most similar pixel 
patches from the known mural regions [5]. Li et  al. [6] 
proposed a YCbCr model to analyze the brightness and 
color characteristics of murals, and used the patch-based 
method to restore the mud spot diseases. Yang et al. [7] 
proposed a priority algorithm based on the D–S evidence 
reasoning theory and data fusion that can restore the 
murals with large-area damages. Jiao et  al. [8] repaired 
the damaged regions of Wutai Mountain murals by use 
of an improved block matching algorithm. Shen et al. [9] 
conducted morphological component analysis to obtain 
the structural part and texture part of a mural image, and 
used K-singular value to achieve ancient murals inpaint-
ing. Wang et  al. [10] utilized line drawings and global–
local patches to produce better structural continuity. The 
patch-based methods are suitable for restoring relatively 
large damaged areas, but cannot generate contents out-
side the undamaged mural areas.

With the technological advancement of deep neural 
network and intelligent information processing, a num-
ber of image inpainting methods based on the convo-
lution neural network (CNN) [11] and the generative 
adversarial network (GAN) [12] have achieved outstand-
ing performance in natural image restoration. They are 
superior to traditional methods because they have the 
ability to adaptively learn high-level features from image 
data.

In recent years, many researchers have attempted to 
use deep learning approaches to deal with the mural res-
toration problem. Cao et  al. [13] used GAN to restore 
ancient murals, and introduced the dilated convolu-
tion to increase the receptive field of the network. Wang 
et al. [14] proposed a sparse representation model based 
on the so-called global and local feature consistency 
enhancement to predict a convincing target patch. Wang 
et  al. [15] proposed the adaptive partial convolution to 
enlarge the receptive field, and used a novel mask gen-
erator to produce the matched stroke-like mask. Li et al. 
[16] employed manual line-drawings as auxiliary infor-
mation to guide the restoration of missing mural areas. 

Inspired by an artist’s image-making process, Ciortan 
et al. [17] proposed a multi-stage mural restoration net-
work based on “lines first, color palette after, color tones 
at last”, and used the Four random-walk masks to imitate 
various degradations of ancient murals. Lv et al. [18] pro-
posed an image restoration network based on two con-
nected generators, and obtained fine-detailed results for 
the Dunhuang murals. Schmidt et al. [19] utilized super-
resolution and deblurring techniques to restore the dete-
riorated cave paintings. Yu et al. [20] adopted two types 
of masks that are more suitable for simulating the miss-
ing areas of deteriorated murals. In reference [21], the 
mural restoration network needs complete line-drawings 
as the auxiliary information, which were manually drawn 
by mural repairing experts. Zhou et  al. [22] proposed a 
two-stage network that first generates gradient infor-
mation and then fills color information for the missing 
mural region.

Although the above methods are capable of dealing 
with specific mural damages, there still exist four chal-
lenges for a mural restoration network: (1) Most ancient 
murals have rich colors, complex structures and abun-
dant contents. To restore the murals with large-area dam-
ages, a mural restoration network should have the ability 
to capture multi-scale semantic information of a mural 
image. This will pose difficulties for the traditional CNN 
that has limited receptive fields. (2) Many murals have 
various diseases, and the masks for these diseases vary 
significantly. A mural restoration network needs suitable 
masks to indicate the degradation regions in the murals. 
(3) It is difficult for a mural research group to collect 
enough available mural data for training the deep neural 
network. This will result in poor network generalization 
ability. (4) Due to the scarcity of mural data, we need an 
efficient network suitable for mural restoration tasks.

To tackle with the challenges mentioned above, we pro-
pose a mural restoration network based on global–local 
feature extraction and structural information guidance. 
Figure  1 illustrates two examples of our model’s pro-
cedure from the damaged mural images to the output 
restored results. The main contribution of this paper 
includes the following three points: First (solve chal-
lenge 1). We propose an innovative network model that 
has powerful ability to restore those damaged murals 
that contain complex structures and abundant semantic 
contents. The model consists of two sub-networks: the 
structural information generator (SIG) and the image 
content generator (ICG). SIG is capable of predicting 
the structures and the coarse contents of the missing 
mural regions. ICG can effectively restore the refined 
image contents of the missing mural regions. Moreover, 
we design an innovative BranchBlock module that helps 
SIG to effectively extract and integrate the local and 
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global features. We also introduce a Fast Fourier Convo-
lution (FFC) module that expands the receptive field of 
ICG. Second (solve challenge 2). We utilize stroke-like 
and irregular masks to simulate the cracks and falling off 
diseases of the murals. In this way, the proposed model 
can achieve better restoration results when dealing with 
real damaged murals. Third (solve challenge 3). We build 
an ancient mural image dataset by collecting 3466 high-
quality ancient mural images and expanding the number 
of these mural images to 10,398 by use of data augmen-
tation techniques. Fourth (solve challenge 4). To ensure 
the effectiveness of the network training, we employ the 
MobileConv module and use the partial GatedConv strat-
egy to reduce the number of parameters in the network.

Proposed method
The damaged ancient murals usually contain complex 
structures and abundant semantic contents. It is a very 
challenging task to restore such missing regions of the 
damaged mural images. It has been noted that most of 
the image information consists in the structures, e.g., 
edges and lines of an image. Therefore, reliable structure 
information prediction for the damaged regions plays an 
important role in guiding the restoration of the damaged 
murals. As a manual procedure of mural creation, most 
mural experts will first sketch the line-drawings and then 
fill them with colors and details. Motivated by this point, 
we propose a mural restoration model that focuses on 
predicting the structure information before content res-
toration. Figure 2 shows the overall network architecture 
of the proposed model. Our model can be divided into 
two sub-networks: structure information generator (SIG) 
and image content generator (ICG). SIG aims to predict 
the reliable structure information and the coarse image 

contents of a damaged mural, and ICG performs refined 
content inpainting that is guided by the structure infor-
mation from SIG. Each sub-network focuses on a specific 
task in mural restoration, i.e., the structure information 
restoration and image content restoration.

Given an input ground truth mural image Igt,we 
combine the mural with a binary mask M to obtain 
a masked mural image Im by using the operation 
Im = Igt ⊙ (1−M) , where the binary mask M indi-
cates the mural region that needs to be restored, and the 
operation ⊙ denotes the Hadamard product. We need to 
extract the structure information (lines and edges) from 
the masked mural image. To begin with, we attempt to 
extract the structure information from the mural image. 
To obtain an accurate line map Il of the mural image, we 
use the line segment masking (LSM) algorithm [23] to 
train a deep learning-based wireframe parse HAWP [24]. 
This deep learning-based line extractor is referred to as 
LSM-HAWP in this paper. Moreover, we use the Canny 
detection operator to obtain the edge map Ie of the mural 
image. Therefore, the procedure of extracting structure 
information from the masked mural image can be formu-
lated as Ie−mask = Ie ⊙ (1−M) , Il−mask = Il ⊙ (1−M) 
on the channel dimension. We use Ie−mask and Il−mask as 
the input of SIG. After that, SIG can produce the restored 
structure map Ist and the coarse content image Ic of 
the masked mural. By using Ist and Ic as input, ICG will 
finally restore the refined contents of the masked mural.

Structure information generator (SIG)
Large damaged areas with complex structures and rich 
semantic contents often lead to structural disorder 
and poor content consistency in the restored murals. 
Notice that the structure information of a mural can 

Fig. 1  Two examples of our model’s procedure from the damaged mural images to the output restored results
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help to repair the missing mural areas. In this subsec-
tion, we design a structure information prediction 
network, also referred to as the structure information 
generator (SIG), to improve the restoration quality of 
the damaged murals. SIG aims to predict the complete 
structure feature of the mural. It also produces a coarse 
content image of the mural. The SIG network contains 
three kinds of modules: GatedConv [25], BranchBlock, 
and PSD. The input layer of SIG contains three gated 
convolution (GatedConv) modules that can filter out 
invalid pixels of the damaged region, and can enhance 
the ability of feature extraction. Different from vanilla 
convolution and partial convolution, the GatedConv 
uses a dynamic feature selection mechanism to adap-
tively select relevant features for each location and 
channel.

Given the input feature Fin,GC , the process of a Gated-
Conv can be expressed as Fout = σ(G)⊙ φ(Fe) . The gat-
ing feature G is generated by G = Conv13× 3(Fin,GC) , 
and the feature Fe is obtained by Fe = Conv23× 3(Fin,GC) . 
The notation σ denotes the sigmoid activation function, 
and the notation φ denotes the ReLU activation function. 
Figure 3 shows the architecture of the input layer of SIG 
that is composed of three GatedConv modules.

Notice that global context information plays an 
important role in restoring large-area damages, whereas 
local context features are more suitable for predicting 
the detailed contents. In order to improve the quality 
of mural restoration, we propose a parallel module that 
can capture the global and local context features simul-
taneously. This parallel module is referred to as Branch-
Block in this paper. The BranchBlock employs an 
adaptive learning mechanism to tune the weights of the 
global and local features. Since the BranchBlock adopts 
parallel network connections, its network size will 
inevitably expand. We consider adopting a lightweight 
design for the convolution and attention modules. To 
this end, we introduce the MobileConv [26] module 
with inverted residual blocks, which not only reduces 
the computation cost but also maintains relatively good 
performance. Figure  4 shows the detailed structure of 
the proposed BranckBlock.

In the branch of convolution module, taking the 
feature Fin,BB ∈ R

H×W×C as input, the MobileConv 
will extract features through point-wise convolution 
and depth-wise convolution. These operations can be 
expressed as

Fig. 2  The overall network architecture of the proposed mode
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In the branch of attention module, we reshape the 
input feature Fin ∈ R

H×W×C and the binary mask 
M ∈ R

H×W×1 to R
HW×C and R

HW×1 , respectively. 
Then we compute the Query and the Key by using the 
equation Q = softmaxrow(WqFin,BB ×Mask) and the 
equation K = softmaxcol(WkFin,BB ×Mask) , where 
softmaxrow and softmaxcol denote the individual softmax 
operations on the row and column, and ×Mask means to 

(1)

F1
c = σ(Conv1× 1(Fin,BB)),R

H×W×C −→ R
H×W× 3C

2

F2
c = σ(Conv3× 3(F1c)),R

H×W× 3C
2 −→ R

H×W× 3C
2

F3
c = σ(Conv1× 1(F2c)),R

H×W× 3C
2 −→ R

H×W×C

emphasize the masked region. The Value is obtained by 
using V = WvFin . The parameters Wq,k,v is learned in the 
attention module. To reduce the computation cost of the 
attention module, we modify the equation Fa = (QKT)V  
to Fa = Q(KTV ) . After extracting features from the 
convolution and attention modules, the BranchBlock 
employs a self-learning parameter W1 = fab(Fin,BB) to 
assign optimal weights to each parallel module, where 
fab indicates the Conv −→ IN −→ Sigmoid . Finally, the 
BranchBlock computes the output feature by using 
Fout = W1 ⊙ (F3

c + Fin)+ (1−W1)⊙ Fa.
We employ the gated convolution to adaptively filter 

the feature information and use the BranchBlock module 

Fig. 3  The architecture of the input layer of SIG

Fig. 4  The structure of the proposed BranchBlock
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to extract and integrate the local and global context 
information. We use a pyramid spatial decomposition 
(PSD) module to decouple the feature information into 
structure information and coarse content information. 
In the input layer of the PSD module, we first perform 
a GatedConv on the input feature Fin,PSD ∈ R

H×W×C 
to obtain a high credibility feature Fhc by using 
Fhc = GatedConv(Fin,PSD) . Then we obtain the struc-
ture feature Fst by using Fst = ε(σ (Conv(Fhc))) , where σ 
denotes the ReLU activation function, and ε denotes the 
Instance Norm operation. Next, we split Fst into the edge 
feature Fedge and the line feature Fline by using {Fline, Fline}
=split(Fst ). Afterwards, the edge map Sedge and the line 
map Sline are computed by using Sedge = φ(Conv(Fedge)) 

and Sline = φ(Conv(Fline)) respectively, where φ denotes 
the sigmoid activation function.

We compose the edge feature Fedge and the line fea-
ture Fline to predict a coarse content feature Fcc by using 
Fcc = W2 ⊙ Fedge + (1−W2) , the weight W2 is computed 
by W2 = fcd(Fin.PSD) , where fcd denotes a series of opera-
tions Conv −→ IN −→ ReLU −→ Conv2D −→ Sigmoid . 
The coarse content image Simg is visualized by using 
Simg = φ(Conv(Fcc)) . The final output of the PSD mod-
ule can be computed as Fout = Fhc + Fcc . Figure 5 shows 
the detailed structure of the PSD module.

The proposed SIG network contains three PSD mod-
ules. The first PSD module takes the input feature 
F ∈ R

64×64×64 And this module would process this input 

Fig. 5  The structure of the PSD module
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feature to obtain [F1
out ∈ R

128×128×128, S1img ∈ R
64×64×3,

S
1
edge ∈ R

64×64×1, S1line ∈ R
64×64×1] . Through the iterative 

process of three PSD modules, SIG can predict a coarse 
content image Ic = S3img ∈ R

256×256×256 , a line map 
S3line ∈ R

256×256×1 and a edge map S1edge ∈ R
256×256×1 . 

These three predicted results have the same size with the 
original 256× 256 px mural image. The structure infor-
mation Ist is combined by using Ist =

{

S3edge, S
3
line

}

.

Image content generator   (ICG)
The goal of the second sub-network ICG is to restore the 
refined contents of the mural based on the predicted infor-
mation 

{

S3img, S
3
line, S

3
edge

}

 from the first sub-network SIG. 
The ICG can restore the detailed textures and enhanced 
colors of the damaged mural. The backbone of ICG con-
sists of six FFC [27] modules which can fully utilize the 
hardware devices and expand the receptive field of the ICG 
network. Figure  6 shows the detailed structure of a FFC 
module. In order to effectively leverage the predicted 

information 
{

S3img, S
3
line, S

3
edge

}

 , we employ the GatedConv 
modules in the rest part of ICG.

We use the FFC module to capture global and local con-
text information. The FFC splits all the input channels 
into global and local branches with the ratio of 3:1. The 
local branch updates the feature through vanilla convolu-
tion with 3× 3 kernel size. The global branch employs 
spectral transform to update the feature, which can effec-
tively obtain the global context information of the mural 
image. The implementation steps of the FFC module are as 
follows:

(1) applies Real FFT2d to the input feature map, and 
concatenates real and imaginary parts across channel 
dimension:

(2) applies convolution block in frequency domain:

R
H×W×C FFT2d

−−−−→ C
H×W

2 ×C concat
−−−→ R

H×W
2 ×2C

R
H×W

2 ×2C Conv1×1→BN→ReLU
−−−−−−−−−−−−−→ R

H×W
2 ×2C

Fig. 6  The detailed structure of a FFC module
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(3) applies inverse Fourier transform to recover a spatial 
structure:

Finally, we fuse the updated global and local features to 
obtain the output features. With the outstanding per-
formance of FFC in color restoration and under the 
guidance of the structural information from SIG, our 
proposed network can significantly improve the quality 
of mural restoration with consistent structures and natu-
ral colors.

Loss function
Since the goal of the SIG network is to predict reasonable 
structural information, we employ a line discriminator and 
an edge discriminator based on SN-PathGAN [25] in the 
training process. The two discriminators utilize a loss func-
tion by comparing the ground truth edge egt and line Igt 
with the predicted edge S3edge and line S3line . The loss func-
tion of the discriminator of SIG can be expressed as

The loss function of the generator of SIG is formulated as

where the predicted coarse content Siimg computed by the 
i-th PSD module, and the Lfn is the feature matching loss 
[28]. The size of the predicted coarse content Siimg and 
the ground truth image Igt is 64 × 64 px when i = 1, and 
128× 128 px when i = 2, and 256× 256 px when i = 3. In 
this work, we set �α = 0.1 , �f = 10.

In the ICG network, the loss function is computed as 

 where LICGstyle and LICGper  are respectively the style loss [29] 
and the perceptual loss [30] based on VGG-19. In this 
work, we set �α = 0.1 , �p = 0.1 , �s = 25.

R
H×W

2 ×2C concat
−−−→ C

H×W
2 ×C iFFT2d

−−−−→ R
H×W×C

(2)

LSIGD = LDl
+ LDe ,where

LDl
= −E[logDline(lgt)] − E[1− logDline(S

3
img)]

LDe = −E[logDedge(egt)] − E[1− logDedge(S
3
edge)]

(3)LSIGG =�αL
SIG
adv + �f Lfm +

3
∑

i

[Siimg − I igt]

(4)LSIGadv =− E[logDedge(S
3
edge)] − E[logDline(S

3
line)]

(5a)LICGD = −E[logD(Igt)] − E[1− logD(S3img)]

(5b)LICGG = Ll1 + �αL
ICG
adv + �sL

ICG
style + �pL

ICG
per

(5c)LICGadv = −E[logD(S3img)]

Experimental results and analysis
To verify the performance of our proposed network, we 
conduct experiments on both simulated and real dam-
age of ancient murals. We compare our network with 
three state-of-the-art approaches: EC [28], RFR [31], 
DS-Net [32]. All these approaches use the same data-
sets for training. In the experiment of simulated dam-
age restoration, we employ peak signal-to-noise ratio 
(PSNR) and structural similarity (SSIM) as evaluation 
metrics. In the experiment of real damage restoration, 
we conduct visual comparison on the restored murals. 
We also conduct the ablation experiment for each mod-
ule and loss function of our proposed network. All 
tests are run on a Windows platform. The computer is 
equipped with an Intel 3.5  GHz CPU and a NVIDIA 
GeForce RTX 3090 GPU. We implement our model in 
the PyTorch framework with the Adam optimizer.

We build a mural dataset by manually collecting 3466 
high-quality images of different sizes from ancient 
mural album. We crop the original images into small 
sub-images as minimal overlap as possible. These sub-
images can be roughly categorized into human figures, 
buildings, rich textures, animals, as shown in Fig.  7. 
To alleviate the over-fitting problem during the train-
ing process, we expand the training data through data 
augmentation techniques such as random rotation, 
cropping, mirror flipping, etc. Finally, we choose 10,398 
mural sub-images for training, and use 180 deteriorated 
murals for the experiment of real damage restoration. 
In the experiment of simulated damage, we employ 
the irregular masks from the MST dataset [23] and 
choose the stroke-like masks from the Thangka inpaint-
ing dataset [15]. These synthetic masks are very simi-
lar to the degradation areas of mural cracks and falling 
offs. Especially, we choose 10–20% mask rate for the 

Fig. 7  Examples of different mural data type
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irregular masks and 5–10% mask rate for the stroke-
like masks in the process of model training and testing.

Experiment on simulated damage
In this subsection, we conduct experiment over the 
murals with simulated damages to demonstrate the res-
toration ability of the proposed model. We select several 
intact (non-damaged) mural images, and employ irregu-
lar and stroke-like masks to imitate the deterioration 
regions.

Figure  8 illustrates three example murals with irregu-
lar masks and the restoration results of four compara-
tive methods. It can be seen that the DS-net produces 
color confusion and semantic discontinuity in the skirt 
and the pillar in 1st image. RFR causes structure disor-
ders and cannot predict reasonable textures (e.g. 1st 
and 3rd images). EC fails to restore the missing mural 
regions, and produces blurred and ghosting effects. 
Although these damaged murals have lost most of their 

structure and color information, our model can success-
fully predict structural information and color details of 
the missing regions. We also quantitatively evaluate the 
restoration results by use of the PSNR and SSIM. Table 1 
shows the evaluation metrics in this mural restoration 
test with simulated irregular damages. As can be seen, 
our network outperforms other three approaches in 
both PSNR and SSIM metrics. Especially, our model can 
achieve considerably greater values of SSIM than other 
comparative approaches. This indicates that our network 
can restore the missing mural regions with better seman-
tic and visual continuity.

Figure  9 shows five example murals with stroke-like 
masks and the restoration results of four comparative 
methods. It can be seen that our proposed model and 
the DS-net can generate better structural continuity of 
the missing regions (e.g., 1st image) than RFR and EC. 
The 2nd mural image is a comparatively difficult test 
because the missing regions contain complex structures 

Fig. 8  Restoration results of three murals with irregular masks

Table 1  The PSNR and SSIM values for the mrual restoration of irregular masks

Note: The best result in each column is boldfaced

Murals RFR DS-net EC ours

PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM

1 23.9058 0.8861 25.0925 0.9085 25.0017 0.9021 26.6548 0.9417
2 25.0520 0.8179 26.8556 0.8911 26.2696 0.8631 27.65613 0.9286
3 24.4107 0.8291 26.0728 0.8799 25.5625 0.8710 26.9239 0.9188
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and rich textures (particularly for the pedestal of the 
little person). It can be observed that RFR produces 
discontinuous and sharp edges. DS-net generates 
confused textures and colors. EC cannot recover any 

textures. By comparison, our model can fill the miss-
ing regions with clear structures, textures and colors. 
The last three images also demonstrate our model’s 
outstanding performance in repairing the structures 

Fig. 9  Restoration results of eight murals with stroke-like mask
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and textures of the missing mural regions. Table 2 gives 
the objective evaluation metrics in the mural restora-
tion test over simulated stroke-like damages. As can be 
seen, our model achieves higher PSNR and SSIM values 
than other comparative approaches. It is worthy of stat-
ing that our model can obtain considerably better SSIM 
values. This is just because our model attempts to pre-
dict the structure information of the missing regions 
before restoring the mural contents.

Experiment on real damage
In the experiment of real damaged mural restoration, 
we choose 180 murals with real damaged or deterio-
rated regions. We manually mark and label the dam-
aged regions to obtain the masks. Figure  10 shows 
some damaged murals and their restoration results of 
four comparative approaches. It can be seen that the 
DS-net produces some obvious artifacts and unnatu-
ral textures when dealing with large damaged areas (e. 
g., 1st image). DS-net also generates disharmonious 
colors with its surrounding areas (e. g., 6th, 7th, and 
8th images). EC produces discontinuous structures and 
blurred contents for the missing mural regions (e. g., 
1st and 3rd images). RFR performs well in crack res-
toration, but fails to restore reasonable structures and 
colors for the large area damages (e. g., 1st and 7th 
images). As compared to other approaches, our model 
can generate clear structures, plausible textures, and 
vivid colors.

It should be noted that real damaged murals have 
no ground truth images for quantitative evaluation. 
We invite 20 volunteers to rate the mural restoration 
results of four comparative approaches based on struc-
tural continuity, color consistency, texture clarity and 
overall effect. We choose 8 mural images as test cases. 
We assign scores of 1, 2, 3, 4, 5 to five levels of user rat-
ings. Higher scores indicate better evaluation. Figure 11 
shows the average scores of 20 volunteers on the res-
toration results of four approaches. It can be seen that 
our model obtains all the highest scores in this test.

Ablation study
In this subsection, we conduct the ablation experiment 
on the proposed network to verify the effects of the core 
modules and loss functions.

Ablation study of the BranchBlock and the FFC modules
To begin with, we conduct the ablation experiment to 
study the effects of the BranchBlock and the FFC mod-
ules. The SIG network aims to predict plausible structure 
information of the missing regions. As a core module 
of SIG, the BranchBlock plays an important role in the 
extraction and integration of the structure features. We 
remove the BranchBlock from SIG and keep other mod-
ules unchanged. Figure 12 shows the test results of pre-
dicting the edge information by the SIG network with/
without the BranchBlock. We also provide the ground-
truth edge maps that are generated by using the Canny 
edge detector from the original mural images. As can be 
seen, the SIG network with the BranchBlock can predict 
reasonable and consistent structure information (edge 
map) of the missing areas. By comparison, the network 
without the BranchBlock produces some implausible 
and disordered structure information for the damaged 
murals.

The ICG network attempts to restore the missing 
contents of the damaged murals by utilizing the pre-
dicted structure information from SIG. As a core mod-
ule of ICG, the FFC module can significantly improve 
the quality of the restored mural contents. In this test, 
we remove the FFC from ICG and keep other modules 
unchanged. Figure 13 shows the test results of restoring 
the missing contents by the ICG network with/without 
the FFC module. We also provide the ablation results by 
removing both the FFC and the BranchBlock from our 
network. It can be seen that the ICG network without 
the FFC module produces some ghosting artifacts and 
inconsistent colors. When we remove the FFC and the 
BranckBlock simultaneously, the network will produce 
worse restoration results for the missing mural regions. 
By comparison, our complete network with the FFC and 
BranchBlock modules can generate plausible structures, 

Table 2  The PSNR and SSIM values for the mrual restoration of stroke-like masks

Note: The best result in each column is boldfaced

Murals RFR DS-net EC ours

PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM

1 27.8648 0.8773 29.8823 0.9457 29.3457 0.9230 33.4027 0.9606
2 28.8939 0.8851 32.3775 0.9637 28.4945 0.9465 33.0886 0.9738
3 29.1493 0.8707 31.7588 0.9442 29.6621 0.9406 31.7678 0.9608
4 28.1710 0.8715 31.1147 0.9469 31.3706 0.9582 34.8384 0.9776
5 27.3813 0.8978 30.5143 0.9596 30.7133 0.9277 32.8415 0.9588
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Fig. 10  Comparison of the restoration results from real damage
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vivid colors, consistent textures for the missing mural 
regions.

We also use the PSNR and SSIM metrics to evalu-
ate the results of the ablation experiment. Table 3 gives 
the PSNR and SSIM values averaged over 151 simulated 
damaged murals. As can be seen, compared with other 
three ablation models, our complete network shows 

considerable improvement in the PSNR and SSIM met-
rics. This demonstrates that the BranchBlock and the 
FFC modules play an important role in the restoration of 
the damaged murals.

Ablation study of the loss functions
In the following test, we conduct an ablation study on 
the loss functions so as to analyze the effects of them. We 
remove the loss functions one by one, and obtain five dif-
ferent ablation strategies (Ablation1, 2, 3, 4, 5) that are 
given in Table  4. The symbol “–” denotes the “remove” 
opration.

Figure  14 provides the visual comparison of all five 
ablation strategies and our proposed model. In each 
group of comparison, our model is compared to an abla-
tion strategy that removes a certain loss function. It can 
be seen that each loss function has obvious improvement 
on the quality of the restored murals. When a certain loss 
function is removed from the model, the restored murals 
will appear obvious degradation such as disordered 
structures, blurred textures, and implausible colors.

Fig. 11  The average scores of 20 volunteers on the restoration 
results in real damage experiment

Fig. 12  The ablation test of predicting the edge information by using the BranchBlock and removing the BranchBlock. Note that the red 
panels indicate the areas of focus for comparison. a Masked mural. b Ground-truth edge map. c Network with Branchblock. d Network 
without Branchblock
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Conclusion
In this paper, we proposed a two-stage ancient mural 
restoration network, which consists of the structure 
information generator (SIG) and the image content gen-
erator (ICG). Our inspiration for designing this network 
comes from the process of creating handmade murals. 
SIG is capable of predicting the structure information 
of the missing mural regions. ICG can effectively restore 
the missing mural contents under the guidance of the 
predicted structure information from SIG. In order to 

Fig. 13  The ablation test of restoring the missing contents. a Original mural. b Maked mural. c Complete network. d Network without FFC. e 
Network without FFC and BranchBlock

Table 3  The objective evaluation metrics of our complete network and three ablation models

Network combination PSNR/dB SSIM

Complete network 27.02132 0.931

Network without FFC 25.3842 0.8905

Network without BranchBlock 25.6012 0.8931

Network without BranchBlock and FFC 25.1611 0.8623

Table 4  Different loss strategy in the ablation study

Loss strategy ELMG LOSS ICG loss

Ablation1 L
ELMG
G − Lfm L

ICG
G

Ablation2 L
ELMG
G −

∑3
i
[Siimg − Igt] L

ICG
G

Ablation3 L
ELMG
G L

ICG
G − L

ICG
l1

Ablation4 L
ELMG
G L

ICG
G − L

ICG
per

Ablation5 L
ELMG
G L

ICG
G − L

ICG
sytle
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Fig. 14  The ablation test of the loss functions. Note that the red panels indicate the areas of focus for comparison.
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predict the structure information for the missing mural 
regions, we designed an innovative BranchBlock mod-
ule as the core component of SIG. In order to extract 
the local and global features from the mural contexts, we 
introduced a Fast Fourier Convolution (FFC) module as 
the core component of ICG. The proposed network is 
performed over both simulated and real damaged murals. 
The experimental results demonstrate that our model can 
effectively restore the ancient murals with various dam-
aged regions. As compared with three state-of-the-art 
approaches, our model can generate more satisfactory 
results when evaluated by use of visual comparison and 
objective metrics.

It is worth stating that deep neural network-based 
image restoration requires a large amount of training 
data. The network performance is inevitably influenced 
by the quality of training data. Most of the remaining 
ancient Chinese murals suffer from varying degrees of 
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iness, microorganism corrosion, etc. It is very difficult 
for us to collect sufficient high-quality (non-diseased) 
ancient Chinese mural images for the network training. 
While we expand the training dataset through data aug-
mentation techniques such as rotation, cropping, flip-
ping, etc., the data augmentation may cause information 
redundancy of the mural image dataset. This will prob-
ably affect the generalization ability of the deep neural 
network. Although our proposed model is superior to 
existing approaches, it still suffers from the lack of high-
quality training mural data. In our future work, we will 
collect more ancient mural images through field visits 
across the country. Moreover, we will consider utilizing 
some intelligent algorithms (e. g., image super-resolu-
tion or style transfer based on deep neural networks) to 
build a large-scale synthetic mural training dataset.
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