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Abstract

In this paper a new generalization of the hyper-Poisson distribution is proposed
using the Mittag-Leffler function. The hyper-Poisson, displaced Poisson, Poisson and
geometric distributions among others are seen as particular cases. This Mittag-Leffler
function distribution (MLFD) belongs to the generalized hypergeometric and
generalized power series families and also arises as weighted Poisson distributions.
MLFD is a flexible distribution with varying shapes and has a unique mode at zero or
it is unimodal with one/two non-zero modes. It can be under-, equi- or over- dispersed.
Various distributional properties like recurrence relation for probability mass function,
cumulative distribution function, generating functions, formulas for different type of
moments, their recurrence relations, index of dispersion and its classification,
log-concavity, reliability properties like survival, increasing failure rate, unimodality,
and stochastic ordering with respect to hyper-Poisson distribution are discussed. A
particular case of the distribution is shown to arise as the steady state probability of a
queuing system under state dependent service rate. The distribution has been found to
fare well when compared with the hyper-Poisson and COM-Poisson type negative
binomial distributions in its suitability in empirical modeling of differently dispersed
count data. It is therefore expected that the proposed MLFD with its interesting
features and flexibility will be a useful addition as a model for count data.

Keywords: Index of dispersion, Reliability, Log-concavity, Unimodality, Stochastic
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Introduction
The Poisson distribution is a popular model for count data. However its use is

restricted by the equality of its mean and variance (equi-dispersion). Many models with

the ability to represent under-, equi- and over- dispersion have been proposed in the

research literature to overcome this restriction. Notable among these distributions are

the hyper-Poisson (HP) of Bardwell and Crow (1964), generalized Poisson of Consul

(1989), double-Poisson of Efron (1986), Poisson polynomial of Cameron and Johansson

(1997), weighted Poisson of Castillo and Pérez-Casany (2005) and COM-Poisson of

Conway and Maxwell (1962) (see also Shmueli et al., 2005).
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Of these models the HP distribution was first proposed by Bardwell and Crow (1964)

and Crow and Bardwell (1965). The probability mass function (pmf) of the HP with

parameters (λ, β) distribution is given by

P X ¼ kð Þ ¼ Γ βð Þ
Γ k þ βð Þ

λk

φ 1; β; λð Þ ; k ¼ 0; 1; 2;⋯; λ > 0 ð1Þ

where φ 1; β; λð Þ ¼
X∞
j¼0

1ð Þj
βð Þj

λj

j!
; is the confluent hypergeometric function and (β)j = β(β + 1)

⋯ (β + j − 1).

The pmf has a simple recurrence relation, that is,

βþ kð ÞP X ¼ k þ 1ð Þ ¼ λP X ¼ kð Þ; k ¼ 1; 2; 3; : : ::

The probability generating function (pgf) is given by

P sð Þ ¼ φ 1; β; λsð Þ=φ 1; β; λð Þ:
Staff (1964) studied a displaced Poisson distribution which is the HP distribution with

the parameter β restricted to be a positive integer. The case when β is negative was

investigated later by Staff (1967). The HP distribution attracted the attention of many

researchers of late. Kemp (2002) dealt with a q-analogue of the distribution and Ahmad

(2007) proposed a Conway-Maxwell-HP distribution. Roohi and Ahmad (2003a, 2003b)

investigated moments of the HP distribution. Kumar and Nair (2011, 2012, 2013, 2015)

studied various extensions and alternatives of the HP distribution. Sáez-Castillo and

Conde-Sánchez (2013) studied a HP regression model for over-dispersed and under-

dispersed count data. Best (2001) and Antic et al. (2006) considered the HP distribution

in word length and text length research. Khazraee et al. (2015) investigated the applica-

tion of the HP generalized linear model for analyzing motor vehicle crashes.

Since the HP distribution is an important model for applications and is able to handle

under- and over- dispersion, where there are relatively fewer models with this feature,

it is of interest to add further flexibility to the HP distribution especially for empirical

modeling. Another advantage of such a generalization is that it will result in represent-

ing a larger family of distributions and avoids piecemeal analysis. In this paper we

propose a new generalization of the HP distribution by replacing Γ(k + β) in (1) with Γ(α k

+ β), α > 0 and the normalization constant becomes Eα, β(λ) which is the generalized

Mittag-Leffler function defined by

Eα; β λð Þ ¼
X∞
j¼0

λj=Γ αjþ βð Þ ð2Þ

Consequently the proposed distribution is called the Mittag-Leffler function distribu-

tion (MLFD). In general adding an extra parameter increases the complexity. However,

for the MLFD, the extra parameter α adds flexibility but retains computational tract-

ability since computation of Eα, β(λ) does not pose a problem due to many software

packages (example MATLAB) which offered routines for its quick computation. When

α = β = 1, the MLFD is the Poisson distribution which is equi-dispersed. However for α,

β ≠ 1, the MLFD still can be equi-dispersed and this characteristic allows more flexibil-

ity in modeling of equi-dispersion by a non-Poisson multi-parameter model compared

to the single parameter Poisson model. The MLFD is shown to be log-concave and this
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confers a number of attractive properties for modeling and inference; see Walther (2009)

for a good review of statistical modeling and inference with log-concave distributions.

The proposed MLFD should not be confused with a class of discrete Mittag-Leffler distri-

butions proposed by Pillai and Jayakumar (1995). It is pertinent to give a brief review of

some developments in statistical models involving the Mittag-Leffler function.

The Mittag-Leffler function (with β = 1 in (2) and is denoted by Eα(z)) was first intro-

duced by Swedish mathematician Gosta Mittag-Leffler (1903; 1905) and it arises as the

solution of a fractional differential equation. This function and its many extended versions

were studied by many mathematicians over the years. Haubold et al. (2011) have given a

good survey on the Mittag-Leffler function. Recently, this function has also been explored

for applications in statistics. Pillai (1990) showed that 1 − Eα(−z
α), 0 < α ≤ 1 are valid cumu-

lative distribution functions (cdf) and named it as Mittag-Leffler distribution with cdf and

pdf respectively given by

F x; αð Þ ¼
X∞
j¼1

−1ð Þj−1xj α=Γ αjþ 1ð Þ; x > 0; 0 < α≤1 and

f x; αð Þ ¼
X∞
j¼1

−1ð Þj−1 jαð Þxj α−1=Γ αjþ 1ð Þ; x > 0; 0 < α≤1

ð3Þ

Since for α = 1 this distribution reduces to the exponential distribution with mean

1, it can be treated as a generalization of the exponential distribution. Pillai (1990)

studied different properties of this distribution. Jose and Pillai (1986), Jayakumar

and Pillai (1993), Lin (1998), Jayakumar (2003), Jose et al. (2010) studied different

aspects of this distribution.

Pillai and Jayakumar (1995) proposed a class of discrete Mittag-Leffler (DML) distri-

butions having pgf P(z) = E(zX) = 1/[1 + c(1 − z)α]. The DML distribution arises as a mix-

ture of the Poisson distribution with parameter θλ, where θ is a constant and λ follows

the Mittag-Leffler distribution in (3). They have studied different properties of the

DML distribution, gave a probabilistic derivation and an application in a first order

autoregressive discrete process. The DML is also a particular case of the discrete Linnik

distribution (Devroye, 1990).

Jose and Abraham (2011) introduced another discrete distribution based on the

Mittag-Leffler function which arises when the exponential waiting time distribution

in the usual Poisson process is replaced by the Mittag-Leffler distribution. The pmf

of this distribution is

P X ¼ kð Þ ¼
X∞
i¼k

i
k

� �
−1ð Þ i−kð Þzi α=Γ α iþ 1ð Þ; k ¼ 0; 1;⋯; 0 < α≤1: ð4Þ

In this article we have taken a completely different route to propose a discrete distri-

bution based on the Mittag-Leffler function. The proposed distribution, which under

certain conditions also arises from a queuing theory setup, is simple and extremely flex-

ible in its shape and modality and it can model under-, equi- and over- dispersed count

data. Section 2 defines the MLFD and basic structural properties are given. MLFD as a

distribution in a queuing system is given in Section 3. Reliability and stochastic order-

ing properties are discussed in Section 4. Section 5 deals with parameter estimation

and examples of applications of MLFD. The conclusion is given in Section 6.
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Mittag-Leffler Function Distribution: Definition and Properties

In this section we define the proposed MLFD and investigate its main distributional,

reliability and ordering properties.

Definition 1. A discrete random variable X is said to follow the MLFD with parame-

ters (λ, α, β) if its pmf is defined by

P X ¼ kð Þ ¼ λk= Γ αk þ βð ÞEα; β λð Þ� �
; k ¼ 0; 1; 2;⋯; λ; α; β > 0 ð5Þ

where Eα; β λð Þ ¼
X∞
j¼0

λj=Γ αjþ βð Þ is the generalized Mittag-Leffler function. The

distribution henceforth will be denoted by MLFD (λ, α, β).

Remark 1: The MLFD pmf (5) may be obtained by replacing k ! in the Poisson

pmf e− λλk/k ! with Γ(αk + β), and the normalization constant e− λ is now 1/Eα, β(λ).

It may be noted that the proportion of zeros given by P(X = 0) = 1/{Γ(β) Eα, β(λ)},

increases with increase in β (see Fig. 1(b)) when (λ, α) are fixed; increases with decrease

in λ (see Fig. 1(c) and (d)) for fixed (α, β); and increases (decreases) with α > (<) 1 (see

Fig. 1(e) and (f )) for fixed (λ, β). Whereas when β→ 0+ the proportion of zeros

decreases (see Fig. 1(b)) with the pmf proportional to λk/Γ(αk) , k = 0, 1, 2,⋯.

Recurrence relation between probabilities

The MLFD (λ, α, β) pmf in (5) has a simple recurrence relation given by

Γ αk þ αþ βð ÞP X ¼ k þ 1ð Þ ¼ λ Γ αk þ βð ÞP X ¼ kð Þ; k≥1 ð6Þ

with P(X = 0) = 1/{Γ(β) Eα, β(λ)}.

When α is a positive integer, (6) can be expressed as (αk + β)αP(X = k + 1) = λP(X = k).

The distribution exhibits long tailedness for 0 < α < 1 as the ratio of successive prob-

abilities varies slowly (this corresponds to over-dispersion) as k tends to infinity while

for α ≥ 1 this ratio tends to zero faster implying presence of a Poisson-type tail.

The recurrence relation in (6) facilitates easy computation of the probabilities. The

computation of the normalizing constant Eα, β(λ) is only required for P(X = 0).

Note that the recurrence relation (or the difference equation) in (6) reduces to that of

HP (λ, β) distribution for α = 1 and displaced Poisson distribution when α = 1 and β is

an integer (further discussed in Section 2.5.1).

Computation of the generalized Mittag-Leffler function Eαβ(λ)

For statistical inference and applications it is necessary to compute the generalized

Mittag-Leffler function Eα, β(λ), which is the normalizing constant, where

Eα; β λð Þ ¼
X∞
j¼0

λj=Γ αjþ βð Þ:

Numerical computation of the generalized Mittag-Leffler function is well-researched.

Seybold and Hilfer (2008) gave a numerical algorithm for calculating the generalized

Mittag-Leffler function for arbitrary complex argument z and real parameters α and β based

on a Taylor series, exponentially improved asymptotics and integral representation. If |λ| ≤
1, a simple way to compute Eα, β(λ) is to calculate the terms aj = λj/Γ(αj + β) in the infinite

series Eα, β(λ) by employing the recurrence relation aj + 1/aj = λ/(αj + β) with a0 = 1/Γ(β) (see
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Lee et al., 2001). This avoids the computation of the gamma function Γ(x). The summation

is terminated when aj is very small. The error estimate is given by Theorem 4.1 of Seybold

and Hilfer (2008) which determines the number of terms N such that

Eα; β λð Þ≈
XN
j¼0

λj=Γ αjþ βð Þ:

For other values of λ, asymptotic series and integral representation (see equations

(2.3), (2.4) and (2.7) of Seybold and Hilfer, 2008) are employed. Error estimates are also

Fig. 1 Plots of MLFD (λ, α, β) pmf for some values of the parameters
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given for these cases. The computation of the Mittag-Leffler function is given by many

software packages like Matlab (MLF (alpha, Z, P)) and Mathematica (MittagLefflerE

[a, b, z]). (See also Gorenflo et al., 2002.) See also Garrappa (2015) for a recent

contribution towards numerical evaluation of Mittag-Leffler function.

Shapes of pmf

The pmf of MLFD (λ, α, β) is plotted for a number of combinations of parameters to

study the different shapes of the distribution.

From the plots of the pmf it is seen that the distribution can be unimodal with non-

zero mode (see Fig. 1(a)) or it can have nonzero modes at two points (see Fig. 1(h)) or

non-increasing with the mode at 0 (see Fig. 1(g)). See Section 4.3 item (i) for further

discussion on the modes.

Cumulative distribution function and generating functions

The cumulative distribution function (cdf) of X ~MLFD (λ, α, β) is seen to be

P X≤rð Þ ¼ 1−λrþ1 Eα; βþ rþ1ð Þα λð Þ=Eα;β λð Þ� �

by using the known relation λrEα; βþr α λð Þ ¼ Eα; β λð Þ−
Xr−1
j¼0

λj=Γ αjþ βð Þ (Haubold et

al., 2011).

The pgf is given in terms of Eα,β(λ) as

P sð Þ ¼ E sX
� 	 ¼ Eα;β λ sð Þ=Eα;β λð Þ; 0 < λs

The moment generating function (mgf) and the factorial moment generating func-

tion (fmgf) are obtained from the pgf as

Eα;β λesð Þ=Eα;β λð Þ andEα;β λ 1þ sð Þð Þ=Eα;β λð Þ respectively:

Related distributions and connections with other families of distributions

Particular cases of MLFD (λ, α, β)

The MLFD (λ, α, β) includes a number of well-known distributions as particular cases:

(i) When α = β = 1, MLFD (λ, α, β) reduces to the Poisson distribution with parameter λ.

(ii)When α= 0, β (≥0) MLFD (λ, α, β) becomes the geometric distribution with parameter λ

provided 0 < λ < 1. Since for α→ 0
+,

lim
α→0þ Eα;β λð Þ→

X∞
j¼0

λj

Γ βð Þ ¼
1

1−λð ÞΓ βð Þ ; 0 < λ < 1

(Hanneken et al., 2009).

(iii)When α = 1, β (≥0) MLFD (λ, α, β) reduces to the HP (λ, β) distribution (Bardwell

and Crow, 1964; Johnson et al., 2005, p. 200).

Proof: P X ¼ kð Þ ¼ λk

Γ kþβð ÞE1; β λð Þ; k ¼ 0; 1; 2;⋯; λ > 0 where E1; β λð Þ ¼
X∞
j¼0

λj=Γ jþ βð Þ ¼

X∞
j¼0

λj= βð ÞjΓ βð Þ
n o

¼ 1
Γ βð Þ
X∞
j¼0

1ð Þj
βð Þj

λj

j!
¼ φ 1;β;λð Þ

Γ βð Þ .

Hence P(X = k) reduces to the pmf of HP (λ, β) distribution given in Eq. (1).

An alternative form of the pmf of the HP (λ, β) distribution when β > 1 can be seen as
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PðX ¼ kÞ ¼ Γðβ−1Þ
Γðk þ βÞ

e−λλkþβ−1

γðβ−1; λÞ ; k ¼ 0; 1; 2;⋯; λ > 0; β > 1;

since E1; β λð Þ ¼ λ1−β eλ γ β−1;λð Þ
Γ β−1ð Þ (see Simon, 2013), where γ u; λð Þ ¼

Zλ
0

e−y yu−1 dy is the in-

complete gamma function.

(iv)When α = 1 and β (=t + 1) is a positive integer, MLFD (λ, α, β) reduces to the

displaced Poisson distribution (see Staff, 1964; Johnson et al., 2005, p. 200) with

parameter λ and t.

In addition, the following new distributions involving hyperbolic and error functions

are also seen as particular cases.

(v)When α = 2 and β = 2, MLFD (λ, α, β) reduces to a new discrete distribution with

parameter λ and pmf

P X ¼ kð Þ ¼ λkþ 1=2ð Þ

Γ 2 k þ 1ð Þð Þ
1

sinh
ffiffiffi
λ

p� 	 ¼
ffiffiffi
λ

p� 	2kþ1

2k þ 1ð Þ!
1

sinh
ffiffiffi
λ

p� 	 ; k ¼ 0; 1; 2;⋯; λ > 0;

since E2; 2 λð Þ ¼ sinh
ffiffiffi
λ

p� 	
=
ffiffiffi
λ

p
(Haubold et al., 2011).

(vi)When α = 2 and β = 1, MLFD (λ, α, β) reduces to a new distribution with parameter

λ and pmf

P X ¼ kð Þ ¼ λk

Γ 2k þ 1ð Þ
1

cosh
ffiffiffi
λ

p� 	 ¼
ffiffiffi
λ

p� 	2k
2kð Þ!

1

cosh
ffiffiffi
λ

p� 	 ; k ¼ 0; 1; 2;⋯; λ > 0

since E2; 1 λð Þ ¼ cosh
ffiffiffi
λ

p� 	
(Haubold et al., 2011).

(vii)When α = 1/2 and β = 1, MLFD (λ, α, β) reduces to a new distribution with

parameter λ and pmf

P X ¼ kð Þ ¼ exp −λ2
� 	

λk

k =2ð Þ! erfc −λð Þ ; k ¼ 0; 1; 2;⋯; λ > 0

since E1=2; 1

ffiffiffi
λ

p� 	 ¼ exp λð Þerfc −
ffiffiffi
λ

p� 	
(Haubold et al., 2011) where erfc (λ) is the

complementary error function defined as erfc λð Þ ¼ 1−erf λð Þ ¼ 1− 2ffiffiffi
π

p
Zλ
0

exp −t2
� 	

dt.

Also erfc λð Þ ¼ 2 1ffiffiffiffi
2π

p
Z

−∞

−
ffiffi
2

p
λ

exp −t2=2ð Þdt
2
4

3
5 ¼ 2Φ −

ffiffiffi
2

p
λ

� 	
, Φ(.) being the cdf of the

standard normal distribution.
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(viii)MLFD (λ, α, β) degenerates with mass only at zero for either α→∞ or β→∞ or

both and also when λ→ 0+.

Remark 2. For 0 ≤ α ≤ 1, the MLFD (λ, α, β) can be viewed as a continuous bridge

between the geometric (α = 0) and HP (α = 1) distributions in the range of the param-

eter α; in particular, the MLFD (λ, α, 1) can be viewed as a continuous bridge between

the geometric (α = 0) and Poisson (α = 1) distributions in the range of the parameter α,

a property also shared by the COM-Poisson distribution.

MLFD as weighted Poisson distribution

The MLFD (λ, α, β) is seen as a weighted Poisson distribution as follows: If X ~ Poisson

(λ) having pmf

P X ¼ kð Þ ¼ e−λλk=k !; k ¼ 0; 1; 2;⋯; λ > 0;

then for integer α and β it can be shown that weighted distribution with weight

function 1/(k + 1)(α − 1)k + β − 1 gives the pmf of MLFD (λ, α, β). Since the weight

function 1/(k + 1)(α − 1)k + β − 1 is monotonically decreasing in k for α, β > 1, MLFD (λ,

α, β) is stochastically smaller than the Poisson distribution when α, β > 1. (See Patil

et al. 1986; Ross, 1983; Castillo and Pérez-Casany, 2005)

MLFD as member of some families of discrete distributions

i. MLFD (λ, α, β) is a member of the generalized hypergeometric family (Kemp 1968a,

b). This can be checked by comparing the recurrence relation in Eq. (6) with that of

the generalized hypergeometric distributions (see equation (2.63) in page 91 of

Johnson et al., 2005).

ii. MLFD (λ, α, β) is a member of the generalized power series distribution (Patil 1962,

1964) when λ is the primary parameter.

iii. For fixed values of the parameters α and β, the MLFD (λ, α, β) is also a member of

the exponential family of distributions.

Moments and related results

Denoting E Xrð Þ ¼ μ=r , E(X[r]) = μ[r] and E[{X − E(X)}r] = μr, x[r] = x (x − 1)⋯ (x − r + 1)

and using the relation E X r½ �
� 	 ¼ μ=r ¼ dr

dsr P sð Þjs¼1, where P(s) is the pgf of MLFD (λ, α, β)

mentioned in Section 2.4, and along with a result for the derivative of Eα, β(λ) with

respect to λ given by

d
dλ

Eα; β λð Þ ¼ Eα; β−1 λð Þ− β−1ð ÞEα; β λð Þ
αλ

;

we can derive the following formulas:

μ=1 ¼ λ d
dλ log Eα; β λð Þ� � ¼ Eα; β−1 λð Þ

α Eα; β λð Þ−
1−β
α , provided α > 0 and β > 1.

μ=2 ¼
1
α2

Eα; β−2 λð Þ
Eα; β λð Þ−

2β−3
α2

Eα; β−1 λð Þ
Eα; β λð Þ þ β−1

α

� �2

μ2 ¼ 1
α2

Eα; β−2 λð Þ
Eα; β λð Þ −

Eα; β−1 λð Þ
Eα; β λð Þ

� �2
þ Eα; β−1 λð Þ

Eα; β λð Þ

)(
, provided α > 0 and β > 2.

The variance can also be expressed as
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μ2 ¼ λ
d
dλ

μ=1 ¼ λ
d
dλ

λ
d
dλ

log Eα; β λð Þ� �
 �
¼ λ

d
dλ

log Eα; β λð Þ� �þ λ2
d2

dλ2
log Eα; β λð Þ� �

The above results can alternatively be derived easily by first deriving E(αX + β)[r], r = 1, 2

and then simplifying.

In all the above expressions there is restriction on the values of β. This situation may

be overcome by using the following relation repeatedly till the conditions are satisfied:

Eα; β λð Þ ¼ 1=Γ βð Þð Þ þ λEα; αþβ λð Þ

(see Erdelyi 1955; Hanneken et al., 2009).

The gamma function for negative argument can be computed using the formula

(Fisher and Kilicman, 2012)

Γ −nð Þ ¼ −Γ −nþ 1ð Þ=n; whenn≠1; 2;⋯
−1ð Þn=n! ρ nð Þ−γf g; n ¼ 1; 2;⋯

�

where ρ nð Þ ¼
Xn
i¼1

1
i
and γ = − Γ/(1) is the Euler’s constant.

Recurrence relations of moments

The following recurrence relations hold:

(i) μ=rþ1 ¼ λ
d
dλ

μ=r þ μ=r μ
=
1

(ii) μrþ1 ¼ λ
d
dλ

μr þ rμr−1 μ2

(iii) μ rþ1½ � ¼ λ
d
dλ

μ r½ � þ μ=1−r
� �

μ r½ �

(iv) E α X−1ð Þ þ βð Þα ¼ λþ β−αð ÞαP X ¼ 0ð Þ

The relations (i) to (iii) can be proved by using the general relations for GPSD or by

direct manipulation while (iv) follows from the difference equation in (6).

Since μ2 > 0 and λ ≠ 0, μ2 ¼ λ d
dλ μ

=
1 > 0 implies d

dλ μ
=
1 > 0. Hence μ=1 is a monotonically

increasing function of λ.

Alternative formulae for moments

An alternative formula for moments is given by

E X þ 1ð Þr
� � ¼ r !Erþ1

α;β λð Þ=Eα; β λð Þ,

where Eα;βρ λð Þ ¼
X∞
k¼0

ρð Þk
k !

λk

Γ αk þ βð Þ is the generalized Mittag-Leffler function (Prabhakar, 1971).

Proof: E X þ 1ð Þr
� � ¼X∞

k¼0

k þ 1ð Þrλk
Γ αk þ βð ÞEα; β λð Þ ¼

r !
Eα; β λð Þ

X∞
k¼0

r þ 1ð Þk
k !

λk

Γ αk þ βð Þ

¼ r !Erþ1
α;β λð Þ=Eα; β λð Þ

since k ! (k + 1)r = r ! (r + 1)k.

Approximation of the mean and variance for large values of λ

Using the result that for large values of λ, Eα,β(λ)→ {λ(1 − β)/α exp(λ1/α)}/α (see

Gerhold, 2012) we can derive approximations for the mean and variance of MLFD

(λ, α, β) as (1 − β + λ1/α)/α and λ1/α/α2 respectively. The expression for the mean
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follows from either μ=1 ¼
Eα; β−1 λð Þ
α Eα; β λð Þ þ 1−β

α or directly from μ=1 ¼ λ d
dλ log Eα; β λð Þ� �

. Then

variance can be obtained by using the relation μ2 ¼ λ d
dλ μ

=
1.

In particular for MLFD (λ, α, 1) the approximate mean and variance will be λ1/α/α

and λ1/α/α2. These approximations are good when α ∈ (0, 2] (see Simon, 2013) and may

be useful in a regression formulation where the covariates are linked through the mean

and variance.

Index of dispersion

The index of dispersion (ID) is given by ID = Variance/Mean. Contour plots of ID for

different choices of parameters (α, β) keeping λ = 0.25 and λ = 5 fixed are presented in

Fig. 2(a) and (b) respectively to depict the contours of ID. Labels on a given line indi-

cate the value of ID on that line. In these figures, the ID of the region on the left (right)

of a given line is more (less) than the ID value on that given line.

From Fig. 2 (a) and (b), it is obvious that the MLFD (λ, α, β) is very flexible with

respect to the ID and is able to accommodate under-, equi- and over- dispersion in

count data. Interestingly, this family includes a non-Poisson distribution with equi-

dispersion when λ is kept fixed. Some such pairs of values for (α, β) can be easily taken

from line of equi-dispersion in the contour plots in Fig. 2(a) when λ = 0.25 and from

Fig. 2(b) when λ = 5.

Using results of the Section 2.6.3 for large values of λ it can be stated that the ID of

MLFD (λ, α, β) is approximately given by λ1/α/α((1 − β) + λ1/α) which reduces to 1/α for

MLFD. (λ, α, 1). Thus for large λ MLFD (λ, α, 1) expected to be over (under)- dispersed de-

pending on α < (>)1, while MLFD (λ, α, β) will be under-dispersed in the region α > 1, β < 1.

MLFD (z, α, 1) as a distribution in a queuing system
MLFD (z, α, 1), like the COM-Poisson distribution, can be derived as the probability of

the system being in the k-th state for a queuing system with state dependent service rate.

Consider a queuing system with Poisson inter arrival times with parameter λ, first-

come- first-served policy, and exponential service times that depend on the system
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Fig. 2 ID of MLFD (λ, α, β) for some values of the parameters
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state (n-th state means n number of units in the system). The mean service time in the

n-th state is μn = μ (n α)[α], n ≥ 1 and μn = μ for α = 0, where, 1/μ is the normal mean

service time for a unit when that unit is the only one in the system and α is the pres-

sure coefficient, a constant reflecting the degree to which the service rate of the system

is affected by the system. For the sake of completeness, the proof that the probability is

the pmf of MLFD (z, α, 1) where z = λ/μ is given as follows:

Following Conway and Maxwell (1962, p. 134–35), the system of differential differ-

ence equations are

P0 t þ Δð Þ ¼ 1−λΔð ÞP0 tð Þ þ μ1ΔP1 tð Þ ð7Þ

and

Pn t þ Δð Þ ¼ 1−λΔ− nαð Þ α½ �μΔ
� �

Pn tð Þ þ λΔPn−1 tð Þ þ nþ 1ð Þαð Þ α½ �μΔPnþ1 tð Þ; n
¼ 1; 2;⋯ ð8Þ

From (7) we get P0(t + Δ) − P0(t) = − λ ΔP0(t) + μ α ! ΔP1(t) since μ1 = μ(α)α = μα !. This

implies, lim
Δ→0

P0 tþΔð Þ−P0 tð Þ
Δ ¼ −λP0 tð Þ þ μα! P1 tð Þ

or P=
0 tð Þ ¼ −λP0 tð Þ þ μα! P1 tð Þ.

Assuming a steady state (i.e. P=
n tð Þ ¼ 0 for all n), we get P1(t) = zP0(t)/α ! where λ/μ = z.

Similarly, from (8), we get

lim
Δ→0

Pn tþΔð Þ−Pn tð Þ
Δ ¼ − λþ nαð Þ α½ �μ

� �
Pn tð Þ þ λ Pn−1 tð Þ þ nþ 1ð Þαð Þ α½ �μPnþ1 tð Þ.

It follows that

P=
n tð Þ ¼ − λþ nαð Þ α½ �μ

� �
Pn tð Þ þ μz Pn−1 tð Þ þ nþ 1ð Þαð Þ α½ �μPnþ1 tð Þ ¼ 0

because P=
n tð Þ ¼ 0 for all n and λ/μ = z.

This implies that (z + (nα)[α] )Pn(t) = z Pn − 1(t) + ((n + 1)α)[α] Pn + 1(t) since μ ≠ 0.

Putting n = 1 we get

(z + α !)P1(t) = zP0(t) + (2α)[α] P2(t),

P2(t) = {z2/(2α) ! }P0(t). Since α ! (2α)[α] = (2α) !

Similarly, for n = 2 we get

z þ 2αð Þ α½ �
� �

P2 tð Þ ¼ zP1 tð Þ þ 3αð Þ α½ � P3 tð Þ

P2(t) = {z3/(3α) ! }P0(t),

since (3α ! )(3α)[α] = (3α) !

In general, Pn(t) = {zn/(nα) ! }P0(t),

where P0 tð Þ ¼ 1=
X∞
n¼0

zn= nαð Þ!f g. This is the pmf of MLFD (z, α, 1).

In the case when α is not an integer one can use α ! = Γ(α + 1).

Reliability, stochastic ordering and log concavity
Discrete life time models have lately been a favorite subject of many studies since in

many situations the life of a system may be observed as counts, and even when the life

is measured in a continuous scale the actual observations may be recorded in a way

making a discrete model more appropriate. It is therefore important to study the
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reliability properties of the proposed discrete distribution. Stochastic ordering is a

closely related important area that has found applications in many diverse areas such

as economics, reliability, survival analysis, insurance, finance, actuarial and manage-

ment sciences (see Shaked and Shanthikumar, 2007). In this section we study the reli-

ability properties and stochastic ordering of the MLFD (λ, α, β) distribution.

Survival and failure rate function

The survival and failure rate function for MLFD (λ, α, β) are respectively given by

S tð Þ ¼ P X > tð Þ ¼ λtþ1 Eα; βþ tþ1ð Þα λð Þ=Eα;β λð Þand
r tð Þ ¼ P X ¼ tð Þ=P X≥tð Þ ¼ 1=Γ αt þ βð ÞEα; βþtα λð Þ:

This distribution has non decreasing failure rate function which we have shown later

in section 4.3. The failure rate function r(t) is plotted in Fig. 3 for some choices of

parameters to see how it behaves with changing parameter values. The values of r(t)

tend to increase with α or β but decrease with increase in λ when other two parameters

are kept fixed.

Stochastic ordering with HP

The following result stochastically compares the MLFD (λ, α, β) with the HP (λ, β) by

using the likelihood ratio order.

Definitions: Let X and Y be two discrete random variables with pmfs f(x) and g(x).

Then X is said to be smaller than Y in the likelihood ratio order denoted by X ≤ lr Y if

g(x)/f(x) increases in x over the union of the supports of X and Y; X is smaller than Y

in the hazard rate order X ≤ hr Y if rX(t) ≥ rY(t) for all t; X is smaller than Y in the mean

residual life order X ≤MRLY if μX(t) ≤ μY(t) for all t, where rX(.) and μX(.) are respectively

the hazard rate and mean residual life (MRL) functions of X.

Theorem 1. For α > 1, X ~ MLFD (λ, α, β) is smaller than Y ~ HP (λ, β) distribution

in the likelihood ratio order i.e. X ≤ lr Y, while for 0 < α < 1, HP (λ, β) is greater than

MLFD (λ, α, β) distribution in the likelihood ratio order i.e. Y ≤ lr X.

Proof: If X ~ MLFD (λ, α, β) and Y ~ HP (λ, β) then

P Y ¼ nð Þ
P X ¼ nð Þ ¼

Γ nαþ βð Þ
Γ nþ βð Þ

E1;β λð Þ
Eα;β λð Þ

For α > 1 this ratio is clearly increasing in n (see Shaked and Shanthikumar, 2007 and

Gupta et al., 2014). Hence X ≤ lr Y is proved. While for 0 < α < 1, the ratio is decreasing

in n which proves that Y ≤ lr X.

Fig. 3 Failure rate of MLFD (λ, α, β) for some values of the parameters
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Corollary 1. For α > 1, X ~ MLFD (λ, α, β) is smaller than Y ~ HP (λ, β) distribution

in the MRL life order that is X ≤MRLY.

Proof. The result follows since X ≤ lr Y ⇒ X ≤ hr Y ⇒ X ≤MRLY. (see Gupta et al., 2014).

Log-concavity

The log-concavity of any probability distribution has important implications on its reli-

ability function, failure rate function, tail probabilities and moments. The MLFD (λ, α, β)

has a log-concave pmf since for this distribution (Gupta et al., 1997)

Δη tð Þ ¼ P tþ1ð Þ
P tð Þ − P tþ2ð Þ

P tþ1ð Þ ¼ λ Γ α tþβð ÞΓ α tþ2 αþβð Þ− Γ α tþαþβð Þf g2
Γ α tþαþβð ÞΓ α tþ2 αþβð Þ > 0.

The following results are direct consequence of log-concavity (Mark, 1996):

i. MLFD (λ, α, β) is a strongly unimodal distribution due to the log-concavity of its

pmf (see Steutel 1985).

➢ MLFD (λ, α, β) has a unique mode at X = k if

Γ αk þ βð Þ=Γ αk−αþ βð Þ < λ < Γ αk þ αþ βð Þ=Γ αk þ βð Þ

Proof: This follows easily from the probability recurrence relation given in (5).

➢ MLFD (λ, α, β) has a non increasing pmf with a unique mode at X = 0 if λ

< Γ(α + β)/Γ(β) (See the pmf plots in Fig. 1(g) for some choices of (λ, α, β)

satisfying the condition.)

➢ MLFD (λ, α, β) has two modes at X = k and X = k + 1 if

λ ¼ Γ αk þ αþ βð Þ=Γ αk þ βð Þ

(See the pmf plot in Fig. 1(h) for some (λ, α, β) satisfying the condition.)

ii. MLFD (λ, α, β) has non decreasing failure rate function.

iii. MLFD (λ, α, β) has at most an exponential tail.

iv. MLFD (λ, α, β) remains log-concave if truncated.

v.
P X¼iþkð Þ
P X¼ið Þ ≥ P X¼jþkð Þ

P X¼jð Þ for i < j.

Data Fitting
Parameter estimation

Suppose that we have a sample of size n from MLFD (λ, α, β) reported as grouped

frequencies in k classes, like (X, f ) = {(x1, f1), (x2, f2,), . . . , (xk, fk)}, where fi is the

frequency of i-th observed value xi and n = ∑fi is the sample size. Then the log-

likelihood function is given by

logL x1; x2;⋯; xk jλ; α; βð Þ ¼
Xk
i¼1

f i xi

 !
logλ−

Xk
i¼1

f i logΓ αxi þ βð Þ−n logEα;β λð Þ.

Numerical optimization method is used to obtain the maximum likelihood estimates

(MLE) of the parameters required for the data fitting and the likelihood ratio test.
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Numerical examples

Here we have considered two frequency data sets. The first data set in Table 1 is about

trips made by Dutch households owning at least one car during a particular survey

week in 1989 (van Ophem, 2000). This data is slightly over-dispersed with Mean = 3.038,

Variance = 3.410 and index of dispersion (ID) = 1.123. The second data set in Table 2 is

the frequency distribution of the α - particles emitted by a radioactive substance in 2608

periods, each of 7.5 sec (Rutherford and Geiger, 1910). This data is slightly under-

dispersed with Mean = 3.872, Variance = 3.695 and index of ID = 0.9543

The MLFD (λ, α, β) model is a generalization/extension of the HP (λ, β) and MLFD

(λ, α, 1). Therefore the MLFD (λ, α, β) model has been fitted and compared with the HP

(λ, β), MLFD (λ, α, 1) to ascertain the benefits accrued through the proposed

generalization. In addition, we have also considered a recently introduced three-param-

eter distribution namely the COM-Poisson type negative binomial [COMNB (λ, α,

β)] distribution having pmf P(X = k) = (λ)kα
k/{(k !)β Sβ,λ(α)}, k = 0, 1, 2,⋯ where

Sβ,λ(α) is the normalizing constant (Chakraborty and Ong, 2016) for comparative

data fitting. The performances of various distributions are compared using the AIC

Table 1 Observed and expected frequencies of trips made by Dutch households owning at least
one car during a particular survey week in 1989(van Ophem, 2000)

x Observed Expected Frequencies

HP (λ, β) MLFD (λ, α, 1) MLFD (λ, α, β) COMNB (λ, α, β)

0 75 93.208 99.150 74.175 89.965

1 312 269.133 273.608 308.769 284.076

2 384 403.029 399.3458 420.586 411.107

3 421 407.420 399.724 389.683 397.963

4 307 310.848 305.795 286.233 296.794

5 183 190.456 189.821 178.113 183.213

6 77 97.491 99.311 97.428 97.687

7 47 42.853 44.958 47.962 46.258

8 15 16.504 17.9533 21.598 19.836

9 9 5.656 6.4181 9.003 7.813

10 5 1.746 2.078 3.506 2.858

11 0 0.490 0.615 1.285 0.979

12 0 0.126 0.166 0.445 0.316

13 1 0.030 0.042 0.147 0.097

14 2 0.007 0.010 0.046 0.028

15 0 0.001 0.002 0.014 0.008

16 0 0.000 0.000 0.004 0.002

17 1 0.000 0.000 0.002 0.001

Total 1839 1839 1839 1839 1839

λ̂ 3.110 (0.121) 2.697 (0.182) 1.000 (0.130) 3.288 (4.25)

α̂ —— 0.943 (0.032) 0.576 (0.063) 0.960 (1.22)

β̂ 1.080(0.121) —— 0.183 (0.058) 1.509 (0.40)

χ2, df 37.034, 7 32.564, 8 17.716, 8 20.676, 8

p-val <0.01 <0.01 0.023 <0.01

AIC 7234.620 7231.970 7213.917 7218.610
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(Akaike Information Criterion) defined as AIC = −2 log L + 2 k, where k is the

number of parameter(s) and log L is the maximum of log-likelihood for a given

data set (Burnham and Anderson, 2004). We also provide chi-square goodness of

fit statistics with p-values. In Tables 1 and 2 the degrees of freedoms for χ2 are

given alongside its value and the standard errors for parameter estimates are given

within parentheses.

From Table 1 it can be seen that the MLFD (λ, α, β) gives the best fit since it has the

lowest χ2 value and is also the first choice in model selection with lowest AIC value.

Moreover MLFD (λ, α, β) is the only distribution with good fit at 1% since its p-value is

more than 0.01 while for the rest the p-values are less than 0.01.

From Table 2 considering the χ2 values together with p-values it can be seen that

all the distributions except the COMNB (λ, α, β) give adequate fits. But among

them the MLFD (λ, α, β) gives the best fit since it has the lowest value of χ2 with

the highest p-value. It is also the selected model because it has the lowest AIC value.

Conclusion
A new generalization of the HP distribution which is a continuous bridge between the

geometric and HP is derived using the generalized Mittag-Leffler function. Some

known and new distributions are seen as particular cases of this distribution. This new

Table 2 Frequency distribution of the α- particles emitted by a radioactive substance in 2608
periods (Rutherford and Geiger, 1910)

x Observed Expected Frequencies

HP (λ, β) MLFD (λ, α, 1) MLFD (λ, α, β) COMNB (λ, α, β)

0 57 49.916 48.766 56.731 40.352

1 203 206.489 202.884 198.608 202.736

2 383 408.368 406.600 393.766 420.265

3 525 530.655 533.254 527.594 543.646

4 532 513.471 518.076 523.971 515.429

5 408 395.776 398.948 408.328 389.504

6 273 253.493 254.119 259.549 246.804

7 139 138.885 137.888 138.392 135.597

8 45 66.481 65.122 63.227 66.139

9 27 28.253 27.212 25.167 29.143

10 10 10.796 10.192 8.846 11.756

11 4 3.748 3.457 2.776 4.387

12 0 1.192 1.071 0.785 1.527

13 1 0.350 0.306 0.202 0.499

14 1 0.127 0.106 0.059 0.217

Total 2608 2608 2608 2608 2608

λ̂ 3.789(0.101) 4.228(0.286) 10.166 (7.06) 5.284(16.70)

α̂ —— 1.037(0.028) 1.281 (0.182) 0.951(3.121)

β̂ 0.916(0.096) —— 2.170 (1.044) 1.527(0.921)

χ2, df 18.382, 11 11.367, 10 8.179, 9 22.326, 9

p-val 0.073 0.330 0.516 0.008

AIC 10707.500 10706.412 10705.400 10718.180

Chakraborty and Ong Journal of Statistical Distributions and Applications  (2017) 4:8 Page 15 of 17



generalization belongs to the generalized power series, generalized hypergeometric fam-

ilies and also arises as weighted Poisson distributions. Like the HP, COM-Poisson and

generalized Poisson distributions, this distribution is also able to cater for under-, equi-

and over- dispersion. Although the new generalization of the HP distribution has an

extra parameter, it is computationally not more complicated than the HP since it

retains the two-term probability recurrence formula and the normalizing constant, in

terms of the generalized Mittag-Leffler function, is readily computed. It has many inter-

esting probabilistic and reliability properties and is found to be a better empirical

model than the HP distribution.
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