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Abstract

A family of generalized Cauchy distributions, T-Cauchy{Y} family, is proposed using
the T-R{Y} framework. The family of distributions is generated using the quantile
functions of uniform, exponential, log-logistic, logistic, extreme value, and Fréchet
distributions. Several general properties of the T-Cauchy{Y} family are studied in detail
including moments, mean deviations and Shannon’s entropy. Some members of the
T-Cauchy{Y} family are developed and one member, gamma-Cauchy{exponential}
distribution, is studied in detail. The distributions in the T-Cauchy{Y} family are very
flexible due to their various shapes. The distributions can be symmetric, skewed to
the right or skewed to the left.
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1. Introduction
The Cauchy distribution, named after Augustin Cauchy, is a simple family of dis-

tributions for which the expected value does not exist. Also, the family is closed

under the formation of sums of independent random variables, and hence is an in-

finitely divisible family of distributions. The Cauchy distribution was used by

Stigler (1989) to obtain an explicit expression for P(Z1 ≤ 0, Z2 ≤ 0) where (Z1, Z2)
T

follows the standard bivariate normal distribution. The Cauchy distribution has

been used in many applications such as mechanical and electrical theory, physical

anthropology, measurement problems, risk and financial analysis. It was also used

to model the points of impact of a fixed straight line of particles emitted from a

point source (Johnson et al. 1994). In Physics, it is called a Lorenzian distribution,

where it is the distribution of the energy of an unstable state in quantum

mechanics.

Eugene et al. (2002) introduced the beta-generated family of distributions using the

beta as the baseline distribution. Based on the beta-generated family, Alshawarbeh

et al. (2013) proposed the beta-Cauchy distribution. The beta-generated family was

extended by Alzaatreh et al. (2013) to the T-R(W) family. The cumulative distribution

function (CDF) of the T-R(W) distribution is G xð Þ ¼ ∫
W F xð Þð Þ
a r tð Þdt; where r(t) is

the probability density function (PDF) of a random variable T with support (a, b)

for − ∞ ≤ a < b ≤ ∞. The link function W : [0, 1]→ℝ is monotonic and absolutely

continuous with W(0)→ a and W(1)→ b.
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Aljarrah et al. (2014) considered the function W(.) to be the quantile function of

a random variable Y and defined the T-R{Y} family. In the T-R{Y} framework, the

random variable T is a ‘transformer’ that is used to ‘transform’ the random variable

R into a new family of generalized distributions of R. Many families of generalized

distributions have appeared in the literature. Alzaatreh et al. (2014, 2015) studied

the T-gamma and the T-normal families. Almheidat et al. (2015) studied the T-

Weibull family. In this paper, a family of generalized Cauchy distribution is pro-

posed and studied.

This article focuses on the generalization of the Cauchy distribution and studies

some new distributions and their applications. The article gives a brief review of the

T-R{Y} framework and defines several new generalized Cauchy sub-families. It

contains some general properties of the T-Cauchy{Y} distributions. A member of the

T-Cauchy{Y} family, the gamma-Cauchy{exponential} distribution, is studied. The

study includes moments, estimation and applications. Some concluding remarks were

provided.

2. The T-Cauchy{Y} family of distributions
The T-R{Y} framework defined in Aljarrah et al. (2014) (see also Alzaatreh et al.

2014) is given as follows. Let T, R and Y be random variables with CDF FZ(x) =

P(Z ≤ x), and corresponding quantile function QZ(p), where Z = T, R, Y and the

quantile function is defined as QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1. If densities exist,

we denote them by fZ(x), for Z = T, R and Y. Now assume the random variables

T,Y ∈ (a, b) for − ∞ ≤ a < b ≤ ∞. The random variable X in T-R{Y} family of distribu-

tions is defined as

FX xð Þ ¼ ∫
QY FR xð Þð Þ
a f T tð Þdt ¼ FT QY FR xð Þð Þð Þ: ð1Þ

The corresponding PDF associated with (1) is

f X xð Þ ¼ f T QY FR xð Þð Þð Þ � Q′
Y FR xð Þð Þ � f R xð Þ: ð2Þ

Alternatively, (2) can be written as

f X xð Þ ¼ f R xð Þ � f T QY FR xð Þð Þð Þ
f Y QY FR xð Þð Þð Þ : ð3Þ

The hazard function of the random variable X can be written as

hX xð Þ ¼ hR xð Þ � hT QY FR xð Þð Þð Þ
hY QY FR xð Þð Þð Þ : ð4Þ

Alzaatreh et al. (2013, 2014, 2015) studied, respectively, the T-R{exponential},

T-normal{Y} and T-gamma{Y} families of distributions. Aljarrah et al. (2014) studied

some general properties of the T-R{Y} family. Next, we define the T-Cauchy{Y}

family.
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Let R be a random variable that follows the Cauchy distribution with PDF fR(x) =

fC(x) = π− 1θ− 1(1 + (x/θ)2)− 1 and CDF FR(x) = FC(x) = 0.5 + π− 1 tan− 1(x/θ), x ∈ℝ, θ > 0,

then (3) reduces to

f X xð Þ ¼ f C xð Þ � f T QY FC xð Þð Þð Þ
f Y QY FC xð Þð Þð Þ : ð5Þ

Hereafter, the family of distributions in (5) will be called the T-Cauchy{Y} family.

It is clear that the PDF in (5) is a generalization of Cauchy distribution. From (1),

if T ¼d Y ; then X ¼d Cauchy θð Þ: Also, if Y ¼d Cauchy θð Þ; then X ¼d T : Furthermore,

when T ~ beta(a, b) and Y ~ uniform(0, 1), the T-Cauchy{Y} reduces to the beta-

Cauchy distribution (Alshawarbeh et al. 2013). When T~ Power(a) and Y ~ uniform(0, 1),

the T-Cauchy{Y} reduces to the exponentiated-Cauchy distribution (Sarabia and Castillo

2005). Table 1 gives six quantile functions of known distributions (in standard form)

which will be applied to generate T-Cauchy{Y} sub-families in the following subsections.

It is straightforward to use non-standard quantile functions. By using non-standard quan-

tile functions, many resulting distributions in the T-R{Y} family will have more than five

parameters, which are not practically useful (Johnson et al. 1994, p. 12). Thus, we focus

on the standard quantile functions in this paper.

2.1 T-Cauchy{uniform} family of distributions

By using the quantile function of the uniform distribution in Table 1, the corresponding

CDF to (1) is

FX xð Þ ¼ FT FC xð Þf g; ð6Þ

and the corresponding PDF to (6) is

f X xð Þ ¼ f C xð Þ � f T FC xð Þð Þ; x∈ℝ: ð7Þ

2.2 T-Cauchy{exponential} family of distributions

By using the quantile function of the exponential distribution in Table 1, the corre-

sponding CDF to (1) is

FX xð Þ ¼ FT − log 1−FC xð Þð Þf g ð8Þ

and the corresponding PDF to (8) is

f X xð Þ ¼ f C xð Þ
1−Fc xð Þ � f T − log 1−Fc xð Þð Þð Þ; x∈ℝ: ð9Þ

Table 1 Quantile functions for different Y distributions

Y QY (p)

(a) Uniform p

(b) Exponential −log(1−p)

(c) Log-logistic p / (1−p)

(d) Logistic log[p /(1−p)]

(e) Extreme value log[−log(1−p)]

(f) Fréchet −1/log(1−p)
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Note that the CDF and the PDF in (8) and (9) can be written as FX(x) =

FT(HC(x)) and fX(x) = hC(x)fT(HC(x)) where hC(x) and HC(x) are the hazard and cu-

mulative hazard functions for the Cauchy distribution, respectively. Therefore, the

T-Cauchy{exponential} family of distributions arises from the ‘hazard function of

the Cauchy distribution’.

2.3 T-Cauchy{log-logistic} family of distributions

By using the quantile function of the log-logistic distribution in Table 1, the corre-

sponding CDF to (1) is

FX xð Þ ¼ FT FC xð Þ= 1−FC xð Þ½ �f g; ð10Þ

and the corresponding PDF is

f X xð Þ ¼ f C xð Þ
1−FC xð Þð Þ2 � f T

FC xð Þ
1−FC xð Þ

� �
; x∈ℝ: ð11Þ

which is a family of generalized Cauchy distributions arising from the ‘odds’ of the

Cauchy distribution.

2.4 T-Cauchy{logistic} family of distributions

By using the quantile function of the logistic distribution in Table 1, the corresponding

CDF to (1) is

FX xð Þ ¼ FT log FC xð Þ= 1−FC xð Þ½ �ð Þf g; ð12Þ

and the corresponding PDF is

f X xð Þ ¼ f C xð Þ
FC xð Þ 1−FC xð Þ½ � � f T log FC xð Þ= 1−FC xð Þ½ �ð Þð Þ ; x∈ℝ: ð13Þ

Note that (13) can be written as f X xð Þ ¼ hC xð Þ
FC xð Þ � f T log FC xð Þ

1−FC xð Þ
� �� �

, which is a family

of generalized Cauchy distributions arising from the ‘logit function’ of the Cauchy

distribution.

2.5 T-Cauchy{extreme value} family of distributions

By using the quantile function of the extreme value distribution in Table 1, the corre-

sponding CDF to (1) is

FX xð Þ ¼ FT log − log 1−FC xð Þ½ �ð Þf g; ð14Þ

and the corresponding PDF is

f X xð Þ ¼ f C xð Þ
FC xð Þ−1½ � log 1−FC xð Þð Þ � f T log − log 1−FC xð Þð Þ½ �f g; x∈ℝ: ð15Þ

The CDF in (14) and the PDF in (15) can be written as Fx(x) = FT(logHC(x)) and

fX(x) = {hC(x)/HC(x)}fT(logHC(x)) respectively.
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2.6 T-Cauchy{Fréchet} family of distributions

By using the quantile function of the Fréchet distribution in Table 1, the corresponding

CDF to (1) is

FX xð Þ ¼ FT −1= log FC xð Þð Þf g; ð16Þ

and the corresponding PDF is

f X xð Þ ¼ f C xð Þ
FC xð Þ logFC xð Þð Þ2 � f T −1= log FC xð Þð Þf g; x∈ℝ: ð17Þ

Figures 1 and 2 show some examples of two members of the T-Cauchy{Y} family.

The first example is Weibull-Cauchy{exponential} distribution which can be obtained

by replacing the random variable T in (9) with Weibull(c, γ) random variable. The

second example is Lomax-Cauchy{log-logistic} distribution which can be obtained

by replacing the random variable T in (11) with Lomax(α, λ) random variable. From

the figures, it appears that the shapes of the distributions can be left-skewed, right-

skewed or symmetric.

3. Some properties of the T-Cauchy{Y} family of distributions
In this section, we discuss some general properties of the T-Cauchy family of distribu-

tions. The proofs are omitted for straightforward results.

Lemma 1: Let T be a random variable with PDF fT(x), then

(i) The random variable X = − θ cot(πFY(T)) follows the T-Cauchy{Y} distribution.

(ii)The quantile function for T-Cauchy{Y} family is QX(p) = − θ cot(πFY(QT(p))).

The Shannon’s entropy (Shannon 1948) of a random variable X is a measure of

variation of uncertainty and it is defined as ηX = − E{log(f(X))}. The following prop-

osition provides an expression for the Shannon’s entropy for the T-Cauchy{Y}

family.

Fig. 1 Graphs for the PDF of the Weibull-Cauchy{exponential} distribution when θ = 1

Alzaatreh et al. Journal of Statistical Distributions and Applications  (2016) 3:12 Page 5 of 16



Proposition 1: The Shannon’s entropy for the T-Cauchy{Y} family is given by

ηX ¼ log θð Þ− log πð Þ þ ηT þ E log f Y Tð Þð Þ−2E log FY Tð Þð Þf g−2
X∞
j¼1

V jE FY Tð Þ½ �2j: ð18Þ

Proof: By using the result in Aljarrah et al. (2014), the Shannon’s entropy for the

T-Cauchy{Y} is

ηX ¼ ηT þ E logf Y Tð Þð Þ−E log f C QC FY Tð Þð Þð Þf g: ð19Þ

Now, one can show that

logf C QC FY tð Þð Þð Þ ¼ − log πθð Þ þ 2 log sin πFY tð Þð Þð Þ: ð20Þ
On using the following series expansion from Gradshteyn and Ryzhik (2007, p. 55)

log sin πxð Þð Þ ¼ log πxð Þ þ
X∞
j¼1

V jx
2j; ð21Þ

where V j¼ −1ð Þj 2πð Þ2jB2j

2j 2jð Þ! and Bj is the Bernoulli number, we get the result in (18). □
Next proposition gives a general expression for the r-th moment for the T-Cauchy{Y}

family.

Proposition 2: The r-th moment for the T-Cauchy{Y} family of distributions is given by

E Xrð Þ ¼ −1ð Þrθr
X∞
k¼0

ckE FY Tð Þ½ �2k−r; ð22Þ

where c0 = π− r, cm ¼ πm−1
X

k¼1

m
kr−mþ kð Þwkcm−k ; m≥1 and wk ¼ −1ð Þk22kB2k π2k−1

2kð Þ! :

Proof: From Lemma 1(i), the r-th moment for the T-Cauchy{Y} family can be

written as E(Xr) = (−1)rθrE(cot π(FY(T)))
r. Now, using the following series expan-

sion (see Abramowitz and Stegun 1964, p.75), cotðπxÞ ¼
X∞
k¼0

wkx
2k−1; jxj < π;

where wk ¼ −1ð Þk22kB2k π2k−1

2kð Þ! : Therefore,

cotπ FY tð Þð Þð Þr ¼
X∞
k¼0

ck FY tð Þð Þ2k−r ; ð23Þ

where c0 = π− r, cm ¼ πm−1
Xm
k¼1

kr−mþ kð Þwkcm−k ; m≥1 [see Gradshteyn and Ryzhik

2007, p. 17]. □

Fig. 2 Graphs for the PDF of the Lomax-Cauchy{log-logistic} distribution
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As an example of the applicability of the results in Lemma 1 and Propositions 1 and

2, we use these results and apply them on the T-Cauchy{exponential}. One can get

similar results by choosing any of the T-Cauchy{Y} families.

Corollary 1: Based on Lemma 1, if T is a random variable with PDF fT(x), then

(i) The random variable X = θ cot(πe− T) follows a distribution in the T-

Cauchy{exponential} family.

(ii)The quantile functions for T-Cauchy{exponential} family is QX pð Þ ¼ θ cot πe−QT pð Þ� �
:

Corollary 2: The Shannon’s entropy for the T-Cauchy{exponential} family is

given by

ηX ¼ log θð Þ− log πð Þ þ ηT þ μT−2
X∞
j¼1

V jMT −2jð Þ;

where MT(.) is the moment generating function of the random variable T.

Proof: The result follows from Proposition 1 and the fact that E(log fY(T)) = μT. □
Corollary 3: The r-th moment for the T-Cauchy{exponential} family of distributions

is given by

E Xrð Þ ¼ θ r
X∞
k¼0

ckMT r−2kð Þ;

where ck is defined in Proposition 2.

Proof: The result follows from Proposition 2 and the fact that cot(πFY(u)) =− cot(πe−u). □
Proposition 3: The mode(s) of the T-Cauchy{exponential} family are the solutions of

the equation

x ¼ θ

2π
hC xð Þ 1þ f ′T HC xð Þð Þ

f T HC xð Þð Þ

( )
: ð24Þ

Proof: For Cauchy distribution, one can show that f ′C xð Þ ¼ −2πθ−1xf 2C xð Þ and

h′C xð Þ ¼ −2πθ−1xhC xð Þ þ h2C xð Þ: On finding f ′X xð Þ by using Eq. (9) and setting the deriva-

tive to zero, it is easy to get the result in (24). □

4. Gamma-Cauchy{exponential} distribution
For the remaining sections, we investigate in details the properties, parameter estima-

tion and applications of a new distribution of the T-Cauchy{Y} family, the gamma-

Cauchy{exponential} distribution. This distribution is interesting as it consists of special

cases of exponentiated Cauchy and distributions of record values from the Cauchy dis-

tribution. Let T be a random variable that follows the gamma distribution with parame-

ters α and β. From Eqs. (8) and (9), the PDF and CDF of gamma-Cauchy{exponential}

distribution are, respectively, given by

f xð Þ ¼ − log 0:5−π−1 tan−1 x=θð Þð Þ½ �α−1 0:5−π−1 tan−1 x=θð Þ½ �1β−1
πθβαΓ αð Þ 1þ x=θð Þ2� � ; x∈ℝ; ð25Þ

F xð Þ ¼ γ α;−β−1 log 0:5−π−1tan−1 x=θð Þð Þ� 	
Γ αð Þ ; x∈ℝ; ð26Þ
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where γ α; xð Þ ¼ ∫
x

0t
α−1e−tdt is the incomplete gamma function. For simplicity, a random

variable X with PDF f(x) in (25) is said to follow the gamma-Cauchy{exponential} distri-

bution and is denoted by GC(α, β, θ).

Some special cases are worth mentioning:

(i) GC(1, β, θ) is the exponentiated Cauchy distribution proposed by Sarabia and

Castillo (2005). In particular GC(1,1,1) is the standard Cauchy distribution.

(ii) GC(1, n− 1, θ), n∈ℕ is the distribution of the minimum of n independent Cauchy

random variables.

(iii)GC(n + 1, 1, θ), n∈ℕ is the distribution of the nth upper record in a sequence of

independent Cauchy random variables.

Remarks: The following results follow from Corollary 1, Corollary 2 and Proposition 3.

(i) If a random variable Y follows a gamma distribution with parameters α and β, then

X = θ cot(πe− Y) follows the GC(α, β, θ) distribution.

(ii) The quantile function of GC(α, β, θ) is Q pð Þ ¼ θ cot πe−β
γ−1 α;pΓ αð Þ½ �

� �
; 0 < p < 1:

(iii) The Shannon’s entropy for the GC(α, β, θ) distribution is given by

ηX ¼ α 1þ βð Þ þ log π−1θβΓ αð Þð Þ þ 1−αð Þψ αð Þ−2
X∞
j¼1

V j 1þ 2jβð Þ−α; where ψ(.) is the

digamma function and Vj is defined in Eq. (21).

Proposition 4: The GC(α, β, θ) distribution is unimodal and the mode is at m = θx

where x is the solution of the equation

k xð Þ ¼ log
cot−1 xð Þ

π

� �
2x cot−1 xð Þ−1þ 1=β
� 	þ α−1 ¼ 0:

Proof: It is not difficult to show that the mode of f(x) in (25) is the solution of

k(x/θ) = 0, where k(x) is defined above. Therefore, the mode of f(x) is at m = θx

where k(x) = 0. To show the unimodality of f(x), consider A(x) = log(π− 1 cot− 1(x))

and B(x) = 2x cot− 1(x). Clearly A(x) is a strictly decreasing function (since it is

equal to log(1 − FC(x))). Furthermore, A(x) < 0 for all x ∈ ℝ. Now, B′(x) = 2[−x/(1 +
x2) + cot− 1(x)]. Therefore, B′(x) > 0 for all x ≤ 0. If x > 0, we have B′(x) < B′(0) = π/2

since B″(x) < 0. Since lim
x→∞

B′ xð Þ ¼ 0: we get B′(x) > 0 for all x > 0. Therefore, B(x) is

strictly increasing for all x ∈ ℝ. Now, let us prove the claim that η(x) = A(x)B(x) is

a decreasing function on ℝ.

Proof of the claim: Let 0 ≤ x ≤ y, then 0 ≤ − A(x) ≤ − A(y) and 0 ≤ B(x) ≤ B(y). This

implies that η(x) ≥ η(y). Now let x < 0, then η′(x) = − 2x/(x2 + 1) − 2(x2 + 1)− 1x

log(π− 1 cot− 1(x)) + 2 cot− 1(x)log(π− 1 cot− 1(x)). Since the middle term in η′(x) is negative,

consider ψ xð Þ ¼ x
x2þ1− cot−1 xð Þ log cot−1 xð Þ=πð Þ: On differentiation, ψ′ xð Þ ¼ 1

x2þ1

2
x2þ1 þ log cot−1 xð Þ=πð Þ

n o
: It is easy to show that the term ζ xð Þ ¼ 2

x2þ1 þ log

cot−1 xð Þ=πð Þ is strictly increasing on x ≤ 0 with ζ(0) > 0 and ζ(−∞)→ 0. Thus,

ζ(x) > 0 for all x < 0. This implies that ψ(x) is strictly increasing on x < 0 with

ψ(0) > 0 and ψ(−∞)→ 0. That is, ψ(x) > 0 for all x < 0. Therefore η′(x) ≤ 0 for all x < 0.
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Hence, η(x) = A(x)B(x) is a decreasing function in ℝ. This completes the proof of the

claim. The fact that η(−∞)→ 2 and η(∞)→ − ∞ implies that η(x) = 0 has a unique so-

lution. Now, B(x) − 1 + 1/β is only a shift by − 1 + 1/β and therefore remains a

strictly increasing function. One can show that the term A(x)[B(x) − 1 + 1/β] remains a de-

creasing function for all x ∈ℝ and hence k(x) remains a decreasing function in ℝ with

k(−∞)→ α + 1 > 0 and k(∞)→ −∞. This ends the proof. □
In Fig. 3, various graphs of f(x) are provided for different parameter values of α and β

where θ = 1. The plots indicate that the gamma-Cauchy{exponential} distribution

can be symmetric, right-skewed or left-skewed. Also, it appears that gamma-

Cauchy{exponential} is symmetric only for the trivial case when α = β = 1.

In the following subsection, we provide some results related to the moments of

GC(α, β, θ) distribution.

4.1 Moments of gamma-Cauchy{exponential} distribution

From Corollary 3, the r-th moment of the GC(α, β, θ) can be written as

μ′r α; β; θð Þ ¼ E Xrð Þ ¼ θr
X∞
k¼0

ck 1−β r−2kð Þ½ �−α; ð27Þ

where ck is defined in Eq. (22). Therefore, the mean of GC(α, β, θ) is

μ′1 α; β; θð Þ ¼ θ
X∞
k¼0

ck 1−β 1−2kð Þ½ �−α;

where ck is defined in (22) with r = 1. Note that μ′1 α; β; θð Þ is defined here for α > 1 and

β < 1.

The next proposition establishes the condition for the existence of r-th moment of

the GC(α, β, θ) distribution.

Proposition 5: The r-th moment of the GC(α, β, θ) distribution exists if and only if

α > r and β− 1 > r.

Proof: Without loss of generality, we assume θ = 1 and apply a similar idea as in

Alshawarbeh et al. (2012). We write

E Xrð Þ ¼ ∫
−1

−∞x
rg xð Þdxþ ∫

1

−1x
rg xð Þdxþ ∫

∞

1 x
rg xð Þdx: ð28Þ

Fig. 3 Graphs for the PDF of the gamma-Cauchy{exponential} distribution when θ = 1
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Since the middle integrand is bounded by 2, it suffices to investigate the existence of the

first and third integrands of the right hand side of Eq. (28). Consider I1 ¼ ∫
∞

1 x
rg xð Þdx and

I2 ¼ ∫
−1

−∞x
rg xð Þdx: Consider the following inequality from Abramowitz and Stegun (1964),

p. 68

x < − log 1−xð Þ < x
1−x

; x < 1; x≠0: ð29Þ

On using the inequality in (29) and for α > 1, we have

I1≤
1

πβαΓ αð Þ ∫
∞

1
xr

1þ x2
1=2þ π−1tan−1 xð Þ� �α−1

1=2−π−1tan−1 xð Þ� �1=β−α
dx:

Let us write δ xð Þ ¼ xr
1þx2 1=2þ π−1tan−1 xð Þð Þα−1 1=2−π−1tan−1 xð Þð Þ1=β−α . Then one can

show that as x→∞, δ(x) ~ x− (1/β − α − r + 2). Therefore, I1 exists if and only if 1/β − α > r − 1.

Since α > 1, this implies 1/β > r. Now, if α < 1, the inequality in (29) implies that

I1≤
1

πβαΓ αð Þ ∫
∞

1
xr

1þ x2
1=2þ π−1tan−1 xð Þ� �α−1

1=2−π−1tan−1 xð Þ� �1=β−1
:

Let ζ xð Þ ¼ xr
1þx2 1=2þ π−1tan−1 xð Þð Þα−1 1=2−π−1tan−1 xð Þð Þ1=β−1: As x→∞, ζ(x) ~ x− (1/β − r + 1).

So I1 exists if and only if 1/β > r. Similarly one can show that I2 exists if and only if α > r. □
Next, we consider recursive relation for the r-th moment of the GC(α, β, θ)

distribution.

Proposition 6: Let X ~GC(α, β, 1) and n ∈ℕ. Then

(i) μ′2n α; βð Þ ¼ 1
πβ 1−βð Þα−1

Xn
j¼1

−1ð Þj−1
2n−2jþ 1

μ′2n−2jþ1 α; β
1−β

� �
−μ′2n−2jþ1 α−1; β

1−β

� �n o
þ −1ð Þn:

(ii)μ2nþ1
′ α; βð Þ ¼ 1

πβ 1−βð Þα−1
Xn
j¼1

Xj

i¼0

−1ð Þn−j
2j

n
j

� �
j
i

� �
μ′2i α; β

1−β

� �
−μ′2i α−1; β

1−β

� �n o
þ −1ð Þnμ′ α; βð Þ:

Proof: From (25) and using the substitution u = tan− 1(x), we have

πβαΓ αð Þμ′2n ¼ ∫
π=2

−π=2 tanuð Þ
2n

− log 0:5−π−1u
� �� �α−1

0:5−π−1u
� �1=β−1

du ¼
Xn
j¼0

Ij; ð30Þ

where

I0 ¼ −1ð Þn∫
π=2

−π=2 − log 0:5−π−1u
� �� �α−1

0:5−π−1u
� �1=β−1

du

and

Ij ¼ −1ð Þj−1∫
π=2

−π=2 tan
2n−2j uð Þ sec2 uð Þ − log 0:5−π−1u

� �� �α−1
0:5−π−1u
� �1=β−1

du; j≥1:

It is easy to see that I0 = (−1)nπβαΓ(α). Also, it is not difficult to show that

Ij ¼ −1ð Þj−1Γ αð Þ
2n−2jþ 1

β

1−β

� �α−1

μ′2n−2jþ1 α;
β

1−β

� �
−μ′2n−2iþ1 α−1;

β

1−β

� �
 �
: ð31Þ
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Substituting (31) in (30), we get the result in (i). For the proof of (ii), one can easily

see that

πβαΓ αð Þμ′2nþ1 ¼ −1ð ÞnπβαΓ αð Þμ′ α; βð Þ þ
Xn
j¼1

I j;

where

Ij ¼ −1ð Þn−j n
j

� �
∫
π=2

−π=2 sec
2j−1 uð Þ secu tanu − log 0:5−π−1u

� �� �α−1
0:5−π−1u
� �1=β−1

du:

The rest of the proof is not difficult to show. □
Table 2 provides the mean, variance, skewness and kurtosis of the GC(α, β, 1) for vari-

ous values of α and β. For fixed α, the mean and skewness are increasing functions of

β. Also, for fixed β, the mean is an increasing function of α. Furthermore, the values of

the skewness from Table 2 show that the distribution is very flexible in terms of shapes

and the distribution can be left or right skewed.

Skewness and kurtosis of a distribution can be measured by β1 = μ3/σ
3 and β2 = μ4/σ

4,

respectively. However, the third and fourth moments of GC(α, β, θ) do not always exist

(see Proposition 5). Alternatively, we can define the measure of asymmetry and tail

weight based on quantile function. The Galton’s skewness S defined by Galton (1883)

and the Moors’ kurtosis K defined by Moors (1988) are given by

S ¼ Q 6=8ð Þ−2Q 4=8ð Þ þ Q 2=4ð Þ
Q 6=8ð Þ−Q 2=8ð Þ : ð32Þ

K ¼ Q 7=8ð Þ−Q 5=8ð Þ þ Q 3=8ð Þ−Q 1=8ð Þ
Q 6=8ð Þ−Q 2=8ð Þ : ð33Þ

Table 2 Mean, variance, skewness and kurtosis calculations for GC(α, β,1)
α β Mean Variance Skewness Kurtosis

4 0.01 -10.7296 56.4986 -5.2367 *

0.1 -0.8567 0.7824 -3.8549 *

0.2 0.0774 0.6096 0.2118 *

0.3 0.8738 2.7446 18.0382 *

5 0.01 -8.0673 21.2643 -3.4321 44.2181

0.1 -0.5021 0.3953 -1.7868 17.6345

0.2 0.4480 0.6855 2.4384 56.5459

0.3 1.5732 6.8542 22.1028 *

8 0.01 -4.6280 3.5337 -1.9178 5.9542

0.1 0.1248 0.2153 0.7560 3.2951

0.2 1.6343 2.7528 6.3891 395.2955

0.3 5.3887 124.9174 13.2288 *

10 0.01 -3.5986 1.6310 -1.5609 15.6352

0.1 0.4431 0.2448 0.9704 8.1938

0.2 2.7883 8.3416 8.3283 802.9949

0.3 11.1914 840.3657 5.1306 *

*Does not exist
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When the distribution is symmetric, S = 0 and when the distribution is right (or left)

skewed S > 0 (or S < 0). As K increases the tail of the distribution becomes heavier. To

investigate the effect of the two shape parameters α and β on the GC(α, β, θ) distribu-

tion, Eqs. (32) and (33) are used to obtain the Galtons’ skewness and Moors’ kurtosis

where the quantile function is defined in Remark (ii). Figure 4 displays the Galton’s

skewness and Moors’ kurtosis for the GC(α, β, 1). From this figure, it appears that the

GC(α, β, θ) distribution has a wide range of skewness and kurtosis. It can be left

skewed, right skewed or symmetric.

4.2 Estimation of parameters by maximum likelihood method

Let X1, X2,…, Xn be a random sample of size n drawn from the GC(α, β, θ). The log-

likelihood function is given by

ℓ ¼ −n log πθΓ αð Þβαð Þ− log 1þ xi=θð Þð Þ þ β−1−1
� �Xn

i¼1

log zið Þ þ α−1ð Þ
Xn
i¼1

log − log zið Þð Þ;

ð34Þ

where zi = 0.5 − π− 1tan− 1(xi/θ).

The derivatives of (34) with respect to α, β and θ are given by

∂ℓ
∂α

¼ −nψ αð Þ−n logβþ
Xn
i¼1

log − log zið Þð Þ; ð35Þ

∂ℓ
∂β

¼ −
nα
β

þ 1

β2
Xn
i¼1

log zið Þ; ð36Þ

∂ℓ
∂θ

¼ −
n
θ
þ
Xn
i¼1

xi
θ θ þ xið Þ þ

Xn
i¼1

xi
π θ2 þ x2i
� �

zi
α−1ð Þ log zið Þð Þ−1 þ 1=β−1

� 

; ð37Þ

where ψ(α) = ∂ log Γ(α)/∂α, is the digamma function.

Therefore, the MLE α̂; β̂ and θ are obtained by setting the Eqs. (35), (36) and (37) to

zero and solving them simultaneously. Note that the number of equations can be re-

duced to two by using Eq. (36) to get β ¼
Xn
i¼1

log zið Þ
nα

: The initial value for the

Fig. 4 Graphs of Galton’s skewness and Moors’ kurtosis for the distribution GC(α, β, 1)
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parameter θ can be taken as θ0 = 1. From Remark (i) in Gamma-Cauchy{exponential}

distribution, the random variable Yi = − log[0.5 − π− 1 tan− 1(Xi/θ0)], i = 1, 2, …, n follows

a gamma distribution with parameters α and β. Therefore, by equating the sample

mean and sample variance of Yi with the corresponding population mean and variance,

the initial estimates for α and β are, respectively, α0 ¼ y2=s2y and β0 ¼ s2y=y where y and

s2y are the sample mean and sample variance for yi, i = 1,…, n.

4.3 Simulation study

A simulation study is conducted to evaluate the MLE in terms of estimates and stand-

ard deviations for various parameter combinations and different sample sizes. We con-

sider the values 0.5, 0.9, 1, 2, 5 for the parameter α, 0.5, 1, 3 for the parameter β, and 1,

2 for the parameter θ. The simulation study for the MLE is conducted for a total of six

parameter combinations and the process is repeated 200 times. Three different sample

sizes n = 50, 100, 300 are considered. The ML estimates and the standard deviations are

presented in Table 3. From this table, it appears that the ML estimates of α and θ tend

to be overestimated. As expected, as the sample size increases, the bias and standard

deviation values for all the estimates decrease.

4.4 Applications

In this section, the GC(α, β, θ) distribution is fitted to two data sets. The first data set

from Bjerkedal (1960), represents the survival time in days of 72 guinea pigs infected

with virulent tubercle bacilli. The first data set is

The data is skewed-to-the right with skewness = 1.3134 and kurtosis = 3.8509.

The second data set from Durbin and Koopman (2001), represents the measurements

of the annual flow of the Nile River at Ashwan from 1871–1970. The second data set is

The data is approximately symmetric with skewness = 0.3175 and kurtosis = 2.6415.

We fitted the two data sets to the GC(α, β, θ) distribution and compared the

results with Cauchy, gamma-Pareto proposed by Alzaatreh et al. (2012) and beta-

Cauchy distributions proposed by Alshawarbeh et al. (2013). The maximum likeli-

hood estimates, the log-likelihood value, the AIC (Akaike Information Criterion),

the Kolmogorov- Smirnov (K-S) test statistic, and the p-value for the K-S statistic

for the fitted distributions to the data sets 1 and 2 are reported in Tables 4 and 5

respectively.

The results in Tables 4 and 5 show the GC(α, β, θ) and beta-Cauchy provide an ad-

equate fit to the survival time data while the GC(α, β, θ) distribution provides the best

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 121, 122, 122,124,130,
134, 136, 139, 144,146, 153, 159, 160, 163, 163,168, 171, 172, 176,113, 115, 116, 120, 183,195, 196, 197, 202, 213,
215, 216, 222, 230,231, 240, 245, 251, 253, 254, 255, 278, 293, 327, 342, 347, 361,402, 432, 458, 555

1120, 1160, 963, 1210, 1160, 1160, 813, 1230, 1370, 1140, 995, 935, 1110, 994, 1020, 960, 1180, 799, 958, 1140,
1100, 1210, 1150, 1250, 1260, 1220, 1030, 1100, 774, 840, 874, 694, 940, 833, 701, 916, 692, 1020, 1050, 969,
831, 726, 456, 824, 702, 1120, 1100, 832, 764, 821, 768, 845, 864, 862, 698, 845, 744, 796, 1040, 759, 781, 865,
845, 944, 984, 897, 822, 1010, 771, 676, 649, 846, 812, 742, 801, 1040, 860, 874, 848, 890, 744, 749, 838, 1050,
918, 986, 797, 923, 975, 815, 1020, 906, 901, 1170, 912, 746, 919, 718, 714, 740
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fit (based on KS p-value) to the annual flow of the Nile River data. The fact that GC(α, β, θ)

distribution has only three parameters compared with the beta-Cauchy distribution makes

GC(α, β, θ) a natural choice for fitting these two data sets. A closer look at the parameter

estimates for the beta-Cauchy distribution indicates that the estimates of α, β and θ in the

beta-Cauchy distribution are not statistically significant for the two examples. This is an in-

dication that beta-Cauchy is over-parameterized for fitting these two data sets. This sup-

ports the point that the three-parameter GC(α, β, θ) distribution should be used to fit the

two data sets. Figure 5 displays the histogram and the fitted density functions for the two

data sets, which support the results in Tables 4 and 5.

Table 3 Estimates and standard deviations for the parameters using MLE method

Sample size Actual values ML estimates Standard deviation

n α β θ α̂ β̂ θ̂ α̂ β̂ θ̂

50 1 1 1 1.1605 0.9260 1.1455 0.0518 0.0460 0.0538

0.5 1 2 0.5377 0.9552 2.1399 0.0180 0.0426 0.0978

0.5 3 2 0.5351 2.8849 2.1952 0.0154 0.1207 0.1065

0.9 0.5 1 1.0229 0.4960 1.0579 0.0481 0.0222 0.0442

2 0.5 1 2.9571 0.4448 1.2255 0.4271 0.0282 0.0917

5 0.5 1 7.9697 0.4487 0.8862 0.9537 0.0183 0.0737

100 1 1 1 1.0717 0.9617 1.0499 0.0216 0.0230 0.0248

0.5 1 2 0.5182 1.0090 2.0843 0.0084 0.0229 0.0457

0.5 3 2 0.5165 2.9594 2.0505 0.0065 0.0591 0.0441

0.9 0.5 1 0.9375 0.4932 1.0309 0.0181 0.0105 0.0203

2 0.5 1 2.2258 0.4753 1.0866 0.0646 0.0131 0.0281

5 0.5 1 6.3436 0.4737 0.9243 0.4015 0.0089 0.0367

300 1 1 1 1.0244 0.9983 1.0270 0.0094 0.0114 0.0111

0.5 1 2 0.5076 0.9908 2.0320 0.0041 0.0102 0.0229

0.5 3 2 0.5113 2.9636 2.0718 0.0039 0.0315 0.0241

0.9 0.5 1 0.9242 0.4953 1.0159 0.0086 0.0053 0.0102

2 0.5 1 2.1286 0.4844 1.0369 0.0270 0.0071 0.0123

5 0.5 1 5.2815 0.4987 0.9562 0.1368 0.0040 0.0149

Table 4 Parameter estimates for the survival time data

Distribution Cauchy Gamma-Pareto Beta-Cauchy Gamma-Cauchy{exponential}

Parameter
Estimates

ĉ = 139.3079
(9.4281)a

θ̂ = 48.1262
(7.6793)

α̂ = 6.030
(0.9770)
ĉ = 0.4497
(0.0760)
θ̂ = 10

α̂ = 13.9274
(18.5335)
β̂ = 4.5828
(3.6504)
ĉ = 117.9055
(37.6269)
θ̂ = 27.0884
(99.7681)

α̂ = 16.1591
(2.6666)
β̂ = 0.1027
(0.0238)
θ̂ = 110.1742
(35.4345)

Log-likelihood -437.5967 -465.4670 -424.4339 -424.4423

AIC 879.1934 934.9340 856.8679 854.8847

K-S 0.1416 0.2606 0.0760 0.0752

K-S p-value 0.1114 0.0001 0.8005 0.8105
astandard error
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5. Concluding remarks
A family of generalized Cauchy distributions, T-Cauchy{Y} family, is proposed using

the T-R{Y} framework. Several properties of the T-Cauchy{Y} family are studied

including moments and Shannon’s entropy. Some members of the T-Cauchy{Y}

family are presented. A member of the T-Cauchy{Y} family, the gamma-

Cauchy{exponential} distribution, is studied in detail. This distribution is interesting

as it consists of exponentiated Cauchy distribution and distributions of record

values of Cauchy distribution as special cases. Various properties of the gamma-

Cauchy{exponential} distribution are studied, including mode, moments and

Shannon’s entropy. Unlike the Cauchy distribution, the gamma-Cauchy{exponential}

distribution can be right-skewed or left-skewed. Also, the moments of the gamma-

Cauchy{exponential} distribution exist under certain restrictions on the parameters.

In particular, the r-th moment for the gamma- Cauchy{exponential} distribution ex-

ists if and only if α, β− 1 > r and this is not the case for the Cauchy distribution.

The flexibility of the gamma-Cauchy{exponential} distribution and the existence of

the moments in some cases make this distribution as an alternate to the Cauchy

distribution in situations where the Cauchy distribution may not provide an ad-

equate fit.

Table 5 Parameter estimates for the annual flow of the Nile River data

Distribution Cauchy Gamma-Pareto Beta-Cauchy Gamma-Cauchy{exponential}

Parameter
Estimates

ĉ = 879.3679
(17.3969)a

θ̂ = 103.8804
(13.44841)

α̂ = 5.0437
(0.6902)
ĉ = 0.1357
(0.0195)
θ̂ = 456

α̂ = 50.9201
(66.0939)
β̂ = 25.1275
(29.7478)
ĉ = 712.2062
(445.6252)
θ̂ = 482.3092
(361.7110)

α̂ = 322.5715
(6.4901)
β̂ = 0.0103
(0.0003)
θ̂ = 103.5797
(76.1343)

Log-likelihood -674.4637 -696.7975 -653.4892 -654.3825

AIC 1352.9270 1397.5950 1314.9780 1314.7650

K-S 0.1311 0.1705 0.0736 0.0637

K-S p-value 0.0642 0.0060 0.6515 0.8120
astandard error

Fig. 5 Histograms and the fitted distributions for the two data sets
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