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Abstract
The two-parameter Weibull has been the most popular distribution for modeling
lifetime data. We propose a four-parameter gamma extended Weibull model, which
generalizes the Weibull and extended Weibull distributions, among several other
models. We obtain explicit expressions for the ordinary and incomplete moments,
generating and quantile functions and mean deviations. We employ the method of
maximum likelihood for estimating the model parameters. We propose a log-gamma
extended Weibull regression model with censored data. The applicability of the new
models is well justified by means of two real data sets.
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1 Introduction
There are hundreds of continuous univariate distributions and recent developments focus
on constructing general distributions from classic ones. Many distributions have been
used as models to make inferences about a population based on a set of empirical data
from that population. Determining an adequate model tomake inferences is a very impor-
tant problem. The Weibull distribution is commonly used for modeling systems with
monotone failure rates. However, the data sets in reliability analysis, especially over the
life-cycle of the product, can involve high initial failure rates and eventual high failure
rates due to aging and wear out, indicating a bathtub failure rate. The distributions that
allow only monotone failure rates might not be adequate for modeling populations giv-
ing rise to such data. The major weakness of the Weibull distribution is its inability
to accommodate non-monotone hazard rates, which has led to new generalizations of
this distribution. One of the first extensions allowing for non-monotone hazard rates,
including the bathtub shaped hazard rate function (hrf ), is the exponentiated Weibull
(ExpW) (Mudholkar and Srivastava 1993; Mudholkar et al. 1995; and Mudholkar et al.
1996) distribution. It has been well established in the literature that the ExpW distribu-
tion provides significantly better fits than the well-known exponential, gamma, Weibull
and log-normal distributions. In the last paper, the authors presented a more flexible
three-parameter extended Weibull (EW) model. Further, Shao et al. (2004) used this
distribution to study flood frequency and Hao and Singh (2008) described some of its
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applications in hydrology. In this paper, we propose a further generalization by taking the
EW distribution as the baseline model.
The three-parameter EW distribution is defined by the probability density function

(pdf) and cumulative distribution function (cdf) (Mudholkar et al. 1996)

gλ,α,β(x) = λβ xβ−1 (1 + αλ xβ
)− 1

α
−1 , α > 0 and gλ,β(x) = λβ xβ−1 e−λxβ

, α = 0 ,
(1)

and

Gλ,α,β(x) = 1 − (
1 + αλxβ

)− 1
α , α > 0 and Gλ,β(x) = 1 − e−λxβ

, α = 0 , (2)

respectively, where λ > 0 is a scale parameter and α ≥ 0 and β > 0 are shape parameters.
The support of the EW distribution is R+. The forms of the pdf and cdf when α goes to
zero tend to those ones when α = 0. Clearly, the cdf (2) extends the Weibull cdf and this
fact justifies the terminology EW model. Due to the shape parameter α, more flexibility
can be incorporated in model (1), which is very useful for lifetime data. The survival func-
tion associated to (1) is Sλ,α,β(x) = 1 − Gλ,α,β(x) for α > 0 and Sλ,β(x) = 1 − Gλ,β(x) for
α = 0.
A family of univariate distributions generated by gamma random variables was pro-

posed by Zografos and Balakrishnan (2009) and Ristic and Balakrishnan (2012). For any
baseline cdf G(x), x ∈ R, they defined the gamma-G (denoted with the prefix “GG” for
short) model with an extra parameter a > 0 by the pdf and cdf

f (x) = g(x)
�(a)

{− log [1 − G(x)]
}a−1 (3)

and

F(x) = 1
�(a)

∫ − log[1−G(x)]

0
ta−1 e−t dt = γ1(a,− log [1 − G(x)]) , (4)

respectively, where g(x) = dG(x)/dx, �(a) = ∫∞
0 ta−1 e−tdt is the gamma func-

tion, γ (a, z) = ∫ z
0 t

a−1 e−tdt denotes the incomplete gamma function and γ1(a, z) =
γ (a, z)/�(a) is the incomplete gamma function ratio.
The GG model has the same parameters of the parent G distribution plus one extra

shape parameter a > 0. Each new GG distribution can be determined from a specified
G model. For a = 1, the G distribution is a basic exemplar with a continuous crossover
towards cases with different shapes (for example, a particular combination of skewness
and kurtosis).
We introduce a new four-parameter model called the “gamma extended Weibull”

(“GEW”) distribution, which contains as special models some distributions such as the
EWdistribution. In fact, this model represents only a basic exemplar of the GEWdistribu-
tion. We also study some of its mathematical properties. The paper is outlined as follows.
In Section 2, we define the GEW distribution and provide some of its special cases. Fur-
ther, two useful expansions for its density and cumulative distributions are derived in
Section 3. In Section 4, we obtain its quantile function (qf ). The ordinary moments and
mean deviations are investigated in Section 5. Maximum likelihood estimation of the
model parameters and some inferential tools are discussed in Section 6. In Section 7, we
propose the log-gamma extendedWeibull regression model, which can be applied for life-
time analysis. The importance of the new models is shown empirically by means of two
real data sets in Section 8. Some conclusions are offered in Section 9.
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2 The GEW distribution
By taking the pdf (1) and cdf (2) of the EW distribution with scale parameter λ > 0 and
shape parameters α ≥ 0 and β > 0, the pdf and cdf of the GEW distribution can be
obtained from Eqs. (3) and (4) (for x > 0) as

f (x) = f (x; τ , a) =

⎧⎪⎨⎪⎩
λβ xβ−1 (1+αλ xβ

)− 1
α −1

αa−1 �(a)
{
log
[(
1 + αλ xβ

)]}a−1 , α > 0,
λa β xβa−1 e−λxβ

�(a) , α = 0,
(5)

F(x) = F(x; τ , a) =
{

γ1
(
a, 1

α
log
[
1 + αλ xβ

])
, α > 0 ,

γ1
(
a, λxβ

)
, , α = 0,

(6)

where τ = (α,β , λ). Clearly, if α → 0, the first expressions in (5) and (6) tend to the
second ones in these equations. For α = 0, the GEWmodel is identical to the generalized
gamma distribution pioneered by Stacy (1962). Hereafter, a random variable X having pdf
(5) is denoted by X ∼ GEW(τ , a). Evidently, the density function (5) does not involve any
complicated function and the EW distribution arises as the basic exemplar for a = 1. It is
a positive point for the current generalization. The GEW model has several sub-models:
the EW when a = 1, gamma Weibull (GW) when α = 0, gamma extended exponential
(GEE) when β = 1, extended exponential (EE) when β = a = 1, gamma exponential
(GE) when α = 0 and β = 1, Weibull (W) when α = 0 and a = 1, and exponential when
α = 0 and a = β = 1. We show empirically the flexibility of the GEW distribution by
comparing it with some of its sub-models by means of a real data set in Section 8. Plots
of the density function and hrf of X for selected parameter values are displayed in Figs. 1
and 2, respectively.
The new distribution is easily simulated as follows: if V is a gamma random variable

with parameter a, then

X = (
α−1 λ−1 {exp(αV ) − 1})1/β

has the GEW(τ , a) distribution. This generating scheme is straightforward because of the
existence of fast generators for gamma random variables.

3 Useful expansions
Expansions for (5) and (6) can be derived using the concept of exponentiated distribu-
tions. The exponentiated extended Weibull (EEW) distribution is defined by raising the
cdf (2) to a power a > 0 and the associated random variable is denoted by Y ∼ EEW(τ , a).
The cdf and pdf of Y are given by

Ha(x; τ ) =
⎧⎨⎩
[
1 − (

1 + αλ xβ
)− 1

α

]a
, α > 0 ,[

1 − exp
(−λ xβ

)]a , α = 0 ,

and

ha(x; τ ) =

⎧⎪⎨⎪⎩ a λβ xβ−1 (1 + αλ xβ
)− 1

α
−1
[
1 − (

1 + αλ xβ
)− 1

α

]a−1
, α > 0 ,

a λβ xβ−1 e−λxβ [ 1 − exp
(−λ xβ

)
]a−1 , α = 0 ,

(7)

respectively. The properties of some exponentiated distributions have been investigated
by several authors, see Mudholkar and Srivastava (1993) and Mudholkar et al. (1995) for
exponentiated Weibull (ExpW), Gupta et al. (1998) for exponentiated Pareto, Gupta and
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a b

c d

Fig. 1 Plots of the GEW pdf

Kundu (2001) for exponentiated exponential (ExpE) and Nadarajah and Gupta (2007) for
exponentiated gamma (ExpG) distributions. More recently, Cordeiro et al. (2011) studied
these properties for the exponentiated generalized gamma (ExpGG) distribution.
The following formula holds (http://functions.wolfram.com/ElementaryFunctions/

Log/06/01/04/03/)

{
1
α
log
[
1 − αλ xβ

]}a−1

= (a − 1)
∞∑
k=0

(
k + 1 − a

k

) k∑
j=0

(−1)j+k pj,k
(a − 1 − j)

(
k
j

) [
1 − (

1 − αλ xβ
)− 1

α

]a+k−1
,

http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/
http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/
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a b

b d

Fig. 2 Plots of the GEW hrf

where a > 0 is a real parameter and the constants pj,k can be determined recursively by

pj,k = k−1
k∑

m=1

(−1)m [m(j + 1) − k]
(m + 1)

pj,k−m, j ≥ 0,

for k = 1, 2, . . . and pj,0 = 1. Further, for any real parameter a > 0, we define

bk =
(k+1−a

k
)

(a + k)�(a − 1)

k∑
j=0

(−1)j+k pj,k
(a − 1 − j)

(
k
j

)
and then the first equation in (5) can be expressed as

f (x) =
∞∑
k=0

bk ha+k(x) , (8)
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where ha+k(x) = (a+k) λ β xβ−1 (1 + αλ xβ
)−1/α−1

[
1 − (

1 + αλ xβ
)− 1

α

]a+k−1
denotes

the EEW(τ , a + k) density function. So, the GEW density function is a linear mixture of
EEW densities.
Similarly, we can derive an expansion for the GW density when α = 0. Using Eq. (5)

for α = 0, we obtain the same expression in (8), but the function ha+k(x) denotes, when
α = 0, the GEW(τ , a + k) pdf given by the second equation of (7).
Inserting (7) in Eq. (8), we obtain

fGEW(x; τ , a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞∑
j=0

ej gλ�,α�,β(x) , if α > 0 ,

∞∑
j=0

ej gλ�,β(x) , if α = 0 ,
(9)

where ej = ∑∞
k=0(−1)j (a+k) bk

(a+k−1
j
)
, gλ�,α�,β(x) denotes the EW pdf with parameters

λ� = (j+ 1)λ, α∗ = α/(j+ 1) and β and gλ�,β(x) denotes the Weibull pdf with parameters
λ� and β .
Equation (9) is the main result of this section. It reveals that the GEW density function

is a linear mixture of EW (when α > 0) and Weibull (when α = 0) densities. So, several
GEW structural properties can be obtained from those properties of the EW andWeibull
distributions.

4 Quantile function
First, we consider the general case α > 0. The GEW qf, say Q(u) = F−1(u), can be
expressed in terms of the EW qf, say QEW (·). Inverting F(x) = u given by (6), the qf of X
(for 0 < u < 1) follows as

F−1(u) = QGEW (u) = QEW
{
1 − exp[−Q−1(a, 1 − u)]

}
, (10)

where Q−1(a, 1 − u) is the inverse function of Q(a, z) = 1 − γ1(a, 1 − u). A power series
for it is given in the Wolfram website as

z = Q−1(a, 1 − u) =
∞∑
i=0

ai ui/a ,

where a0 = 0, a1 = �(a+ 1)1/a, a2 = �(a+ 1)2/a/(a+ 1), etc. Quantities of interest can
be obtained from (10) by substituting appropriate values for u.
Further, the EW qf is given by

QEW (u) =
{
1 − (1 − u)α

αλ(1 − u)α

}1/β
. (11)

5 Moments andmean deviations
Some of the most important features and characteristics of a distribution can be studied
through moments. We can write from Eq. (8)

μ′
r = E(Xr) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α

−
(

r
β
+1
)
λ

− r
β

∞∑
j=0

e�j B
(
r
β

+ 1, j+1
α

− r
β

)
, if α > 0 and r < β/α ,

λ
− r

β �
(
r
β

+ 1
) ∞∑
j=0

ej
(j+1)r/β , if α = 0,

(12)
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where e�j = (j + 1) ej, B(a, b) = �(a)�(b)/�(a + b) is the beta function and �(a) =∫∞
0 za−1e−zdz is the gamma function.
Established algebraic expansions to determine μ′

r can be more efficient than computing
these moments directly by numerical integration of (5), which can be prone to round-
ing errors among others. The skewness γ1 and kurtosis γ2 of X are easily obtained from
the ordinary moments using well-known formulae. Figure 3 displays some plots for the
skewness and kurtosis of the GEWmodel.
For lifetime models, it is of interest to know the rth incomplete moment of X defined

by Tr(y) = ∫ y
0 xr f (x)dx. Based on (9), we obtain (for α > 0)

Tr(y) =
∞∑
j=0

ej λ� β ρ
(
y; r,α�λ�,α�−1

)
, (13)

where ρ(y; r, p, q) = ∫ y
0 xr (1 + p x)−q−1dx for r, p, q > 0. Using Maple, this integral can

be determined as

ρ(y; r, p, q) = A(r, p, q)
{
2 yr−q

2F1
(
q−r , q + 1; q + 1 − r,− 1

py

) [
B(r, p, q) + C(r, p, q)

]}
,

where 2F1 is the hypergeometric function defined by

2F1(a, b; c; x) = �(c)
�(a)�(b)

∞∑
j=0

�(a + j)�(b + j)
�(c + j)

xj

j!
,

a

d

b

e

c

f

Fig. 3 Skewness and kurtosis of the GEW distribution for some parameter values
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A(r, p, q) = {
p sin[π(q − r)] (q − r) �(q + 1) �(r + 1 − q)

}−1,

B(r, p, q) = p−q �(q + 1) �(r + 1 − q)
[
cos(qπ) sin(πr) − sin(qπ) cos(πr)

]
,

and

C(r, p, q) = π p−r �(r + 1)(q − r) .

We obtain the incomplete moments by combining (13) and the expression for ρ(y; r, p, q) .
For α = 0, the quantity Tr(y) reduces to

Tr(y) = λ−r
∞∑
j=0

ej
(j + 1)r

γ (r + 1, (j + 1)λy) .

An important application of T1(y) refers to the mean deviations about the mean and
about the median, which can be used as measures of spread in a population. They are
given by δ1 = E

(|X − μ′
1|
) = 2μ′

1 F
(
μ′
1
)−2T1

(
μ′
1
)
and δ2 = E(|X−m|) = μ′

1−2T1(m),
respectively, where the mean μ′

1 is determined from (12) and T1(·) comes from (13) with
r = 1 as

T1(y) = λ

∞∑
j=0

ej ρ
(
y; 1,α�λ�,α�−1

)
.

Here, ρ(y; 1, p, q) becomes

ρ(y; 1, p, q) = − [q(q − 1)p2
]−1

[
(pqy + 1)
(1 + py)q

− 1
]
.

Further, for α = 0, we have

T1(q) =
∞∑
j=0

ej
(

1
λ�

)1/β ∫ λ�qβ

0
v1/β e−vdv

and then T1(q) reduces to

T1(q) =
∞∑
j=0

ej
(

1
(j + 1)λ

)1/β [
�

(
1 + 1

β

)
− γ

(
1 + 1

β
, (j + 1)λqβ

)]
.

For a given probability π , both equations for T1(·) can be used to determine the
Lorenz and Bonferroni curves defined by L(π) = T1(q)/μ′

1 and B(π) = T1(q)/
(
π μ′

1
)
,

respectively, where q = QGEW (π) comes from Eq. (10) (see Fig. 4).

6 Estimation
The maximum likelihood method is used for estimating the parameters of the GEW
model. We determine the maximum likelihood estimates (MLEs) from complete sam-
ples only. Let x1, . . . , xn be a sample of size n from the GEW(α,β , λ, a) distribution.
The log-likelihood function for the vector of parameters θ = (α, λ,β , a)T is given by
l(θ) = ∑n

i=1 log[ f (xi)]=
∑n

i=1 li(θ), where

li(θ) =

⎧⎪⎪⎨⎪⎪⎩
log(λ) + log(β) − log[�(a)]−(a − 1) log(α) + (β − 1) log(xi)
− (1 + 1/α) log

(
1 + αλxβ

i

)
+ (a − 1) log

[
log
(
1 + αλxβ

i

)]
, if α > 0 ,

a log(λ) + log(β) − log[�(a)]+(βa − 1) log(xi) − λxβ
i , if α = 0.
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a b

Fig. 4 Plots of the (a) Bonferroni and (b) Lorenz curves

The expression for l(θ) when α = 0 gives the log-likelihood function for the GG distri-
bution, a sub-model of the GEW distribution. Next, we maximize l(θ) = ∑n

i=1 li(θ) for
α > 0.
The components of the score vector U(θ) are given by

∑n
i=1 ∂li(θ)/∂θj, j = 1, . . . , 4,

where the θj’s denote the parameters α, β , λ or a. The elements ∂li(θ)/∂θj, j = 1, . . . , 4,
are given below

∂li(θ)/∂α = −a − 1
α

+
log
(
1 + α λ xβ

i

)
α2 −

( 1
α

+ 1
)

λ xβ
i

1 + α λ xβ
i

+ (a − 1) λ xβ
i(

1 + α λ xβ
i

)
log
(
1 + α λ xβ

i

) ,

∂li(θ)/∂β = 1
β

+ log(xi) −
( 1

α
+ 1

)
α λ xβ

i log(xi)
1 + α λ xβ

i
+ (a − 1) α λ xβ

i log(xi)(
1 + α λ xβ

i

)
log
(
1 + α λ xβ

i

) ,

∂li(θ)/∂λ = 1
λ

−
( 1

α
+ 1

)
α xβ

i

1 + α λ xβ
i

+ (a − 1) α xβ
i(

1 + α λ xβ
i

)
log
(
1 + α λ xβ

i

) ,

∂li(θ)/∂a = −ψ(a) − log(α) + log
[
log
(
1 + α λ xβ

i

)]
,

where ψ(·) is the digamma function.
Setting these equations to zero and solving them simultaneously yield the MLEs of the

four parameters. They can be solved numerically by using the R-language or any iterative
methods such as the NR (Newton-Raphson), BFGS (Broyden-Fletcher-Goldfarb-Shanno),
BHHH (Berndt-Hall-Hall-Hausman), NM (Nelder-Mead), SANN (Simulated-Annealing)
and Limited-Memory Quasi-Newton code for Bound-Constrained Optimization (L-
BFGS-B). Regarding the initial values for the parameters, several authors (Ugray et al.
2007; Glover 1998; Dixon and Szegö 1978; Varadhan and Gilbert 2009) suggest to find
local maxima starting from widely varying starting points and then pick the maximum
out of these, i.e., they suggest the use of multiple starting points (commonly referred to as
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multistart optimization). We followed their advice in this paper. As a useful tool we sug-
gest the use of the R rotine multiStart of R package BB (for solving and optimizing
large-scale nonlinear systems) for dealing with multiple starting points to obtain multiple
solutions and to test sensitivity to starting values.
For interval estimation of the model parameters, we require the 4 × 4 total

observed information matrix J(θ). The elements of J(θ) = {Jrs}, where r, s ∈
{α,β , λ, a}, can be obtained from the authors upon request. The multivariate nor-
mal N4

(
0, J (̂θ)−1) distribution, where J (̂θ)−1 is the inverse observed matrix evalu-

ated at θ = θ̂ , can be used to construct approximate confidence intervals for the
parameters.
The likelihood ratio (LR) statistic is useful for comparing the GEW distribution with

some of its special models. We can evaluate the maximum values of the unrestricted and
restricted log-likelihoods to obtain LR statistics for testing some of its sub-models. In any
case, hypothesis tests of the type H0 : ψ = ψ0 versus H : ψ 	= ψ0, where ψ is a vector
formed with some components of θ and ψ0 is a specified vector, can be performed using
LR statistics.

7 The LGEW regressionmodel
If X is a random variable having the GEW density function (5), then Y = log(X)
has the log-gamma extended Weibull (LGEW) distribution. The density function of Y,
parameterized in terms of β = σ−1 and λ = e−μ/σ , is given by

f (y; a,α,μ, σ) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
y−μ
σ

)[
1+α exp

(
y−μ
σ

)](− 1
α −1

)
σ αa−1�(a)

{
log
[
1 + α exp

(
y−μ
σ

)]}a−1
, if α > 0,

exp
[
a
(
y−μ
σ

)
−exp

(
y−μ
σ

)]
σ �(a) , if α = 0 ,

(14)

where y ∈ R, a > 0 and α > 0 are shape parameters, σ > 0 and μ ∈ R. If Y is a
random variable having density function (14), we write Y ∼ LGEW(a,α,μ, σ). Plots of
the density function of Y for selected parameter values are displayed in Fig. 5. They reveal
great flexibility for different values of the shape parameters a and α.

a b c

Fig. 5 Plots of the LGEW density: a a increasing, α = 0.5, μ = 0 and σ = 1; b a increasing, α decreasing,
μ = 0 and σ = 1; and c α = 0 and a increasing, μ = 0 and σ = 1
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Thus,

if X ∼ GEW(a,α,β , λ) then Y = log(X) ∼ LGEW(a,α,μ, σ).

The corresponding survival function of Y is given by

S(y; a,α,μ, σ) =
⎧⎨⎩ 1 − γ1

(
a, 1

α
log
[
1 + α exp

(
y−μ
σ

)])
, if α > 0 ,

1 − γ1
(
a, exp

(
y−μ
σ

))
, if α = 0 .

The pdf of the standardized random variable Z = (Y − μ)/σ is given by

π(z; a,α) =
⎧⎨⎩

exp(z)[1+α exp(z)]− 1
α −1

αa−1�(a)
{
log[ 1 + α exp(z)]

}a−1 , if α > 0,
exp[a z−exp(z)]

�(a) , if α = 0 .
(15)

The special case α = 0 and a = 1 refers to the log-Weibull (LW) (or extreme-value)
distribution and, for α = 0, we obtain the log-gamma-Weibull (LGW) model.
Inmany practical applications, the lifetimes xi are affected by explanatory variables such

as the cholesterol level, blood pressure and many others. Let vi = (vi1, . . . , vip)T be the
explanatory variable vector associated with the ith response variable yi for i = 1, . . . , n.
Consider a sample (y1, v1), . . . , (yn, vn) of n independent observations, where each ran-
dom response is defined by yi = min{log(xi), log(ci)}, and log(xi) and log(ci) are the
log-lifetime and log-censoring, respectively. We consider non-informative censoring such
that the observed lifetimes and censoring times are independent.
We construct a linear regression model for the response variable yi based on the LGEW

distribution given by

yi = vTi β + σ zi, i = 1, . . . , n, (16)

where the random error zi has the density function (15), β = (
β1, . . . ,βp

)T , σ > 0,
a > 0 and α > 0 are unknown scalar parameters and vi is the vector of explanatory
variables modeling the location parameter μi = vTi β . Hence, the location parameter
vector μ = (μ1, . . . ,μn)

T of the LGEW model has a linear structure μ = vTβ , where
v = (v1, . . . , vn)T is a known model matrix. The log-Weibull (or the extreme value)
regression model is defined by (16) with α = 0 and a = 1.
Let F and C be the sets of individuals for which yi is the log-lifetime or log-

censoring, respectively. The total log-likelihood function for the model parameters θ =(
a,α, σ ,βT

)T
can be obtained from Eqs. (15) and (16) as

l(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−q{log(σ ) + (a − 1) log(α) − log[�(a)] } + ∑
i∈F

zi

− ( 1
α

+ 1
) ∑
i∈F

log
[
1 + α exp(zi)

]
+(a − 1)

∑
i∈F

log{log[ 1 + α exp(zi)] }
+∑

i∈C
log
{
1 − γ1

(
a, 1

α
log[ 1 + α exp(zi)]

)}
, if α > 0 ,

−q{log(σ ) + log[�(a)] } + a
∑
i∈F

zi − ∑
i∈F

exp(zi)

+∑
i∈C

log {1 − γ1 (a, exp[ zi] )} , if α = 0 ,

(17)
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where q is the observed number of failures and zi = (
yi − vTi β

)
/σ . TheMLE θ̂ of θ can be

obtained by maximizing the log-likelihood function (17). We use the procedure NLMixed
in SAS to evaluate the estimate θ̂ . Initial values for β and σ are taken from the fit of the
LW regression model with α = 0 and a = 1.
From the fitted model (16), the survival function for yi can be estimated by

Ŝ
(
yi; â, α̂, σ̂ , β̂

T) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − γ1

(
â, 1

α̂
log
[
1 + α̂ exp

(
yi−vTi β̂

σ̂

)])
, if α > 0 ,

1 − γ1

(
â, exp

[
yi−vTi β̂

σ̂

])
, if α = 0 .

(18)

Under general regularity conditions, the asymptotic distribution of (̂θ − θ) is multivari-
ate normal Np+3 (0,K(θ)−1), where K(θ) is the (p + 3) × (p + 3) expected information
matrix. The asymptotic covariance matrix K(θ)−1 of θ̂ can be estimated by θ̂

−1 and
then the inference on the parameter vector θ can be based on the normal approximation
Np+3

(
0, J (̂θ)−1) for θ̂ . In fact, an 100(1 − η)% asymptotic confidence interval for each

parameter θr is given by

ACIr =
(

θ̂r − zη/2

√
−̂Jr,r , θ̂r + zη/2

√
−̂Jr,r

)
,

where −̂Jr,r represents the rth diagonal element of J (̂θ)−1 and zη/2 is the quantile 1 −
η/2 of the standard normal distribution. The LR statistic can be used to discriminate
between the LGEW and LW regression models since they are nested models. In this case,
the hypotheses to be tested are H0 : (a,α)T = (1, 0)T versus H1 : H0 is not true, and
the LR statistic reduces to w = 2

{
l(̂θ) − l(̃θ)

}
, where θ̃ is the MLE of θ under H0. The

null hypothesis is rejected if w > χ2
2,1−η, where χ2

2,1−η is the quantile of the chi-square
distribution with two degrees of freedom.

8 Applications
8.1 The GEWmodel

In the first application, we use the warp break data for six types of weaving warps dis-
cussed by Tippett (1950, p. 105). We describe his experiment: “The results of a weaving
experiment was conducted in a factory. There were 6 lots of warp yarn labelled respec-
tively AL, AM, etc. They were spun from two growths of cotton, A and B, and each cotton
was spun to three twists (i.e., the number of turns in the yarn per inch): low (L), medium
(M), and high (H). The combination of these three factors give 6 kinds of yarn, which are
the experimental treatments. From each yarn were prepared 9 warps (a warp is a quan-
tity of warp yarn that goes into one loom as a unit), and, as a loom came available in the
course of events, a warp chosen at random from the 54 was assigned to it, until ultimately
all 54 were disposed of. More than one warp was woven in some looms, but that did not
affect the randomness of the distribution. The number of warp threads that broke during
the weaving of each warp was counted and expressed as a rate of so many breaks per unit
of warp.”
We analyze the warp breakage rates for individual warps disregarding the factors. First,

we fit the GEW model and some of its sub-models to these data by the method of max-
imum likelihood. Afterwards, we compare the GEW model with some four-parameter
competitive models.
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The GEWmodel, its sub-models and some competitors

We compare the GEW model with some of its sub-models and we also compare it with
some competitor models: the Burr XII geometric (BXIIG) (Silva and Cordeiro 2015), the
beta log-normal (BLN) (Castellares et al. 2013) and the exponentiated Weibull-Poisson
(EWP) (Mahmoudi and Sepahdar 2013) distributions. The MLEs of the models param-
eters and the Akaike Information Criterion (AIC) statistic for some models fitted to the
data are listed in Table 1. In such table the parameters used for the competitor models are
the same in the cited references. However, for the BXIIG we included the scale parameter
s that was not considered in Silva and Cordeiro (2015). Even though it is expected that the
GEW model will provide a better fit than its sub-models, we can verify whether or not
there are significant differences. Some model comparison is given in Table 2.
The histogram of the data and the plots of the fitted densities for some models are dis-

played in Fig. 6. They indicate that the new distribution provides a better fit than other
sub-models. A comparison of the new distribution with four sub-models using LR statis-
tics is performed in Table 2. These statistics indicate that the new distribution is the most
adequate model to describe the data.
In the case of the competitor models, the AIC values suggest that the GEW model is

quite comparable to the BLN and EWP models (being slightly superior) and it is a bit
better than the BXIIG model. Figure 7 displays the histogram of the data and the fitted
GEW, BXIIG, BLN and EWP densities. The last comments about the AIC are in agree-
ment with the general notion that the GEW density provides the best fit for the current
data, although all of them are very close.
The required numerical evaluations are implemented by using an R script (sub-routine

nlminb that can be found at https://cran.r-project.org). The nlminb() is
a derivative-free method for function minimization as it requires only the function to be

Table 1MLEs of the model parameters for the warp breakage rate data, the corresponding SEs
(given in parentheses) and the AIC measure

Model α λ β a AIC

GEW 0.895137 0.000026 9.792369 23.609396 420.257020

(0.042691) (0.000011) (0.714861) (2.615331)

GW 0 0.008219 1.622223 2.061746 425.080529

(-) (0.000971) (0.025583) (0.071981)

EW 0.104458 0.000192 2.499730 1 427.270840

(0.025452) (0.000032) (0.052776) (-)

GEE 0.000961 0.190944 1 5.364537 421.924911

(0.013883) (0.026556) (-) (0.502296)

GE 0 0.250448 1 6.896945 422.114535

(-) (0.006646) (-) (0.176429)

Model k c θ s AIC

BXIIG 1.430692 3.850236 0.885467 49.00841 422.653656

(0.530019) (0.094952) (0.055033) (11.093854)

Model μ σ a b AIC

BLN 1.290503 1.322159 30.985635 2.704164 420.316246

(0.668315) (0.373892) (21.297427) (1.327947)

Model α θ β γ AIC

EWP 14.50818 0.90275 0.13294 0.84268 420.51673

(2.69087) (0.27133) (0.02132) (0.04587)

https://cran.r-project.org


Cordeiro et al. Journal of Statistical Distributions and Applications  (2016) 3:7 Page 14 of 19

Table 2 LR tests for the warp breakage rate data

Model Hypotheses Statistic LR p-value

GEW vs GW H0 : α = 0 vs H1 : H0 is false 6.823509 0.008996563

GEW vs EW H0 : a = 1 vs H1 : H0 is false 9.013820 0.002679457

GEW vs GEE H0 : β = 1 vs H1 : H0 is false 3.667891 0.055470343

GEW vs GE H0 : α = 0,β = 1 vs H1 : H0 is false 5.857515 0.053463433

evaluated. Other R routine choices such as the optimx package (Nash and Varadhan,
2011) provided similar results. The R rotine multiStart of R package BB is also used
in this work. The data set warpbreaks is available in the R data frame.

Some estimation issues

We now discuss some estimation issues related to the GEW distribution. The GEW den-
sity is given by (5) and, when α → 0, the first expression in (5) tends to the second
one. For α = 0, the GEW distribution is identical to the generalized gamma distribution.
Therefore, according to Theorem 2.1 in Mäkeläinen et al. (1981), the GEW density is not
constant on the boundary since

lim
α→0

f (x; τ , a) = λa β xβa−1 e−λxβ

�(a)
.

This fact implies that the MLE θ̂ of θ = (α, λ,β , a) of the GEW model may not be
unique.
As mentioned before, in order to handle the case of multiple solutions we adopt dif-

ferent initial points, say k, in the maximization procedure and use the estimate which
maximizes the log-likelihood among these k values. For the current data sets, we have
always been able to find a solution.

Fig. 6 Plots of the GEW density and of some sub-models for the warp breakage rate data
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Fig. 7 Plots of some four-parameter densities for the warp breakage rate data

As mentioned above, the GEW distribution has different expressions depending on
whether α > 0 or α = 0. In order to study possible estimation difficulties for this model
when the true value of α is either zero or around it, we simulate data from the gamma gen-
eralized distribution, i.e., by taking α = 0 for some choices of the parameters a, λ and β

and then use the GEWmodel in the estimation procedure. We note that the GEWmodel
is able to estimate all the parameter values correctly. As expected, for larger samples, the
estimated values tend to be closer to the true values. Of course, for any similar problem,
the program may fail to converge for some choices of initial values.
We also perform some additional analyses in order to evaluate the GEW robustness.

We simulate two different data sets from the beta-Weibull distribution (which does not
belong to the GEW family) and use them to fit the GEW distribution. The resulting fits
(not shown here) indicate that the GEW distribution is very robust. In fact, the esti-
mated GEW densities capture the main aspects of the beta-Weibull generated data in the
sense that they are able to correctly locate the mode of the histograms obtained from the
generated data, inflection points and other data characteristics.
Regarding the impact of the sample size on the estimated values of the parameters, a

simulation study is conducted in which we generate GEW data considering (α, λ,β , a) =
(0.895137, 0.000026, 9.792369, 23.609396) as the true parameter values. We simulate data
by taking k = 500 replicates for each of the sample sizes n = 50, 100, 500, 1000, 5000 and
n = 10, 000. For a given sample size and k = 500 estimated values we evaluate the average
of those estimated vectors and the mean squared errors (MSEs).We can conclude that the
estimated expected vector does approach the true vector, but the MSE decreases slowly.

8.2 The LGEWmodel

We now illustrate some of the ideas and methodology of regression models for the LGEW
model using the data set from a two-arm clinical trial considered earlier by Efron (1988)
and Mudholkar et al. (1996). Efron observed that the empirical hazard functions for both
samples start near zero, suggesting an initial high-risk period in the beginning, a decline
for a while, and then stabilization after about one year. Specifically, Efron’s data from a
head and neck cancer clinical trial consist of survival times of 51 patients in arm A who
were given radiation therapy and 45 patients in arm B who were given radiation plus
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chemotherapy. Nine patients in armA and 14 patients in arm B were lost to follow-up and
were regarded as censored. In this paper, we consider only one predictor: (v1): two-Arm
(Arm A = 0, Arm B = 1).
We fit the LGEW regression model

yi = β0 + β1 vi1 + σ zi, (19)

where the errors z1, . . . , z96 are independent random variables with density function (15).
An alternative approach for modeling these data can be provided by the LW dis-

tribution. There are various extensions of this lifetime distribution; see, for example,
the log-beta Weibull (LBW) (Cordeiro et al. 2013) and Kumaraswamy-logistic (KwL)
(Santana et al. 2012) distributions, among others. The LBW and KwL density functions
are given below:

• LBW distribution

f (y) = 1
σB(a, b)

exp
{(

y − μ

σ

)
− b exp

(
y − μ

σ

)}{
1 − exp

[
− exp

(
y − μ

σ

)]}a−1
,

where −∞ < y < ∞, σ > 0 and −∞ < μ < ∞. See, for example, more details and
properties in Cordeiro et al. (2013) and Ortega et al. (2015).

• KwL distribution

f (y) = a b
σ

exp
[
a
(
y − μ

σ

)][
1 + exp

(
y − μ

σ

)]−(a+1)

×
⎧⎨⎩1 −

⎡⎣1 − 1

1 + exp
(
y−μ
σ

)
⎤⎦a⎫⎬⎭

b−1

,

where −∞ < y < ∞, σ > 0 and −∞ < μ < ∞. Some applications of the KwL
distribution are discussed in Santana et al. (2012) and Nadarajah et al. (2012).

Taking μ = β0 + β1 vi1 for the location parameter, σ is the dispersion parameter and a
and b are shape parameters.

Table 3MLEs of the parameters from some fitted regression models to the Efron’s data, the
corresponding SEs (given in parentheses), p-values in [ .] and the AIC and BIC measures

Model a α σ β0 β1 AIC BIC

LGEW 0.3101 32.5577 0.1420 5.6000 −0.0868 281.4 294.2

(0.0904) (21.3182) (0.0405) (0.1706) (0.1654)

[<0.0001] [0.6010]

LGW 0.0264 0 0.0510 8.0113 −0.6274 339.7 349.9

(0.0079) (0.0152) (0.1458) (0.1608)

[<0.0001] [0.0002]

LW 1 0 1.1800 6.7873 −0.7586 312.6 320.3

(0.1082) (0.2088) (0.2803)

[<0.0001] [0.0089]

a b σ β0 β1 AIC BIC

LBW 167.06 14.0059 12.8338 −6.0419 −0.5836 299.4 312.2

(0.3987) (0.0682) (1.1065) (1.0492) (0.2726)

[<0.0001] [0.0348]

KwL 16.2819 312.91 5.8106 1.6912 −0.6834 308.0 320.8

(2.6189) (24.86) (0.3258) (6.0235) (0.2792)

[0.7795] [0.0162]
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Table 4 LR tests for the Efron’s data

Model Hypotheses Statistic LR p-value

LGEW vs LGW H0 : α = 0 vs H1 : H0 is false 60.3 <0.0001

LGEW vs LW H0 : (a,α)T = (1, 0)T vs H1 : H0 is false 35.2 <0.0001

Table 3 lists the MLEs of the parameters for the fitted LGEW, LGW, LW, LBW and KwL
regression models to the current data using the NLMixed procedure in SAS. Initial values
for β and σ are taken from the fitted LW regression model with α = 0 and a = 1.
A comparison of the new distribution with two of its sub-models using LR statistics is

performed in Table 4. These statistics indicate that the LGEW regression model is the
most adequate model to explain the data.
The LGEW model involves an extra parameter, which gives it more flexibility to fit the

data. We note from the fitted LGEW regression model that the dummy variable v1 is not
significant at 5 %. We note that there is no significant difference between “Arm A” and
“Arm B” clinical trial for the survival times. The LGEW regression model outperforms the
other models irrespective of the criteria and it can be used effectively in the analysis of
these data.
A graphical comparison of the fitted LGEW, LGW and LWmodels (see Fig. 8) indicates

that the LGEWmodel provides a superior fit. The curves displayed in Fig. 8 represent the
empirical survival function and the estimated survival functions obtained from Eq. (18).
Finally, we conclude that the LGEW regression model provides a good fit to these data.

9 Conclusions
We introduce a new model named the gamma extendedWeibull (GEW) distribution and
study some of its structural properties. It generalizes some important distributions in the
literature and provides means of its continuous extension to still more complex situations.
The new model contains several distributions as special models including the extended
Weibull (Mudholkar et al. 1996), gamma Weibull (Zografos and Balakrishnan 2009) and

a b

Fig. 8 Estimated survival functions and the empirical survival for Efron’s data. a The LGEW versus LGW
regression models. b The LGEW versus LW regression models
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generalized gamma (Stacy 1962). We derive explicit expressions for the density function,
ordinary and incomplete moments, quantile function and mean deviations. The model
parameters are estimated by maximum likelihood. The usefulness of the GEW distribu-
tion is illustrated by means of an application to real data, where we show empirically that
it gives a better fit than some of its sub-models. We also propose the log-gamma extended
Weibull (LGEW) regression model, which has greater flexibility as shown by means of an
application to real data.
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