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Abstract

The importance of identifying outliers in a data set is well known. Although various
outlier detection methods have been proposed in order to enable reliable inferences
regarding a data set, a simple but less known method has been proposed by Ueda
(1996/2009). Since this newmethod, called Ueda’s method, has not been systematically
analysed in previous research, a simulation study addressing its performance and
robustness is presented. Although the method was derived assuming that the
underlying data is normally distributed, its performance was analysed using data from
various outlier-prone distributions commonly found in several research fields. The
results obtained enable us to define the strengths and weaknesses of the method
along with its limits of applicability. Furthermore, an unforeseen field of application of
the method, which requires further studies was also identified.
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Statistical simulation
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1 Introduction
Identifying outliers is essential to the data analyst in order to make reliable inferences
on the data at hand. Various methods have been proposed for the identification of
outliers and the logic of those methods depends directly on how outliers are defined
(Aggarwal 2013; Chandola et al. 2009). In cognitive science, specifically in experimental
psychology and neuroscience, outliers are accommodated via data transformations (e.g.,
Box-Cox transformation) or eliminated via truncation (e.g. observations below and/or
above the extremes of a pre-set range of values are removed). An approach frequently
used is the z-value test for outliers (Songwon, 2006) in which observations are converted
to z-scores in order to see which observations fall a pre-set number of standard deviations
(SDs) away from themean. Although there have been proposed SD values to be used given
specific sample sizes (see Van Selst and Jolicoeur 1994), in practice researchers use ±2,
±2.5 and ±3SDs as benchmarks regardless (examples of the usage of these benchmarks
can be found in Bertels et al. 2010; Havas et al. 2007; Otte et al. 2011; a comprehensive
simulation study comparing these and other methods can be found in Marmolejo-Ramos
et al.2015). The z-score approach implicitly assumes that the data comes from a normal
distribution, thus forcing the actual distribution of the data set to adopt a bell shape.
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Many outlier detection methods are available for univariate data sets (e.g. see Hayes
and Kinsella 2003; Thode 2002; Verma 1997; Verma et al. 2014). Among these,
the method proposed by Ueda (Ueda 1996/2009) which still assumes the underlying
data to be normally distributed and based on the Akaike’s Informatin Criterion (AIC)
(Kitagawa 1979), presents interesting features. However, this method has not been sys-
tematically studied and, to be best of the authors’ knowledge, it has only been featured
in just a handful of studies involving genetic data (Kadota et al. 2003a,b; Tsuyuzaki
et al. 2013).
The aim of this paper is to study the performance and robustness of the Ueda’s

method to detect outliers via computer simulations, as well as determine its applica-
bility to other types of data. It should be noted that, in the context of the proposed
study, outliers are not just seen as errors in the data, as considered in other situations
(see Hoaglin et al. 1983 for an example). Instead, outliers are generally viewed as data val-
ues which are numerically distant from the bulk of the sample, thus requiring particular
consideration given their significance. In the first section, the Ueda’s method is described
and a modification of it, aimed at automating the selection of the number of candidate
outliers, is proposed. In addition, some examples are provided to illustrate this modifi-
cation. In order to study the performance of the Ueda’s method, various outlier-prone
distributions commonly found in actual research are used. For comparative purposes, a
95 % confidence level is used (i.e., the nominal type I error probability is 5 %) and the nor-
mal distribution is also included in the study. Finally, and based on the results obtained,
potential applications of and research topics involving the Ueda’s method are discussed
in the context of applied and statistical research.

1.1 Background

Let X be a random variable with probability distribution fX(x), and let
x1, x2, . . . , xn, xn+1, . . . , xn+s−1, xN be a random sample of size N = n + s from this
distribution, with n and s = {1, 2, 3, . . .} being the number of regular and outlying
observations, respectively.
The Ueda’s method is a simplified version of the use of the Akaike Information Criterion

(AIC) proposed by Kitagawa (Kitagawa 1979). The aim of the AIC, estimated as

AIC = 2k − 2 ln(L), (1)

is to provide a measure for model selection. In the expression above, k is the number of
independently adjusted parameters and L is the maximum likelihood value for n number
of regular observations. Thus, the best probabilistic model for the regular observations is
that maximising

L =
n∏

i=1
fX(xi), (2)

where n represents the regular observations in a given univariate data set and fX(xi) rep-
resents the value of the density function for the ith observation (i = 1, 2, . . . , n). In the
normal distribution, the AIC becomes:

AIC = 2n ln σ̂ − 2 ln n!+2s (3)



Marmolejo-Ramos et al. Journal of Statistical Distributions and Applications  (2015) 2:8 Page 3 of 14

where

σ̂ = N−1/2

√√√√ N∑
i=1

(xi − x̄)2 (4)

is the standard deviation of the full sample, and x̄ is the sample mean.
Ueda (Ueda 1996/2009) noticed that n−1 ln n!≈ 1 for n ∼ 5 − 9, ≈ 2 for n ∼ 10 − 28,

≈ 3 for n ∼ 29 − 82, and so forth (see Fig. 1a). By considering the term 2s − 2 ln n! in the
right side of Eq. (3) and as n = N − s and n−1 ln n!≈ 1 for n ∼ 5 − 9, it follows that

− 2 ln n!+2s ≈ 2s − 2n (5)

= 2s − 2(N − s)

= 4s − 2N

= 4s − constant

This same procedure can be used for other values of n in order to obtain 6s− constant,
8s−constant, and so on (see Table two in Ueda 1996/2009). Note that the resulting values
4s, 6s, 8s, . . . are correction terms that depend on n, but that are inaccurate since the total
number of samples N is constant. To ameliorate the problem, Ueda used the correction
factor

√
2 s ln n!

n which still depends on n, but includes the number of outliers s in the full
sample (see Fig. 1b). Based on this, the proposed test statistic to identify outliers using
this method is given by (Ueda 1996/2009):

Ut = 1
2
AIC (6)

≈ n ln σ̂ − √
2 s

ln n!
n

= (N − s) ln σ̂ − √
2 s

ln n!
n

·
In Eq. (6), the term n ln σ̂ provides an index of the predictability of true out-

liers from a set of candidate outliers (i.e., particularly from both ends of the tails
of a distribution), whereas the term

√
2 s ln n!

n penalises the model according to the
number of parameters (i.e., the number of outliers s). Specifically, low values in

Fig. 1 Graphical representation of the results reported originally by Ueda (Ueda 1996/2009) in Tables one (a)
and three (b). Here, N = n + s is the sample size, n is the number of non outlying observations, and s
represents the number of candidate outliers
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the first term indicate that true outliers have been found, whereas high values in
the second term signal unreliability of the model due to having many parameters
(Kadota et al. 2003a,b). Thus, the lowest AIC associated with a combination of candidate
outliers signals the best model that detects a set of potential outliers.

1.2 CalculatingUt

Based on Ueda (1996/2009), the following procedure is suggested to determine outliers in
a full sample:

1. Order the full sample to obtain xord = (
x(1), x(2), . . . , x(N)

)
, with x(i) being the i th

order statistic (i = 1, 2, . . . ,N).
2. Calculate the z-score for each x(i) as

z(i) = x(i) − x̄
ς̂

(7)

with

ς̂ =
√∑N

i=1(x(i) − x̄)2

N − 1
and x̄ the sample mean (i = 1, 2, . . . ,N).

3. Provided a number of steps s ≥ 0, calculate the test statistic Ut as in Eq. (6).
Observe that s = 0means that no outliers are present in the data, and any other
value of s implies otherwise. Furthermore, as the original sample is ordered, s > 0
also implies that the outliers are at either end of the sample (e.g. on the lower or
upper tail of the distribution); which end of the ordered sample is tackled first,
heavily depends on how the calculation of the test statistic is performed (see § 1.3).

4. Suppose that s = 1. It could be the case that the outlier is located either at the
beginning of the ordered sample, i.e. x(1) is the outlier, or at the end of it, i.e. x(N) is
the outlier. If the former, then the test statistic Ut is calculated as in Eq. (6) after
removing x(1) from the ordered sample. If the latter, x(N) is removed and Ut
subsequently calculated.

5. Step 4 continues for other values of s > 1. As a result of this process, a collection of
Ut values is obtained.

1.3 On the number of steps

The previous section described how the test statistic Ut is calculated provided a value of
s ≥ 0. One question that remains to be answered is how many values of Ut need to be
calculated. Let C be such a number and suppose that up to s outliers are to be detected in
the sample. Then, from the collection ofUt values obtained in step 5 of § 1.2, the following
matrix is constructed:

Ut =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U00 U01 U02 · · · U0m
U10 U11 U12 · · · U1m
U20 U21 U22 · · · U2m
...

...
...

. . .
...

Um0 Um1 Um2 · · · Umm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
m×m

(8)

where m = s + 1, U00 is the Ut statistic when no outliers are detected, and Uij is
the Ut statistic when i and j outliers are detected in the lower and upper tails of xord,
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respectively (i, j = 1, 2, . . . ,m). This is equivalent to removing x(i), x(i−1), . . . , x(1) and
x(N−j), x(N−j+1), . . . , x(N) from xord.
From Ut it is clear that the number of calculations to detect up to s outliers in xord is, at

the most,m2. However, this number can be reduced to m2 − 2 if U00 and Umm, included
for convenience and comparison purposes, are not calculated. Hence,m2 − 2 ≤ C ≤ m2.
To illustrate this, consider the squared upper-left block of Ut whose entries are U00,

U10, U01 and U11, and which correspond to the test statistic in Eq. (6) when no outliers
are detected and when x(1), x(N), and both x(1) and x(N) are removed from the full sample,
respectively.

1.4 Automatic detection of the number of discordant outliers

In the original version of the Ueda’s method, the analyst sets the number of expected out-
liers in the data set in advance, i.e. the value of s following the notation considered herein.
Carling (2000) showed that, for several probability distributions and various sample sizes,
approximately 5 % to 50 % of the total number of observations N can be, in general,
set as the minimum and maximum reasonably expected number of potential outliers,
respectively.
In the automation process for selecting the number of candidates outliers s in a sample

of size N, s is constrained to be 1 ≤ s ≤ smax, with smax being the maximum number of
outliers to be detected. In this inequality, the minimum value of s is set to 1 such that at
least one outlier is detected by the Ueda’s method in a full sample.
Because of how theUt statistic is calculated (see § 1.2), it is straightforward to show that

smax =

⎧⎪⎨
⎪⎩

1
2 (N − 1) if n is odd,

N
2 − 1 if n is even.

(9)

Based on the value of smax, the Ut matrix is then constructed as in §1.3. It can be seen
that the number of outliers in the sample s corresponds to the sum of the indexes of the
entry of Ut for which the Ut statistic is minimum, and the location of these outliers in
xord is given by the entry’s indexes. For instance, if the minimum value of Ut is U12, then
the number of outliers in the sample is s = 1 + 2 = 3 and the values will be given by x(1),
x(N−1) and x(N) in xord.

1.5 Examples

This section presents three examples illustrating the use of the Ueda’s method and the
proposed implementation to automatically detect candidate outliers. Here, one normal,
one positively- and one negatively-skewed distributions are shown. In order to have con-
trol on the outliers to be found via the Ueda’s method, some observations were added
to each one of these distributions to play the role of outliers. In the three scenarios,
the outlying observations were sampled from normal distributions and placed on the
right tails of the normal and positively-skewed distributions, and on the left tail of the
negatively-skewed distribution.

Example 1. Normally distributed data. Consider a random sample x1, x2, . . . , x25 from
a N(300, 102) distribution, and a second random sample y1, y2, . . . , y5 of outlier observa-
tions from a N(400, 52) distribution. Then, the full sample of size N = n + s = 30 will
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be given by x1, x2, . . . , x25, y1, y2, . . . , y5. Although the true number of outliers is s = 5,
smax is set to 10 (see Appendix 6.1) so up to 10 observations are automatically tested for
their potentiality to be outliers using the Ueda’s method. As shown in Fig. 2a, the number
of outliers detected in the full sample is s = 5.

Example 2. Positively-skewed distributed data. One hundred observations were gen-
erated from an Ex-Gaussian distribution with parameters μ = 100, σ = 10 and ν = 10
and 20 outlying observations were generated from aN(200, 202). Using theUeda’smethod
with smax = 25, a total of 22 outliers are detected. Fig. 2b depicts the Ut statistic as a
function of smax. Note that the minimum value of Ut is reached when smax = 22, which
suggests that the number of outliers in the full sample of size N = 120 is s = 22 and not
s = 20 as initially introduced. This example shows that the Ueda’s method detects those
outlier observations initially introduced in addition to a few more that were not thought
to be outliers in the full sample. Closer inspection reveals that these two additional obser-
vations are located in the upper tail of the distribution and may, as the Ueda’s method
shows, be signalled as potential outliers (see Fig. 2b).

Example 3. Negatively-skewed distributed data. Consider a random sample of size
n = 50 from a Beta distribution with parameters α = 5 and β = 2. In this case, three
observations generated from aN(0.1, 0.022) distribution are added for the Ueda’s method
to detect them in the combined sample of size N = 53 using smax = 5. As shown in
Fig. 2c, the number of outliers detected is the one introduced.
In the case of the normal distribution, the outlying observations were readily captured

by the Ueda’s method. However, examples 2 and 3 represent cases of distributions prone
to having outliers (in the sense they were defined in Section 1). That is, these types of

Fig. 2 Results of Ueda’s method for examples a 1, b 2 and c 3. First row: Probability densities for the non
contaminated (green), the contaminating (pink) and full (light blue) samples. Second row: Ut statistic as a
function of smax. The value of smax for which Ut is the lowest (red dot) indicates the number of candidate
discordant outliers in the full sample
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distributions can have outliers as they have elongated tails (see Gleason 1993) account-
ing for some observations that fall away from where most of the data tend to cluster.
Although in the case of the negatively-skewed distribution only the observations placed
on the left tail were appropriately caught by the method, this did not happen in the case
of the positively-skewed distribution. In that case, two observations that were not part of
the added normally-distributed observations were signalled as outliers. This specific case
demonstrates that skewed distributions can in fact have outlying observations on the tails
and that such observations do occur due to the natural way in which such types of distri-
butions can take place (e.g., positively-skewed data is the norm in human reaction time
research). What is interesting is that the Ueda’s method seems to be sensitive to these
types of naturally-occurring outlying observations. As skewed distributions are prone to
having outliers and are typically found in actual research, it is thus essential to determine
how the Ueda’s method performs in these cases.

2 Simulation study
To study the performance of the Ueda’s method, a simulation study was carried out using
a similar simulation scheme to that presented by Vélez and Correa (2014), and following
the recommendations by Salazar and Baena (2009). In brief, n observations of a particular
probability distribution (see Table 1) are generated and a measure of interest is calculated.
The following algorithm was implemented in R (R Core Team 2013) to evaluate the per-
formance and robustness of the Ueda’s method when no outliers are introduced into the
data:

1. Draw n random observations from a probability distribution fX(x|θ), where θ is the
parameter vector (see Table 1).

2. Apply the Ueda’s method and determine the number of outliers detected. Denote
this number as ŝ.

3. Repeat steps 1 and 2, B times, and calculate R = N0/B, where N0 is the number of
times in the B samples of size n that ŝ = 0, i.e. no outliers are detected.

After generating n = {10, 20, 30, 50, 100, 200, 500} observations from each probability
distribution in Table 1, R was calculated. These distributions and sample sizes were cho-
sen because of what is often seen in real-world applications. Indeed, the Ex-Gaussian,
Gamma, Weibull and Lognormal distributions are positively skewed distributions used

Table 1 Probability distributions considered in this study. The probability density function f (·) is
shown in the second column, and the parameter vector θ defining each distribution in the third
column

Distribution f (·) θ

Normal 1√
2πσ

e−
(x−μ)2

2σ2 μ, σ

Student’s t
	( ν+1

2 )

	(ν/2)
√

νπ

(
1 + x2

ν

)− ν+1
2

ν

Tukey λ See text in §2 λ

Beta 	(α+β)
	(α)	(β)

xα−1(1 − x)β−1 α,β

Ex-Gaussian 1
ν
√
2π

e
σ2

2ν2
− x−μ

ν · ∫ [(x−μ)/σ ]−σ/ν

−∞ e−
y2

2 dy μ, σ , ν

Gamma 1
	(α)βα xα−1e−

x
β α,β

Weibull β

αβ x
β−1e−( x

α )
β

α,β

Lognormal 1
x
√
2πσ

e−
(ln x−μ)2

2σ2 μ, σ



Marmolejo-Ramos et al. Journal of Statistical Distributions and Applications  (2015) 2:8 Page 8 of 14

in cognitive science to model behavioural and neurological data (e.g., Leiva et al.
2015). The Beta distribution has been used to model soil data (Haskett et al. 1995) and
rates and proportions (Ferrari and Cribari-Neto 2004), the Student’s t has been used to fit
share price changes (Praetz 1972), and the Tukey-λ has been fitted to solar radiation data
(Öztürk and Dale 1982). In all simulation scenarios, a total of B = 10, 000 replicates
were used. In what follows, it is described how the simulation scenarios were constructed
for each probability distribution f.
Every single probability distribution f in Table 1 is defined by a set of parameters θ .

Provided f, a simulation scenario is defined as a combination of n and specific values of θ
for that f. For instance, in the Normal distribution, θ = (μ, σ). Without loss of generality,
μ was fixed at 0 and σ = {0.5, 1, 1.5, . . . , 5} for each sample size, to obtain a total of 70
simulation scenarios. In the Student’s t-distribution, 350 scenarios were studied and each
of them was defined by the combination of the sample size n and ν = {1, 2, . . . , 50}.
Let p ∈ [0, 1] and x = F−1(p), with F being the cumulative distribution function of

a random variable X. In the Tukey-λ distribution, the quantile and density function are
respectively given by (Chalabi et al. 2014)

F−1(p|λ) = λ + pλ − (1 − p)λ

λ
(10)

and

f (x|λ) = f
(
F−1(p)

) = 1
pλ−1 + (1 − p)λ−1 · (11)

For specific values of λ, the Tukey-λ distribution resembles the characteristics of some
known probability distributions. For instance, the values λ = −1, λ = 0.14 and λ = 1
correspond to the Cauchy(0,π), N(0, 1.46362) and Uniform(−1, 1) distributions, respec-
tively. In the present simulation strategy, λ was varied in the interval [-2, 2] in steps of 0.2,
excluding λ = 0 and including λ = 0.14. Thus, a total of 147 scenarios were evaluated.
For the Beta(α,β) distribution, the parameters α and β varied in the rectangle

[ a, b]× [ a, b] with a = 0.5 and b = 5 using increments of h = 0.5 within each margin.
The Ex-Gaussian distribution is defined by θ = (μ, σ , ν). To generate observations

from this distribution, μ = {200, 300, 400, 500, 600}, σ was fixed at 20, and ν =
{400, 300, 200, 100, 50}.
In the Gamma(α,β) and Weibull(α,β) distributions, α,β = {2, 4, 6, 8, 10}. A similar

approach was used for the Lognormal distribution after replacing μ by α and σ by β .

3 Results
As shown in Fig. 3a, the results for the normal distribution indicate that the proportion
of no outliers detected in the data by Ueda’s method is below the expected 95 % when
n < 100, and that the standard deviation σ seems to have no effect on this. Even so, the
proportion of times themethod finds no outliers is>90% across sample sizes. Conversely,
the method tends to find more outliers than expected when the degrees of freedom of the
Student’s t-distribution are small (ν < 10, Fig. 3b). This is particularly clear when both
the degrees of freedom and the sample size are small (in which case the proportion of not
finding outliers decreases to ∼ 0.75). Graphical inspections of Student’s t-distributions
corroborate this finding: when ν = 1, the Student’s t-distributions presents some obser-
vations that fall very far away from the mean, whereas for ν = 10 the observations
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Fig. 3 Results for the a Normal, b Student’s t, and c Tukey-λ distributions. Higher values of R are presented in
dark red, and lower values in dark blue. The parameter n corresponds to the full sample size

spread out more evenly around the mean. In the Tukey-λ distribution, more outliers
tend to be detected when the λ shape parameter decreases (λ < 0, Fig. 3c). That the
Ueda’s method finds more outliers in this distribution is accentuated when both n and λ

are small. It is worth noting that when λ is large and positive, an uniform distribution is
obtained and the Ueda’s method does not find outliers. Although uniform distributions
are not normal, they are symmetric and observations are spread evenly across the entire
data range; these specific results thus suggest that the Ueda’s method focuses on the shape
and symmetry of the distribution. Overall, compared to the normal distribution case, the
Ueda’s method tends to find more outliers in the Student’s t and Tukey-λ distributions,
especially when their parameters generate distributions that are too platykurtic or too
leptokurtic.

Fig. 4 Results for the Ex-Gaussian, Beta, Gamma, Weibull and Lognormal distributions for fixed sample sizes.
Higher values of R are presented in dark red, and lower values in dark blue/gray



Marmolejo-Ramos et al. Journal of Statistical Distributions and Applications  (2015) 2:8 Page 10 of 14

Figure 4 shows that in positively skewed distributions such as the Ex-Gaussian and
LogNormal, the Ueda’s method tends to find more outliers as n increases. Additionally,
the method has lower chances of not finding outliers in the LogNormal distribution than
in the Ex-Gaussian distribution (for instance when n = 10, the method is ∼2 times more
likely to find outliers in the LogNormal distribution than in the Ex-Gaussian distribution).
Also, while the Ueda’s method tends to detect more outliers as μ increases in the Ex-
Gaussian distribution, it also tends to find more outliers as β increases in the LogNormal
distribution.
Although not as marked as in the previous cases, Ueda’s method has lower chances of

not finding outliers as sample sizes increase in the Gamma distribution. However, the
α parameter seems decisive in how sensitive Ueda’s method becomes. Specifically, the
smaller this shape parameter, the more likely it is that the method detects outliers. When
α is large, the method detects very few outliers. This result is due to the somewhat bell-
shap of the resulting distribution when α is large. However, it is worth noting that the
effect of the shape parameter stresses as n increases (note R when 2 < α < 6 and n = 10
as compared to the same α range when n = 500). In the case of the two-parameterWeibull
distribution, there is a tendency for the Ueda’s method to find less outliers as the sample
size increases. Interestingly, overall, the Ueda’s method has a high likelihood of not finding
outliers (approximately >0.9 throughout) regardless of n, α and β . It is clear, though, that
the Ueda’s method is more likely to not find outliers when 3 < α < 5. Additionally, when
the shape parameter in theWeibull distribution (irrespective of the scale parameter) leads
to a distribution that takes a normal-like shape, the Ueda’s method tends to find very few
outliers.
As shown in the second row in Fig. 4, the Ueda’s method tends to increase its chances

of not finding outliers as the sample size increases, particularly when the parameters of
the Beta distribution are the same. However, when the parameters take values whose dif-
ference is large (e.g. Beta(.5, 5) and Beta(5, .5)), it is more likely that the Ueda’s method
will detect outliers as n increases. This is likely to occur since the Beta distribution can be
positively or negatively skewed in such cases. It is known that a Beta distribution resem-
bles the shape of a normal-distribution when both parameters are large (e.g. Beta(5, 5)),
thus the Ueda’s method seems to treat the resulting Beta distribution as a normal distri-
bution in those cases. However, when both parameters are equally low (e.g. Beta(.5, .5)),
which generates bimodal Beta distributions, the Ueda’s method does not seem to detect
many outliers. It is argued here that the Ueda’s method tends not to detect many outliers
in these bimodal cases since observations can only occur in a range between 0 and 1 and
they spread out somewhat evenly around each mode and across the whole distribution
(an exception to this case occurs when both shape parameters are close to 0; in that case
observations group quite tightly around each mode, thus generating a large gap between
the modes).
All in all, these results indicate that the more skewed and asymmetric the distribu-

tion, the more likely that the Ueda’s method detects outliers and this effect is coupled
with an increase in sample size. However, when the parameters of the distribution lead
to an approximation of a symmetric bell-shaped distribution (e.g. see Gamma(10, 10),
Weibull(4, 4), and Beta(5, 5)), the Ueda’s method increases the likelihood of not finding
outliers and, only in cases like these, an increment in sample size helps the Ueda’s method
to detect less outliers (see also Supplementary Tables 6.2).
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4 Discussion
The main finding from the present simulation study is that the Ueda’s method is more
likely to detect outliers when a distribution becomes more skewed and asymmetric, and
the sample size is increased. When a distribution becomes more bell-shaped-like or more
symmetric (even if it is not bell-shaped), the Ueda’s method is less likely to detect out-
liers and such likelihood is coupled with an increase in sample size. These results have
implications to applied and statistical research.
Most data in different scientific fields tend to distribute in non-Gaussian forms (see

Micceri 1989) and frequently in the form of skewed distributions. According to the results
of the simulation study, the Ueda’s method is very effective in detecting outliers when
applied to negatively- and positively-skewed distributions. However, cases of bimodal
(e.g., the waiting times between the start of successive eruptions, see Bowman 1990) and
uniform data (the distribution of p-values in genetic association analysis of type 2 dia-
betes, see Harvard 2007) can occur. Thus, if a graphical assessment of the data indicates
it is of bimodal or uniform shape, the usage of the Ueda’s method is not recommended.
In the case of bimodal distributions, graphical assessments can be complemented with
formal tests such as the Gapping (Wainer and Schacht 1978) or the Dip (Hartigan and
Hartigan 1985) tests. When dealing with uniform distributions, the test proposed by
Cheng and Spiring (1987) can be used. As the simulation results suggest, the Ueda’s
method tackles the symmetry of these types of distributions and ignores they are not bell-
shaped, thus making the method’s sensitivity to outliers quite low (see Fig. 4 for the cases
of bimodal distributions, e.g. Beta(.5, .5), and Fig. 3c for the case of uniform distributions
when λ = 1).
Given that the Ueda’s method focuses on the symmetry of the distribution, this out-

lier detection method can also serve as a symmetry test. The goal of any symmetry test
is to test the null hypothesis that the distribution of a random variable is symmetric
about the centre of the distribution (see Hollander 1981). In particular, tests that check
for symmetry about the median are known to be powerful, widely used and easy to apply
(Lunneborg 2005). One of those tests is the Cabilio andMasaro test which estimates sym-
metry using a simple computation that requires the sample size, the mean, the median
and the standard deviation of the data set (Cabilio and Masaro 1996). Although this test
is reportedly superior than other tests, it has low power against Cauchy and Uniform dis-
tributions (Lunneborg 2005). The results reported herein indicate that the Ueda’s method
regards uniform distributions and Cauchy(0,π) as symmetric, particularly when the sam-
ple size is large (see Fig. 3c). Thus, although the Ueda’s method is an outlier detection
method, it does perform like a symmetry test in some cases. However, simulation studies
are needed to compare the performance of this method against existent symmetry tests
(Csörgo and Heathcote 1987; Randles et al. 1980; Yoshizawa 1984; Zheng and Gastwirth
2010) and thus determine whether the Ueda’s method could also classify as a test of
this sort.
It is traditional for studies on outliers to use contaminated normal distributions (see

Wellmann and Gather 1999 and Jain 1981). However, it is important to bear in mind that
using contaminated normal distributions in order to model and explain real data is an
inadvisable practice and instead distributions with smooth changes in skewness are rec-
ommended (Gleason 1993). In the current study this recommendation was followed by
using outlier-prone distributions whose shape was manipulated by stepwise control of
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their parameters. Having said that, studying the Ueda’s method when dealing with artifi-
cially contaminated distributions could help reveal how the method performs in regards
to outliers, inliers and masking effects. For example, a recursive outlier detection method
known as KUR tends to detect inliers as outliers in one-sided contaminated distributions
(Jain 1981). The example shown in Fig. 2b could indicate that the Ueda’s method might
behave similar to the KURmethod; however, this claim is merely speculative and needs to
be investigated. Thus, a systematic comparison study of the Ueda’s method to other avail-
able methods when dealing with contaminated distributions remains to be performed. In
order to create smooth elongation in the tails of the distributions, it is here suggested that
the contaminated normals be added in a stepwise fashion based on a measure of disper-
sion (e.g. adding contaminated normals from ±1.5SD from the mean up to ±kSD in steps
of 0.5) and controlling for the proportion of contamination they add to the whole distri-
bution (e.g. the contaminated normal could represent from 5 % up to 40 % of the whole
distribution and this could be done in steps of 2.5 %).

5 Conclusions
The Ueda’s method is an outlier detection method that focuses on the symmetry and
skewness of the distribution in order to detect outlying data points. This method is highly
sensitive to outliers when the distribution under analysis is negatively-, positively-skewed
or asymmetric about the centre of the distribution and such sensitivity is enhanced by
an increase in sample size. However, the sensitivity of the test to outliers decays as the
distribution closely resembles a Gaussian shape or is highly symmetric around the centre
of the distribution and such sensitivity is lessened by an increase in sample size. Although
the Ueda’s method models outliers using a density function of the normal distribution, a
good fit to a normal distribution plays no role in the method not finding outliers as long
as the distribution is either bell-shaped or symmetric. Thus, the Ueda’s method should
also be studied in the context of symmetry tests.

6 Appendix
6.1 Implementation of Ueda’s method in R

This is the R code for the automatic detection of discordant outliers using Ueda’s method.
Its usage is illustrated by the simulated data in Example 1. It can be seen that the method
successfully detects the outliers introduced.
## load code

if(!require(devtools)) install.packages("devtools")

url <- "http://bit.ly/1dLT9Ez" devtools:::source_url(url)

## example with simulated data

## we introduce five outliers

set.seed(13)

x <- rnorm(25, 300, 10) out

<- rnorm(5, 400, 5) v <- c(x, out)

# detecting up to 10 outliers and plotting the results

res <- ueda(v, smax = 10)

# data vector after removing outliers
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res

# show the outliers detected

<- v[! v detected

# did we detect the actual outliers?

all.equal(out, detected)

6.2 Supplementary Tables

Numerical results for Figs. 3 and 4 can be downloaded from https://www.dropbox.com/
s/fvw65z6lsfy2hjh/suppmat.pdf?dl=0 or from the corresponding author.

Additional file

Additional file 1: Supplementary Material.
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