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Abstract 

Contemporary biomedical research requires development of novel techniques for sorting and manipulation of cells 
within the framework of a microfluidic chip. The desired functions of a microfluidic chip are achieved by combin-
ing and integrating passive methods that utilize the channel geometry and structure, as well as active methods that 
include magnetic, electrical, acoustic and optical forces. Application of magnetic, electric and acoustics-based meth-
ods for sorting and manipulation have been and are under continuous scrutiny. Optics-based methods, in contrast, 
have not been explored to the same extent as other methods, since they attracted insufficient attention. This is due 
to the complicated, expensive and bulky setup required for carrying out such studies. However, advances in optical 
beam shaping and computer hardware, and software have opened up new opportunities for application of light to 
development of advanced sorting and manipulation techniques. This review outlines contemporary techniques for 
cell sorting and manipulation, and provides an in-depth view into the existing and prospective uses of light for cell 
sorting and manipulation.
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Background
In the fields of biomedicine and biological research effi-
cient and high-throughput cell sorting and manipulation 
is crucial. Cell sorting and manipulation methods devel-
opment, and miniaturization is key to point-of-care diag-
nostics and therapeutics research. Advances in medical 
science have shown importance of performing analysis 
of heterogeneous cells in a sample, e.g. tumor, circulating 
cancer cells (CTC) and blood, etc. [1–4].

Among these types of samples blood is, arguably, 
under the highest level of scrutiny due to the easy acces-
sibility, and information density and variety. Accurate 
analysis of information residing in the blood requires 
efficient and accurate separation of blood cells. If cells 
have clearly distinguishable physical properties, such as 
size or density, they are filtered easily by centrifugation 
or sedimentation, which also allows batch processing. 

Microfluidics-based sorting and isolation techniques are 
employed for the cases, where cells are similar in physi-
cal properties and batch processing becomes unreliable. 
Precise and continuous sorting of cells in a microfluidic 
system requires accurate identification of cells. Gener-
ally, this is achieved by tagging cells using special label-
ling particles or molecules that either fluoresce or change 
affinity of cells towards electromagnetic fields.

In biomedical research and clinical diagnostics, along 
with filtration, centrifugation and sedimentation tech-
niques, fluorescent activated cell sorting (FACS) and 
magnetic activated cell sorting (MACS) have become 
standard methodologies for accurate and continuous 
sorting of physically similar, heterogeneous mixtures of 
cells and particles. FACS and MACS methods utilize dif-
ferences in cell surface molecules to target specific cells 
using antibodies. These technologies have reached matu-
rity, so their improvement to achieve lower cost, higher 
portability, smaller sample sizes and greater purity has 
become a difficult task. These factors have led many 
researchers to study alternative methods of cell separa-
tion. In the field of clinical diagnostics and therapeutics, 
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novel, miniature separation technologies are allowing to 
achieve extremely high precision of cancer diagnostics 
[5–8]. In the case of blood cells, diagnosis of many dis-
eases requires extraction and analysis of specific blood 
cell populations, such as erythrocytes [9–11], leukocytes 
[12–14], platelets [15, 16], and pure plasma [17–21].

Cell sorting is also being extensively used in Regen-
erative Medicine and Tissue Engineering applications 
[22–25]. Another emerging field of study where cell sepa-
ration techniques are being employed is Personalized 
Medicine, where rapid and accurate cell separation and 
enrichment is of paramount importance [26–28]. Finally, 
fundamental biological studies focusing on understand-
ing of individual characteristics of various populations of 
cells make heavy use of novel cell separation platforms.

Contemporary cell manipulation and sorting methods 
utilize microfluidics or combination of microfluidics and 
physical forces, i.e. magnetic, electric, acoustic and opti-
cal. Magnetic, electric and acoustic methods have been 
reviewed extensively by multiple researchers. It is advised 
to refer to works by Shields et al. [29] and by Sajeesh and 
Sen [30] for a detailed review of cell sorting and manipu-
lation. Additionally, for an in-depth review of individual 
topics within this field it is advised to refer to works by 
Plouffe et  al. [31], Lenshof and Laurell [32] and others 
[33–36]. Overview of gravity and centrifugal force-based 
methods are excluded entirely from this review and the 
focus is kept on physical force fields.

The use of optical forces for cell manipulation and sort-
ing, on the other hand, has not been investigated to the 
same extent as aforementioned forces and methods due 
to the complicated, expensive and bulky setup required 
for carrying out such studies. However, in the past years, 
several technologies were developed and others were 
improved allowing efficient use and shaping of optical 
beams. Optical systems are, usually, built in a way that 
does not interfere with other forces and techniques for 
cell manipulation and sorting, thus allowing multi-level 
integration [37]. These advancements provide a good 
opportunity for development of novel separation tech-
niques, the so-called optophoresis, which use optical 
forces for separation of cells and particles.

This paper reviews recent advancements in the field of 
cell manipulation and separation using advanced optical 
tweezers systems and future prospects of this field. The 
paper consists of two parts. In the first part an overview 
of conventional cell separation and manipulation tech-
niques, i.e. magnetic, electric and acoustic is provided. 
Noteworthy, this part highlights methods for cell sepa-
ration and manipulation with a focus on micro-scale 
objects, as well as latest studies and developments that 
contributed to the fields of science where these methods 
found their use. Although some of the methods described 

herein can be applied to macro-scale separation and 
manipulation, a detailed review of them is omitted due to 
being out of the scope of this article.

In the second part, recent progress in optical forces-
based cell manipulation and separation methods is 
reviewed. In addition, some design considerations for 
realization of holographic optical tweezers and an over-
view of standard methods for advanced beam shaping are 
brought up in later sections of this part, as well as future 
prospects of using optical forces for cell separation and 
manipulation.

Methods for separation and manipulation of cells 
and particles
The majority of methods that are employed today for 
separation and manipulation of cells rely on microflu-
idic systems. The use of microfluidics has unique advan-
tages thanks to the properties of fluid flow at micro scale. 
These advantages include small dimensions, laminar flow 
profile, velocity gradients, high surface to volume ratio, 
fast rate of processing, ability to perform analysis with 
an extremely small sample quantity, and ability to inte-
grate into larger systems [38]. These advantages enable 
coupling of other, physical forces-based cell sorting and 
manipulation methods, i.e. magnetic, electric, acoustic or 
optical, into a microfluidic system as well as integration 
with other microfluidics devices for simultaneous analy-
sis of a sample. Such capabilities allow to reduce costs, 
increase efficiency and automate sample analysis.

Methods for sorting and manipulation can be divided 
into two groups: passive and active methods. Passive 
methods use geometric properties of the channel or 
structures, e.g. deterministic lateral displacement, to 
manipulate fluid flow and thus sort cells based on their 
physical properties [39–42]. Active methods, on the 
other hand, achieve the same by applying external forces 
on cells, or beads that are attached to cells rendering 
them susceptible to these forces. Active methods uti-
lize magnetic, electric, acoustic and/or optical forces. In 
this review article, the focus is on active methods utiliz-
ing physical forces for cell sorting and manipulation. 
Noteworthy, active methods rely on some sort of passive 
methods, such as microfluidics, that complement it.

All the passive and active techniques are in intensive 
study and development stage, but in comparison with the 
rest, optics-based methods attract insufficient attention. 
The major advantage of using optical forces is the flex-
ibility in terms of integration [43–45]. Optical systems 
generating light beams or optical traps are a level above 
traditional physical force methods and do not interfere 
with a functioning and design of the microfluidic system. 
Optical forces can be “superimposed” on top of the other 
techniques and methods.
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Each of the active methods used in microfluidic-
based cell separation or sorting can apply forces using 
bead labelling, fluorescent labelling, or directly without 
labelling (label-free). Bead labelling-based sorting and 
manipulation of cells rely on binding of, usually spherical, 
particles to cells and consequent exposure to electromag-
netic and acoustic forces. Beads are made to be of various 
sizes and material depending on the application. Bead-
based separation allows simultaneous manipulation of 
multiple target cells. Fluorescent label-based sorting and 
manipulation make use of fluorescent dyes and probes to 
tag target cells. The tagged cells are then scanned as they 
pass through a microfluidic system. As cells of interest 
are identified they can be sorted into separate channels or 
compartments within a microfluidic system. Label-free 
methods utilize flow parameters of channels of various 
shapes and sizes to manipulate streamlines carrying cells 
and particles. In addition, label free methods use various 
structures in the path to filter cells or divert streamlines 
[34, 36, 39, 41, 46, 47].

Magnetic force
Separation of cells and particles using magnetic forces 
is called magnetophoresis. Magnetic manipulation and 
sorting of cells rely on the use of nanoparticles, some-
times called beads, to make cells susceptible to magnetic 
forces. Magnetic beads are a collection of magnetic nano-
particles enclosed in a biocompatible, inert coating. They 
are often used for enhanced sorting and manipulation 
of cells in microfluidic systems. Major requirements for 
the beads are: uniform size, biocompatibility, stability in 
various types of media and biodegradability. Finally, mag-
netic beads’ surface has to be modified to be functional 
by making it adsorbent towards proteins, antibodies and 
other biomolecules. Thus, magnetic beads in majority of 
cases are made for a predetermined application [31].

Equations for lateral separation of the cell-magnetic 
bead complexes or beads in a microfluidic system are 
governed by the following equation [48] 

where mp is the mass and �up is the velocity of the par-
ticle. The magnetic, �Fmag , and drag, �Fdrag , forces affect-
ing the particle are given by the following equations, 
respectively:

(1)mp
d�up

dt
= �Fmag + �Fdrag .

(2)�Fmag = Vbχeff

(

�B · �∇

)

�B/µ0,

(3)�Fdrag = 6πηRp

(

�up − �uf
)

.

Here, Vb and χeff are the bead volume and effective 
magnetic susceptibility, �B is the magnetic field, μ0 is the 
permeability of vacuum, Rp is the effective particle radius, 
η is the fluid viscosity, and uf is the fluid velocity.

Due to simplicity of their operation and low cost, mag-
netic bead-based sorting has become one of the widely 
used standards for cell sorting in the form MACS [49]. 
Increasing popularity has driven development of a 
wide selection of tagging nanoparticles and targeting 
antibodies.

Development of superparamagnetic iron oxide nano-
particles and high-strength magnets has allowed mag-
netic beads to be of practical use in high-throughput 
sorting. In recent literature, magnetic nanoparticle label-
based sorting has been used to detect and sort elusive 
circulating tumor cells. Cho et al. [50] have developed a 
disposable microfluidic device with a reusable magnetic 
functional substrate that is able to isolate CTCs from 
nucleated blood cell sample of breast cancer patients. 
Similarly, Ozkumur et al. [47] have developed an inertial 
focusing—enhanced microfluidic CTC capture platform 
(see Fig.  1) with the use of magnetophoresis method. 
Their study demonstrates vast potential of integrating 
multiple separation methods into a single system.

Magnetophoresis has also been shown to be effective 
in separation of bacteria. A microfluidic free-flow mag-
netophoresis device was developed by Ngamsom et  al. 
[51] that demonstrated a multiplex sorting of Salmonella 
typhimurium and Escherichia coli with the use of mag-
netic beads.

In a recent study, magnetophoresis in a microfluidic 
device was also used for manipulation and concentration 
of DNA, showing its promise for manipulation of large 
molecules [52].

Magnetophoresis can be used to separate red blood 
cells from other blood cells without the use of magnetic 
beads due to their iron content. This method was first 
developed by Melville et al. [53].

Lastly, ferrofluids can be used to “push” and “pull” cells 
enabling label-free manipulation and separation of cells 
and bacteria. This method was pioneered by Kose et  al. 
[54]. The ferromicrofluidic platform was reported to have 
99% size-based separation efficiency of both micropar-
ticles and live cells [54]. More recently, a study by Zhao 
et  al. [55] has demonstrated a low-cost, label-free and 
rapid, throughput ≈ 106 cells h−1, ferrofluidic separation 
of HeLa cells and erythrocytes with > 99% recovery rate. 
Furthermore, recently, Zhang et  al. [56] have developed 
a novel viscoelastic ferrofluid and investigated sheathless, 
size-based separation of particles by employing viscoelas-
tic 3D focusing and negative magnetophoresis.

The major inconvenience of magnetic force-based sort-
ing and manipulation methods is an almost compulsory use 
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of beads, which might interfere with cell functioning and 
further downstream analyses. For some applications, elec-
tromagnets might be used resulting in Joule heating, which 
can be detrimental to cellular viability and integrity of a 
microfluidic system. Further, for some applications persis-
tent magnetic field generated by a permanent magnet might 
become an obstacle, while for others this is an advantage.

Electric force
A number of techniques for cell sorting are based on 
electric interaction. First, electrophoresis is a method 
where particles suspended in a liquid medium or gel 
migrate toward a charged electrode in direct current. In 
such cases, particles move to charges opposite to their 
own and the speed of the movement depends on the size, 
viscosity of the medium, charge and strength of the field. 
Cells, for example, tend to move toward the positive elec-
trode due to distribution of negatively charged molecules 
on their surface [29, 36, 57].

Kostal et  al. [58] developed a micro free-flow electro-
phoresis (μFFE) system for mitochondria separation. The 
system is reported to require 100-fold less sample volume, 
tenfold less buffer volume and lower electric fields than con-
ventional FFE systems. Completion of analysis in less than 
30 s is another advantage of the µFFE system. Existing FFE 
methods achieve separation within approximately 25 min.

Another recent study carried out by Guo et  al. [59] 
has demonstrated sorting of water droplets in oil using 
electrophoresis. It was reported that this method allows 
to achieve considerably higher throughput in continuous 
flow.

Dielectrophoretic method can be used to perform cell/
particle sorting without requiring the presence of surface 
charges as in conventional DC electrophoresis. The term 
dielectrophoresis itself stands to describe a phenomenon 
of moving particles in a non-uniform electric field. This 
phenomenon was first described by Pohl [60]. Every par-
ticle, in the presence of an AC field, demonstrates electro-
phoretic movement. The particles/cells exhibit movement 
due to induction of a dipole moment across the particle/
cell. The dielectrophoretic force depends on the size, shape 
and electric permeability of the particle and the surround-
ing medium [8, 30, 61]. The classic equation of the net die-
lectrophoretic force exerted by a nonuniform electric field 
on a lossless dielectric particle is given below [62]:

Here, ɛf and ɛp are the permittivity of the lossless die-
lectric fluid and the homogenous dielectric spherical par-
ticle, respectively. Rp is the radius of the dielectric sphere, 
E0 is the non-uniform electric field.

There are two subdivisions of dielectrophoresis that are 
defined by the mode of action: positive dielectrophore-
sis (pDEP) and negative dielectrophoresis (nDEP). In the 
pDEP mode, particles possess higher electric permeabil-
ity than the surrounding media, thus the particle moves 
toward the place where field intensity is strongest. In the 
nDEP the opposite is taking place, particles with lower 
electric permeability move toward lowest field inten-
sity region. In biological applications, the latter method, 
nDEP, is more prevalent as it doesn’t expose cells to 

(4)�Fdep = 2πεf R
3
p

(

εp − εf

εp + 2εf

)

∇E2
0 .

Fig. 1  CTC-iChip, developed by Ozkumur et al., capable of sorting rare CTCs from whole blood at 107 cells/s [47]. Schematic representation of three 
microfluidic comportments is shown. Immunomagnetically labeled whole blood and buffer are introduced into the first compartment via two 
input channels. In the first compartment, magnetically labeled CTCs and white blood cells are hydrodynamically sorted from the whole blood. Next, 
CTCs and WBCs are focused. Finally, a magnetic field (grey arrow) is applied to separate labeled CTCs and WBCs
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potential harmful effects of the strong electric field. Due 
to the dependency of the DEP force on the size and elec-
tric properties of the medium and particles, DEP is useful 
in multimodal sorting of particles/cells by size and other 
properties [32, 46].

A good example of using DEP force to dynamically 
control position of particles in the channel for sorting 
was provided by Wang et al. [63]. In their study, a device 
with a sequence of electrodes in sidewalls along the main 
channel were used to generate non-uniform electric 
fields for positioning of particles at different equilibrium 
points and subsequent sorting into five distinct channels.

Electric fields patterns can also be generated by interac-
tion of focused light patterns with photoelectric elements 
integrated into a microfluidic system. Such method was 
developed by Chiou et al. [64] and used to demonstrate 
massively parallel manipulation of particles. The same 
technique can be used to isolate cells.

The use of electrical fields for cell manipulation and 
sorting might cause electrical damage to cells reducing 
their viability. Heating is also a drawback of this methods. 
Furthermore, the effect of electrical fields on biology of 
cells is underexplored [65, 66]. Thus, downstream analy-
sis of cells that interacted with strong electric fields might 
be inaccurate.

Acoustic force
Manipulation of objects position and sorting thereof 
using acoustic waves is referred to as acoustophoresis. 
Benefits of using acoustic forces on micro scales for cell 
sorting include precise spatial control, fast action/switch 
rate and little interference with cell viability [67].

In microfluidic devices that use acoustic forces for sort-
ing and manipulation, standing wave-type interaction is 
more popular. Acoustic forces from travelling waves are 
rarely used in such devices. Pressure waves, identical 
to each other both in frequency and magnitude, gener-
ated by acoustic devices in mutually opposite directions 
through a viscous medium form standing waves con-
tained multiple nodes and anti-nodes. The nodes are 
regions where summation of opposite pressure waves 
results in zero pressure fluctuation regions. The anti-
nodes are regions experiencing alternating minimum 
pressure and maximum pressure fluctuations. These 
regions separate and capture particles/cells with varying 
acoustic contrast factor (i.e., compressibility and density 
of particles and medium) into either nodes or anti-nodes 
[29, 30, 32, 68–73].

The classic expression of the radiation force exerted on 
a particle in a standing wave field is given below [32]:

(5)Fr = −

(

πp2
0
Vpβf

2�

)

· φ(β , ρ) · sin(2kx),

Here, λ is the wavelength of the acoustic wave, Vp is 
the volume of the particle, p0 is the pressure amplitude, 
βf and βp are the compressibility of the medium and 
particles, respectively, ρf and ρp are the corresponding 
densities, and φ is the acoustic contrast factor. Figure  2 
contains graphical representation standing waves’ mode 
of action [74].

In a recent study by Jakobsson et  al. acoustic waves 
were used in combination with fluorescence activation-
based identification to sort particles in real time with a 
purity of 80% and at a rate of 50 particles per second [73].

Another, arguably more effective, way to sort cells is to 
generate, using interdigital transducers (IDT), standing 
acoustic wave along the bottom surface of the channel 
in such a way that the fluctuations position the particles 
along several distinct streams. Coupled with fluores-
cence-based tagging and identification, such devices are 
of particular interest as they could be used to sort par-
ticles into multiple channels. The opposing IDT can be 
used to generate surface standing acoustic waves (SSAW) 
and this method was used to filter 8 µm particles from a 
collection of 5 and 10.36  µm particles in a recent study 
by Fakhfouri et al. [75]. Moreover, SSAW can be used as 
acoustic tweezers and has been shown to be capable of 
manipulating cells and microorganisms [29].

Although standing wave-based separation methods are 
more prevalent in the literature, travelling waves have 

(6)φ =
5ρp − 2ρf

2ρp + ρf
−

βp

βf
.

Fig. 2  Acoustic confinement of cells in a rectangular acoustofluidic 
device. a Unbound cells and elastomeric particles in an acoustic 
standing wave. b Bound cell-particle complexes in an acoustic stand-
ing wave (Adapted from Shields et al. [74])
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been demonstrated to perform high-efficiency sorting of 
particles. In a recent study by Ma et al. [70], a single sur-
face acoustic wave actuated bandpass filter was used to 
sort intermediate sized (15.2 µm) particles from the popu-
lation of smaller (10.2 µm) and larger (19.5 µm) particles. 
In a similar manner, a focusing IDT (FIDT) can be used 
to deterministically sort individual particles by generating 
highly focused, high frequency SAWs as it was recently 
demonstrated by Ma et al. [70, 72] and Collins et al. [76].

Active sorting using acoustic forces can be improved 
by combining it with passive sorting methods. A recently 
published study by Ung et  al. [77] describes the devel-
opment of a 3D microfluidic chip with topographical 
structures on top of the microchannel that was used in 
combination with SAWs to considerably increase the 
sorting efficiency (see Fig. 3).

In conclusion, the manipulation and sorting of particles 
based on acoustic forces has advantages over its com-
petitors which are design simplicity, compactness, ease 
of operation and high biocompatibility. However, when 
compared to methods that use optical forces, acoustic 
methods lack the same level of precision that allows to 
manipulate individual particles in a large group of closely 
located particles and resolution that, for example, allows 
optical tweezers to manipulate nanoscale objects such as 
protein molecules, DNA and even individual atoms [68]. 
Furthermore, when applied to blood cells, high-intensity 
focused ultrasound (HIFU) was demonstrated to stimu-
late activation of platelets resulting in hemostasis [78]. 
HIFU were also shown to activate genes in tumor and 
other cells [79–82]. These factors might interfere with 
analysis of cells after sorting and manipulation.

Application of light radiation
Optical force
Experimental detection of the radiation pressure exerted 
by a light beam was first reported in 1901 by Lebedew 
[83] and by Nichols and Hull [84]. Light pressure has 
since been used by researchers for realization of various 
particle sorting and manipulation devices that use light 
to push particles into a desired location.

A more advanced method of optical manipulation and 
trapping of microparticles was discovered by Ashkin [85]. 
It was demonstrated that transparent dielectric particles 
can be captured and controlled both in air and water by 
harnessing the momentum of light. Also it was dem-
onstrated that it is possible to manipulate particles in 
3-dimensions using two laser beams or a tightly focused 
laser beam [86]. The latter method was called optical 
tweezers and has served as a foundation of various meth-
ods of optical manipulation.

Numerous experimental studies have shown that these 
forces can be used to stably manipulate and capture par-
ticles [87]. In addition to particle manipulation, optical 
tweezers have been used to measure intermolecular and 
intercellular forces, which range from several femtonew-
tons to tens of piconewtons [88, 89].

Due to its properties optical tweezers have been applied 
to tasks that require precise and singular manipulation, 
sorting and localization of microscale objects in liquid 
media. Optical tweezers have also been used for physical 
and morphological characterization of biological mate-
rial, such as DNA, proteins, organelles and cells [89–92]. 
Specifically, blood cells are at the center of interest in 
optical manipulation of cells. Many research groups are 
extensively studying red and white blood cells’ mechani-
cal properties using optical tweezers [93].

The trapping phenomenon depends on the refrac-
tive index difference of the media and the object that is 
being trapped, size and mass of the object being trapped, 
wavelength of the laser and its absorption rate of the 
object. The most common size of objects used for optical 
trapping ranges from 1 to 10  µm. Although, atoms and 
particles greater than 100  µm have been reported to be 
trapped using optical tweezers [94, 95].

According to electromagnetic theory, optical tweezers 
enable trapping and manipulation of particles via two 
light pressure forces: gradient force and scattering force. 
The gradient force moves the particle along the axis per-
pendicular to the beam propagation axis, attracting the 
particle to the most intense part of the beam. Scattering 
force tries to move the particle to the most intense part of 
the light beam along the axis of propagation [85].

Noteworthy, that any movement of the particle away 
from the center of the trap is counteracted by the restor-
ing force that returns the particle back to the point of 
highest intensity. Properties of the optical trap define the 
distance at which the restoring force is maximal. From 
the center of the optical trap to this point change in the 
restoring force can be approximated as being linear.

The maximum force of an optical trap with fixed 
parameters has been named the ‘escape trapping force, 
Fesc’ in the related literature [87, 93, 96–98].

The gradient and scattering forces affecting the particle 
depend on the trapping laser wavelength and size of thew 
particle. There are three approximations that can be used 
to describe optical trapping: ray optics, Rayleigh scat-
tering, and Mie scattering. The ray optics regime is used 
when the particle size is much larger than the wavelength. 
The Rayleigh regime is used when the particle is much 
smaller than the wavelength. The Mie regime is used when 
the particle is of comparable size with the wavelength [94].
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In the case of large biological cells, the ray optics 
approximation is sufficient for simulation of forces. The 

total force acting on a sphere by the incident laser ray can 
be expressed using the following equations [87, 99]:

Fig. 3  A 3D microfluidic chip with integrated structures for particle sorting using surface acoustic waves. a Cross-section of the device. b Design of 
the device. c–e Mode of action (Adapted from Ung et al. [77])

(7)Fscat =
nmP

c

(

1+ R cos 2θi −
T 2

[

cos(2θi − 2θrf )+ R cos 2θi
]

1+ R2 + 2R cos 2θrf

)

,

(8)
Fgrad =

nmP

c

(

R sin 2θi −
T 2

[

sin(2θi − 2θrf )+ R sin 2θi
]

1+ R2 + 2R cos 2θrf

)

,
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where Fscat is the scattering force acting in the direction 
of the incident ray; Fgrad is the gradient force perpendic-
ular to the direction of incident ray, nm is the refractive 
index of the medium, P is the power hitting a dielectric 
sphere, c is the speed of light in free space, R and T are 
the Fresnel reflection and transmission coefficients at a 
dielectric boundary, θi and θrf are the angles of incidence 
and refraction.

In the ray optics regime, the axial forces are obtained 
by summing all vectors of incident rays converging in at 
the focal point. The transverse forces are calculated in the 
same manner, also taking into account the direction of 
the incident rays as they reach the sphere [85, 99].

In the field of optical manipulation, a lot of resources 
have been dedicated to realization of adjustable optical 
potential landscapes, which could be used to manipulate 
multiple particles simultaneously [100]. The generation 
of arrays of optical traps with the use of microlens arrays 
and diffraction optics has been demonstrated in multiple 
studies [101]. The major limitation of using static ele-
ments is the inability of independent control of each trap 
or a region of traps. The whole pattern is adjusted simul-
taneously. A popular method for generating dynamic 
optical traps is to use an acousto-optic device, which 
reflects and modulates a laser beam [102, 103]. Progress 
in hardware and software for computers and optics has 
opened up new possibilities for real-time advanced opti-
cal beam shaping. More recently, modern spatial light 
modulator (SLM) devices in the form of a digital micro-
mirror device (DMD) and a ferroelectric modulator see 
increased application for the realization of holographic 
optical tweezers [104, 105]. Furthermore, as the cost 
of this hardware decreases the study and application of 
optical methods become practical and accessible. The 
next three subsections highlight hardware and software 
technologies and techniques that enable the development 
of advanced optical and optophoresis systems.

Liquid crystal on silicon–spatial light modulator
Advanced optical beam shaping is achieved using a 
SLM device, which is able to modulate the polarization, 
phase and amplitude of light. SLMs can be categorized 
into two categories based on their mode of action, phase 
modulation (e.g. LC–SLM) and amplitude modulation 
(DMD). For realization of advanced optical tweezers, a 
liquid crystal on silicon SLM (LCOS–SLM) has been at 
the center of attention due to its small size and weight, 
programmability, high transmission rate and low power 
consumption [106].

The technology for liquid crystal on silicon has a long 
history, however a high-resolution LCOS was first intro-
duced into the market in 2002 by Forth Dimension 

Displays [107]. Liquid crystal (LC) materials possess 
robust non-linear electro-optic properties. High electro-
optic coefficient in combination with low voltage actua-
tion, which causes crystals to change their orientation 
also changing their optical refraction coefficients, is 
what makes LC materials excellent for digital spatial light 
modulation [108]. Figure 4 shows a schematic displaying 
the configuration of the LCOS–SLM device with multi-
layer structure.

LCOS–SLMs combine complementary metal oxide 
semiconductor technology and properties of LC, allow-
ing to modulate either polarization or phase of light. 
However, contrary to conventional LC panels, LCOS 
devices operate via reflection of the beam instead of 
transmission. The various types of arrangement of 
the liquid crystal layers in the device allow to modu-
late incident light beams in distinct ways. The electro-
optic effects that are responsible for such modulation 
depend on the voltage applied to the LC material layer. 
The stringent requirements of the industry stipulate the 
development of advanced light modulation. As a result, 
many variations of electro-optics structures, also called 
LC modes, in LCOS devices have been studied. Among 
them are: vertically aligned nematic [109–111], twisted 
nematic [112], hybrid field effect liquid crystal [113], 
electrically controlled birefringence [114, 115], optical 
compensated bend or pi-cell [116], surface-stabilized fer-
roelectric liquid crystal [117–121]. Most of these types 
of LCOS devices achieve light modulation via rotation of 
linear polarization of the incident light beam. The switch-
ing rate of a ferroelectric liquid crystal device reaches up 
to 1  kHz, but the drawback is that it is a binary mode 
only device. For other types of LC–SLMs the switch rate 
ranges in several hundreds of Hz, but they can achieve a 
variety of arbitrary force potentials.

Fig. 4  Configuration of the LCOS-SLM device, consisting of trans-
parent top glass substrate with transparent indium tin oxide (ITO) 
electrode, alignment layers, liquid crystal material, reflective mirror, 
pixelized electrode structure and silicon substrate (Adapted from 
Matsumoto et al. [108])
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An extensive overview of fundamentals of LC and 
LCOS devices is given in a review paper by Zhang et al. 
[122].

Digital micromirror device
A digital micromirror device is a spatial modulation digi-
tal light processing device that was invented by Hornbeck 
(Texas Instruments) [123]. Since then it has been applied 
to many areas such as stereolithography, video projec-
tion and imaging. In recent years, a gradual improvement 
of DMDs allowed its application to be expanded into 
advanced beam shaping, high-resolution microscopy and 
optical aberration correction [118, 123–125].

A DMD is comprised of an array of mirrors each of 
which are opto-electromechanical elements manufac-
tured on top of static random-access memory cells allow-
ing each element to be addressed separately (see Fig. 5). 
These mirrors, individually, are also referred to as pixel. 
Each pixel of a DMD device has two stable states (− 12° 
and + 12° in modern DMDs). The direction of light 
reflected from the pixel is determined by the state of the 
mirror. The pixel that is tilted in such way that it reflects 
the light into the projection lens is considered to be in an 
“on” or “positive” state. Conversely, if the pixel reflects 

the light into an absorber, then it is considered to be in an 
“off” or “negative” state. These two operational states and 
an “unpowered” state are the only states of a micromirror 
[123].

Programmability of a DMD, rapid switching rate and 
polarization properties are crucial factors for advanced 
beam shaping [125]. Furthermore, if a DMD is used in 
combination with high-performance computer there is a 
possibility for real-time, dynamic beam shaping and opti-
cal aberration correction.

The application of DMD-technologies is more estab-
lished for interaction with physical and inorganic sys-
tems, beginning with microscopy, optogenetics, physics 
and finishing with information technologies. Manipula-
tion of organic systems, e.g. DNA, proteins, cell, with the 
use of DMD is yet to be explored. The use of this tech-
nology for wavefront shaping in cutting edge biological 
research has considerable value for development of novel 
methods and devices.

Advances in software and algorithms
Both DMD and LCOS–SLM are able to form images 
either by patterning the laser beam into a desired image 
and projecting it directly onto the plane, or by using 

Fig. 5  Advanced beam shaping devices. a Transmissive LCD panel. b Reflective Liquid Crystal on Silicon (LCOS) panel. c Digital micromirror device 
and a detailed schematic of its internal structure. The inset is the DMD pixel exploded view (Adapted from Hornbeck [123])
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optical system to convert a hologram displayed on the 
device into an intensity pattern. The former method is 
simple, but results in major inefficiencies due to a small 
effective area that is used to project the pattern. The lat-
ter method, is more efficient in terms of power trans-
fer, and can also be used to generate three-dimensional 
optical traps, but is computationally expensive. Realiza-
tion of real-time, dynamic holographic tweezers requires 
both fast hologram generation algorithms and a power-
ful computer system. Holographic optical tweezers are 
usually realized by phase-only LC–SLMs, holograms for 
which are generated using an iterative phase retrieval 
algorithm, e.g. Gerchberg–Saxton algorithm (GS) [126], 
mixed-region amplitude freedom algorithm (MRAF) 
[127], offset MRAF (OMRAF) [128] and conjugate gra-
dient minimization [129]. Gerchberg–Saxton algorithm, 
proposed in 1971, is shown schematically in Fig.  6. The 
core of MARF and OMRAF algorithms is based on GS 
algorithm [128].

DMDs are amplitude modulation devices, and can be 
used for realization of holographic optical tweezers. The 
light energy transfer efficiency is low and depends on the 
algorithm used for generation of holograms (maximum 
≈ 10.1%), however fast switching rates of up to 50  kHz 
allow real-time manipulation of particles. Several dif-
ferent algorithms can be used to create a hologram for 
binary amplitude modulator devices, among them are 
binary rounding, dithering and weighted Gerchberg–
Saxton. Binary rounding algorithm is the simplest one 
and can be used to generate a single trap using DMD 
with a maximum theoretical power of ≈ 10.1%. This algo-
rithm can be applied to generation of multiple traps by 

summation of holograms, however this method is not 
the best as the intensities of generated traps might vary 
and phantom traps can appear. High switch rate of DMD 
can be harnessed to overcome this problem by minimiz-
ing non-linearity of the algorithm by rapidly flipping mir-
rors between ‘off’ and ‘on’ state resulting in a pixel with 
an average value. The downside of these methods is a 
reduction of power transfer efficiency per trap. Previ-
ously described Gerchberg–Saxton algorithm can also be 
used for calculation of a hologram for DMD-based holo-
graphic optical tweezers, which also achieves maximum 
theoretical power efficiency similar to that of binary 
rounding algorithm. A more detailed review dedicated 
to aforementioned algorithms is provided by Stuart et al. 
[130]. For even more details on the algorithms for holo-
gram generation it is advised to refer to original papers 
[126–129, 131].

Optical manipulation and sorting
The application of optical tweezers for manipulation 
of individual microparticles is more widespread and 
has been explored in numerous studies [103, 132–137], 
beginning with the work of Ashkin [85]. Application of 
optical forces towards development of novel separation 
methods, on the other hand, has seen rise in popularity 
in the end of 1990s and beginning of 2000s. Among these 
works, holographic optical tweezers have seen increased 
usage in cell and particle manipulation and sorting stud-
ies starting from 2003 with the publishing of the seminal 
review paper by Grier in Nature titled “A revolution in 
optical manipulation” [138]. In the next year, a study by 
Enger et  al. [139] was published describing application 

Fig. 6  Gerchberg-Saxton algorithm. The hologram, φ(r), is generated in the SLM plane, thus shaping the input Gaussian laser beam into a desired 
state, which is projected onto the trapping plane. F  denotes the Fourier transform. F−1 is the inverse Fourier transform. After several iterations the 
resulting hologram converges to a hologram that generates multiple optical traps with equally distributed intensity (Adapted from [128])
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of optical tweezers to a microfluidic system. In this work 
they demonstrated translocation of E. coli cells between 
reservoirs on a time-scale of seconds. Although this 
manipulation was slow, the work has validated feasibil-
ity and paved the way for development of more elaborate 
optical sorting and manipulation systems.

A paper published by MacDonald et al. [140] described 
application of a light field to study the effect on kinetic 
motion of dielectric particles (see Fig.  7). Therein, an 
optical sorting has been performed on microscopic par-
ticles by an interlinked 3D optical lattice that can be eas-
ily reconfigured and extended. The sorting was reported 
to be by size and refractive index. The optical lattice was 
generated using diffractive optical element and the study 
consisted of the observation of the effect and its quantifi-
cation. Noteworthy, authors have not explored deflection 
angles and distances in varied flow condition.

Wang et al. [24] reported development of a single cell 
manipulation tool integrating microfluidic technology 
with optical tweezers for high accuracy sorting of small 
cell populations (see Fig. 8). Among the advantages of the 
device they are reporting high recovery rate and purity 
of sorting. The design of the device relies on condition 
of fluid flow and beam shaping for realization of adjust-
able  3D optical traps, which is achieved by means of a 
holographic optical trapping device. Baker’s yeast cells 
with sizes of 5–8 µm were used as a target for manipula-
tion. Their flow velocity was 120 µm s−1. Moreover, the 
authors have implemented cell recognition to sort yeast 
cells and human embryonic cells [24].

The speed of particle/cell processing for this device is 
very slow, in the range of 1–5 particles per second. Thus, 
there is a very limited applicability of such system. A 
more robust system is required to make enough improve-
ment of contemporary “gold standard” systems.

An extensive theoretical study of optical sorting in a 
holographic trap array with experimental validation was 
performed by Ahlawat et  al. [141]. They have demon-
strated the influence of inter-trap separation on selec-
tive sorting of 3 and 5  µm silica microparticles. In this 
study the fluid flow was simulated by moving a motor-
ized translational stage to simulate movement of particles 
through the static patterns of optical traps. The cham-
ber for the solution of particles was made by separating 
microscope slide and a cover glass with a ~ 450 µm thick 
spacer [141]. Although, the theoretical study was deep, 
it would be beneficial to add experimental confirmation 
in an actual flow condition inside a microfluidic channel 
and quantify the efficiency of separation at various parti-
cle velocities.

Jákl et  al. [142] have demonstrated a sorting method 
using optical forces exerted by travelling interference 
fringes. The periodicity of the fringes was modulated by 
an SLM. The setup was tested on particles in a static solu-
tion located in a chamber made of microscope slide and a 
cover glass separated by a spacer.

A developing direction in optical manipulation is opto-
electronics. DMDs allow development of optoelectronic 
tweezers [64]. This technology allows precise manipula-
tion of cells and particles via light-induced dielectropho-
resis. This technique was initially developed by Chiou 
et al. [64]. The developed system was able to generate and 
manipulate 15,000 traps on a 1.3 × 1.0  mm2 area. Later, 
Huang et  al. [143] exploited this technique for devel-
opment of a dynamic particle manipulation on a chip 
device. Using this device, they have successfully demon-
strated real-time interactive manipulation of thousands 
of cells over an area of 240 mm2.

Notably, in the literature, cell and particle manipula-
tion studies are more prevalent than works exploring the 

Fig. 7  A schematic diagram of the optical sorting system described 
by MacDonald et al. [140]. Chamber A contains buffer solution. Cham-
ber B holds mixed particles. After passing through the optical lattice, 
selected particles are deflected into chamber C, while other particles 
flow straight into chamber D. The optimum lattice for fractiona-
tion was a body-centered tetragonal (b.c.t.) lattice. FC denotes the 
fractionation chamber

Fig. 8  A schematic diagram of the device developed by Wang et al. 
[24]. The sample and buffer are introduced into the channel from the 
two inlets located on the left. As the cells pass through the region 
of interest (ROI) they are captured by the CCD camera. The images 
are processed in real-time to locate cells of interest. A control signal 
is then generated positioning the optical trap on the cell of interest. 
After capture it is moved to the desired outlet
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topic of separation and sorting thereof using holographic 
optical tweezers.

Conclusion
Latest advances in cell biology, disease diagnostics and 
medicine have increased the demand in rapid, safe and 
accurate cell sorting and manipulation devices. Microflu-
idic devices are at the center of attention due to low sam-
ple and reagent volume requirement, portability, ability 
to work on a single cell scale level and self-contained 
nature allowing safer handling of hazardous liquids and 
materials.

Technologies and studies outlined in this review com-
prise the core of the latest developments in respective 
areas of study. Despite the advantages of performing cell 
analysis, sorting and manipulation in a microfluidic chip, 
they still have a number of limitations that prevent stand-
ardization for clinical use and wide commercialization. 
Among these are device throughput, lifespan, multipart 
manufacturing and ease of handling. Multimodal, paral-
lel integration of microfluidics with active sorting and 
manipulation methods is a promising approach to over-
coming these limitations. Magnetic, electric, acoustic 
and optical forces can be harnessed to cater for a wide 
spectrum of applications. Moreover, as discussed in this 
review, optical forces can be applied from the outside of 
the microfluidic device, thus allowing development of 
highly modular, multi-purpose systems for cell sorting 
and manipulation. Optical forces offer more interaction 
freedom, which can be adjusted in real-time. Further 
investigation and development of novel techniques uti-
lizing optical forces might prove to be a stepping stone 
towards development of state of the art lab-on-a-chip 
devices.
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