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Proteomic profiling in cerebral amyloid 
angiopathy reveals an overlap with CADASIL 
highlighting accumulation of HTRA1 and its 
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Abstract 

Cerebral amyloid angiopathy (CAA) is an age-related condition and a major cause of intracerebral hemorrhage and cogni-
tive decline that shows close links with Alzheimer’s disease (AD). CAA is characterized by the aggregation of amyloid-β 
(Aβ) peptides and formation of Aβ deposits in the brain vasculature resulting in a disruption of the angioarchitecture. 
Capillaries are a critical site of Aβ pathology in CAA type 1 and become dysfunctional during disease progression. Here, 
applying an advanced protocol for the isolation of parenchymal microvessels from post-mortem brain tissue combined 
with liquid chromatography tandem mass spectrometry (LC–MS/MS), we determined the proteomes of CAA type 1 cases 
(n = 12) including a patient with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), and of AD 
cases without microvascular amyloid pathology (n = 13) in comparison to neurologically healthy controls (n = 12). ELISA 
measurements revealed microvascular Aβ1-40 levels to be exclusively enriched in CAA samples (mean: > 3000-fold com-
pared to controls). The proteomic profile of CAA type 1 was characterized by massive enrichment of multiple predomi-
nantly secreted proteins and showed significant overlap with the recently reported brain microvascular proteome of 
patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), 
a hereditary cerebral small vessel disease (SVD) characterized by the aggregation of the Notch3 extracellular domain. We 
found this overlap to be largely attributable to the accumulation of high-temperature requirement protein A1 (HTRA1), a 
serine protease with an established role in the brain vasculature, and several of its substrates. Notably, this signature was 
not present in AD cases. We further show that HTRA1 co-localizes with Aβ deposits in brain capillaries from CAA type 1 
patients indicating a pathologic recruitment process. Together, these findings suggest a central role of HTRA1-dependent 
protein homeostasis in the CAA microvasculature and a molecular connection between multiple types of brain microvas-
cular disease.
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Introduction
Cerebrovascular pathologies are a major cause of stroke, 
cognitive decline, and dementia thus posing a signifi-
cant burden for aging societies [17, 27, 59]. Disorders of 
the brain microvasculature, collectively termed cerebral 
small vessel diseases (SVDs), are particularly common in 
the aging brain and encompass a variety of sporadic and 
hereditary conditions affecting small and medium-sized 
vessels in the cerebral cortex, subcortical white matter, 
and deep white matter [48, 68]. Among the most frequent 
pathologies is cerebral amyloid angiopathy (CAA), an 
important cause of intracerebral hemorrhage and cogni-
tive decline [2, 13]. Vascular amyloid is also seen in a sub-
stantial proportion of patients with Alzheimer’s disease 
(AD) [20]. CAA is characterized by the misfolding and 
excessive vascular deposition of amyloid-β (Aβ) peptides, 
which are generated by multiple proteolytical process-
ing of the β-amyloid precursor protein (APP) [60]. While 
mostly occurring as a sporadic condition, CAA can also 
develop from rare APP mutations such as the E693Q 
mutation, which causes hereditary cerebral hemorrhage 
with amyloidosis-Dutch type (HCHWA-D) [33].

Cerebrovascular amyloid deposits can be observed in 
both large (e.g. leptomeningeal) vessels and small paren-
chymal arterioles and capillaries, with their presence in 
capillaries determining the classification of CAA into two 
subtypes. Type 1 is defined by the presence of Aβ pathol-
ogy in capillaries and may show additional Aβ deposition 
in non-capillary blood vessels. In contrast, Aβ pathol-
ogy in type 2 is restricted to leptomeningeal and cortical 
arteries and arterioles [58]. Vascular Aβ accumulation is 
primarily considered a consequence of reduced clearance 
of parenchymal Aβ, for which different mechanisms are 
discussed depending on vessel type: while an impairment 
of transendothelial clearance is regarded as the predomi-
nant pathological process in capillaries, a reduction in 
perivascular Aβ clearance might prevail in larger blood 
vessels [2, 69]. The capacity of these physiological clear-
ance pathways is believed to decline with age and under 
pathological conditions resulting in incomplete Aβ elimi-
nation and its focal build-up at different locations within 
the vasculature [12, 50]. Capillary CAA is frequent in 
AD [3], is associated with both microvascular occlusions 
and disturbances of cerebral blood flow [57], and might 
contribute to cognitive decline in AD [24]. An invariant 
histopathological feature in CAA patients is a disruption 
of the vascular architecture including mural cells loss 
[21, 32, 65, 66] and alterations of the extracellular matrix 
(ECM) with thickening, splitting and duplication of the 
basement membrane [43].

The molecular mechanisms linking vascular Aβ dep-
osition to vessel pathology and dysfunction remain 
largely elusive. However, recent proteomic studies have 

identified a variety of proteins and pathways with a pos-
sible role in CAA pathophysiology. Two studies isolated 
leptomeningeal and large cortical vessels from cryo-
preserved post-mortem tissue by manual dissection or 
laser-capture microdissection [28, 38]. A third study used 
biopsy material from patients undergoing surgery for 
large lobar hemorrhages [18]. Collectively, these inves-
tigators found several proteins including apolipoprotein 
E (APOE), clusterin (CLU, also known as apolipoprotein 
J) and vitronectin (VTN) to be enriched in vessels from 
CAA patients and to co-localize with Aβ deposits evi-
dencing co-aggregation or recruitment of these proteins 
into Aβ deposits. APOE and CLU were further shown 
to interact with Aβ and to influence its aggregation and 
clearance in an in  vitro model of CAA that recapitu-
lates the intramural periarterial drainage process [18]. 
In a fourth proteomic study, microdissected cortical tis-
sue showing either parenchymal or vascular Aβ pathol-
ogy from AD patients with or without capillary CAA was 
used and norrin and collagen VIα2 (COL6A2) identified 
as highly selective CAA markers [25].

Despite the abundancy and presumed functional rel-
evance of vascular amyloid pathology in the brain [45], 
the specific molecular changes in small parenchymal 
vessels from CAA type 1 patients remain insufficiently 
characterized. Recent advances in the protocols for iso-
lating brain microvessels from autopsy samples have 
facilitated their targeted biochemical analysis [6, 42, 72]. 
For instance, Bourassa and colleagues examined micro-
vasculature-enriched fractions from human cerebral 
cortex by a combination of Western blot, enzyme-linked 
immunosorbent assay (ELISA), and immunofluorescence 
analyses and found CAA patients to exhibit alterations in 
the abundance of several endothelial markers and of pro-
teins involved in Aβ production and clearance [6]. To our 
knowledge, however, there have been no focused efforts 
to characterize the full range of proteomic changes in 
parenchymal microvessels from CAA type 1 patients.

Applying untargeted proteomics to isolated brain 
microvessels, we recently assessed the microvascular 
proteome of CADASIL, a monogenic form of ischemic 
SVD that is caused by mutations in the NOTCH3 gene 
and characterized by vascular deposition of the Notch3 
extracellular domain (Notch3ECD) [72]. This study dem-
onstrated a distinct proteomic profile characterized by 
the accumulation of multiple proteins. Among the most 
strongly enriched proteins was the serine protease high-
temperature requirement protein A1 (HTRA1). Moreo-
ver, many of the accumulating proteins were found to 
be HTRA1 substrates suggesting a loss-of-function sig-
nature. Notably, loss-of-function mutations in HTRA1 
cause yet another form of hereditary SVD [23, 63]. We 
further demonstrated co-localization of HTRA1 with 
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Notch3ECD deposits and an accumulation of various 
HTRA1 substrates in brain parenchymal microvessels 
from CADASIL patients. Collectively, these findings pro-
vided evidence for a loss of HTRA1 proteolytical func-
tion as a critical step in CADASIL pathogenesis.

The current study aimed to characterize the proteomic 
profile of brain parenchymal microvessels in CAA type 
1 to identify key molecular targets implicated in dis-
ease pathogenesis. The analysis resulted in the detection 
of a distinct CAA type 1 profile encompassing multiple 
secreted proteins and ECM constituents. This profile, 
which was not observed in AD cases, showed a remark-
able overlap with the brain microvascular proteome of 
CADASIL [72] highlighting the accumulation of HTRA1 
and several of its substrates. We further identify serum 
amyloid P component (APCS) and PRSS23, another ser-
ine protease, as novel HTRA1 substrates. Our findings 
suggest a role of HTRA1 in CAA type 1 pathogenesis 
thus further highlighting shared mechanisms among dis-
tinct types of cerebral SVD.

Materials and methods
Human brain tissue
Cryoconserved human brain autopsy samples (cortex 
and adjacent white matter from occipital or parietal lobe) 
from 12 neuropathologically confirmed CAA patients, 
12 neurologically healthy control subjects and 13 neu-
ropathologically confirmed AD patients were obtained 
from the Netherlands Brain Bank (Netherlands Institute 
for Neuroscience, Amsterdam). All CAA cases had been 
classified as capillary type (type 1) by routine neuro-
pathological autopsy examination.

Microvessel isolation
Microvessels were isolated from 100 mg of frozen brain 
tissue as previously described [72]. In brief, brain tissue 
was minced and homogenized in cold minimum essen-
tial medium using a glass tissue grinder (Wheaton). After 
adding Ficoll to a final concentration of 15% and centrifu-
gation at 6000 × g for 20  min at 4  °C, the resulting pel-
let was resuspended in 1% bovine serum albumin (BSA) 
diluted in PBS, transferred onto a nylon mesh (40  µm), 
and extensively washed with cold PBS. Microvessels 
were collected by flushing the inverted nylon mesh and 
centrifugation at 3000 × g for 5 min. Purity was checked 
by light microscopy. Throughout the procedure, plastic 
material was coated with 1% BSA in PBS.

Immunofluorescence staining
Immunofluorescence staining of isolated vessels was 
performed as previously described [72]. In brief, 
microvessels were transferred onto a microscope slide 
and air-dried at room temperature (RT). After fixation 

and permeabilization with 100% acetone for 10  min at 
− 20  °C, slides were washed with PBS, blocked with 5% 
BSA in PBS for 1 h at RT and then incubated with pri-
mary antibody (diluted in 0.2% BSA in PBS) overnight 
at 4  °C. The same protocol was used for the staining of 
tissue cryosections (16  µm). The following primary 
antibodies were used: Goat polyclonal anti-collagen  IV 
(#1340–01, SouthernBiotech, 1:1000), mouse monoclonal 
anti-HTRA1 (MAB2916, R&D, 1:50), rabbit polyclonal 
anti-Aβ (clone 3552, 1:200, kind gift from H. Steiner, C. 
Haass). Subsequently, slides were washed with PBS and 
probed with the respective fluorophore-conjugated sec-
ondary antibody (Alexa Fluor 488-, Cy3- or Alexa Fluor 
647, Abcam 1:500) for 1  h at room temperature. After 
washing with PBS, vessels or sections were mounted 
(Fluoromount, Sigma-Aldrich) and images were captured 
by confocal microscopy (LSM800, Zeiss).

Protein extraction and Aβ ELISA
Protein extraction of isolated microvessels was per-
formed in a buffer containing 4% SDS, 100  mM Tris–
HCl pH  7.6, 100  mM DTT. Samples were processed by 
Precellys tissue homogenizer (5 × 30 s, 10,000 rpm, 30 s 
pause), heated for 3 min at 95 °C and subsequently soni-
cated (5 × 30  s, amplitude 100%, duty cycle 50%) with 
intermediate cooling using the VialTweeter sonicator 
(Hielscher). Lysates were cleared by centrifugation at 
16,000 × g for 15  min, supernatants collected, and pro-
tein concentration determined using the colorimetric 
660-nm assay according to the manufacturer’s instruc-
tions (Thermo Fisher Scientific). Aβ1-40 and Aβ1-42 spe-
cies were quantified using the V-PLEX Plus Aβ Peptide 
Panel 1 (6E10) enzyme-linked immunosorbent assay 
(ELISA) Kit (Meso Scale Diagnostics) according to the 
manufacturer’s instructions. Samples were diluted 1:100 
and measured in triplicates. The resulting Aβ levels were 
normalized to total protein concentrations.

LC–MS/MS
A protein amount of 30  µg vessel lysate was subjected 
to proteolytic digestion by a modified single-pot solid-
phase-enhanced sample preparation (SP3) protocol [26]. 
Resulting peptides were desalted, dried by vacuum cen-
trifugation and dissolved in 20  µL 0.1% formic acid. A 
micro-flow LC–MS/MS system composed of a modified 
Dionex UltiMate 3000 RSLCnano System coupled to a Q 
Exactive HF-X mass spectrometer (Thermo Fisher Sci-
entific) was used for all proteomic measurements in this 
study, as described in detail by Bian et  al. [5]. Peptides 
(4.0  µg) were separated on a 15  mm long C18 column 
with an inner diameter (ID) of 1 mm (Acclaim PepMap 
RSLC, Thermo Fisher Scientific). A binary 60-min gra-
dient of water (A) and acetonitrile (B) containing 0.1% 
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(v/v) formic acid and 3% DMSO was applied as follows 
using a flow rate of 50 µL/min: 0  min, 0.5% B; 0.2  min, 
2% B; 52.7 min, 24% B; 60.2 min, 35% B; 60.5 min, 90% 
B; 62.7  min, 0.5% B. Sample loading and column wash 
was performed at an increased flow rate of 100 µL/min. 
The column was heated to 55  °C. MS1 spectra were 
acquired at a resolution of 120,000, a scan range from 360 
to 1400  m/z, a maximum injection time of 100  ms and 
an AGC target of 3E6. The Top 20 precursors were sub-
jected to higher-energy c-trap dissociation with a nor-
malized collision energy of 28%. A resolution of 15,000, 
an  AGC target of 1E5, an  isolation window of 1.6  m/z 
and a maximum injection time of 22 ms was applied. The 
dynamic exclusion was set to 30 s.

Proteomic data analysis
The data were analyzed with the Maxquant software [16] 
version 1.6.17.0 and searched against a reviewed canoni-
cal FASTA database of Homo sapiens (UniProt, down-
load: June 26th 2021, 20,395 entries). To recalibrate the 
peptide masses within a window of 20  ppm, the option 
first search was used. Main search was performed for 
peptides and peptide fragments within a mass tolerance 
of 4.5 and 20  ppm respectively. N-terminal acetylation 
and oxidation of methionine were set as variable, carba-
midomethylation of cysteine as static modification. The 
false discovery rate (FDR) was adjusted to less than 1% 
for both peptides and proteins. For label-free quantifica-
tion (LFQ) of proteins, at least two ratio counts of unique 
peptides were required. To determine the significance of 
protein abundance changes between the different groups, 
LFQ intensities were log2-transformed and a two-sided 
Student’s t-test was applied. Relative quantification and 
statistical analysis were performed for proteins identi-
fied in at least six samples of each group using the fol-
lowing significance threshold: p value < 0.05 and log2 LFQ 
ratios > 1.0 and < − 1.0 (corresponding to 2.0-fold and 0.5-
fold changes). The R software packages GOChord and 
SuperExactTest (version 1.0.4) [67] were used for gener-
ating the circos diagram and for statistically assessing the 
proteomic profile overlaps.

HTRA1 proteolysis assays
To investigate HTRA1-mediated proteolysis of APCS 
and PRSS23, human embryonic kidney cells (Expi293, 
Thermo Fisher Scientific) maintained in Expi293 Expres-
sion Medium (Gibco, Thermo Fisher Scientific) at 37 °C, 
8% CO2 and 125  rpm were transiently transfected 
with pTT3/APCS-Bio/His (gift from Gavin Wright 
[55], Addgene #53424), pcDNA4/TO/PRSS23-Myc/
His (SourceBioscience) and pcDNA6/HTRA1-V5/His 
expression plasmids using ExpiFectamine  293 (Thermo 
Fisher Scientific). 48  h after transfection, conditioned 

supernatants were collected by centrifugation at 1000 × g 
for 5  min and co-incubated at a substrate to protease 
ratio of 5:1 (v/v) for 24  h at 37  °C. Afterwards, pro-
tein intensities were analyzed by western blotting. The 
HTRA1-specifc inhibitor NVP-LBG976 (Novartis) [19] 
was used for the co-incubation at a final concentration of 
5 µM.

Western blot analyses
Conditioned cell culture supernatants were analyzed by 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis and electrotransfer onto 0.2-µm nitrocellulose mem-
branes using the Mini-Protean and Trans-Blot system 
(Biorad). Membranes were blocked with 4% skim milk 
powder dissolved in Tris-buffered saline supplemented 
with 0.1% Tween (TBS-T) for 1 h at RT and then incu-
bated with sheep polyclonal anti-APCS (AF2558, R&D 
1:2000), mouse monoclonal anti-Myc (9E10, Santa Cruz 
Biotechnology, 1:4000) or mouse monoclonal anti-V5 
(#R960-25, Thermo Fisher Scientific, 1:10,000) primary 
antibody (diluted in blocking buffer) overnight at 4  °C. 
Subsequently, blots were washed and probed with horse-
radish peroxidase-conjugated anti-mouse (Cell Signaling) 
or anti-sheep (R&D) secondary antibody diluted 1:10,000 
in blocking buffer for 1 h at RT. Immuno-reactive bands 
were visualized using chemiluminescence development 
(Immobilon ECL detection reagent, Merck Millipore) 
and the Fusion FX7 imaging system (Vilber Lourmat).

Results
Sample characterization
Cryopreserved post-mortem brain samples from patients 
with cerebral amyloid angiopathy (CAA) type  1 (n = 12, 
mean age 80.5 ± 9.8  years), neurologically healthy con-
trols (n = 12, mean age 79.8 ± 8.0 years) and patients diag-
nosed with Alzheimer’s disease (AD) (n = 13, mean age 
77.6 ± 8.5  years) (Table  1) were obtained from the Neth-
erlands Brain Bank. To verify the presence or absence of 
Aβ pathology we performed immunofluorescence stain-
ing of tissue sections of selected cases along with confo-
cal microscopy imaging (Fig.  1a). CAA samples showed 
extensive co-localization of Aβ immunoreactivity with 
parenchymal arterioles and capillaries demonstrating a 
high microvascular Aβ load whereas there was no micro-
vascular Aβ immunoreactivity in the AD cases, which in 
turn were characterized by parenchymal plaque staining. 
Control samples were devoid of any Aβ immunoreactivity. 
Next, we validated our recently established brain microves-
sel isolation protocol [72] (see workflow in Fig. 1a) in one 
of the CAA cases. Confocal microscopy imaging of vessel 
preparations stained for the basement membrane marker 
collagen IV and for Aβ revealed the presence of intact 
capillaries and enabled visualization of vascular amyloid 
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deposits in high resolution (Fig. 1b). Aβ immunoreactivity 
was mostly detectable as patches of variable size in con-
fined vessel segments. To obtain a quantitative measure of 
the load of Aβ1-40 and Aβ1-42 peptides in our samples, we 
performed ELISA measurements on the same microves-
sel lysates prepared for liquid chromatography/tandem 
mass spectrometry (LC–MS/MS) analysis. Aβ1-40 and 

Aβ1-42 were massively enriched in CAA samples (mean: 
3226-fold for Aβ1-40 and 111-fold for Aβ1-42 compared to 
controls) and showed the highest level in the HCHWA-D 
case (Fig. 1c, d and Additional file 1: Table 1). In contrast, 
AD cases exhibited isolated enrichment of Aβ1-42 (mean: 
11-fold compared to controls).

Table 1  Autopsy sample characteristics

CAA, Aβ, Tau and CERAD staging according to Thal et al. [58], Braak & Braak [7, 8] and Mirra et al. [41]. $Hereditary CAA case: β-amyloid precursor protein (APP) 
mutation E693Q causing hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). NA: not available, PMD: postmortem delay

Age Sex Brain region PMD CAA (Thal) Aβ (Braak) Tau (Braak) CERAD APOE

CAA 1 88 f par 05:00 2 A 2 NA 42

CAA 2 81 m par 06:30 2 C 5 2 44

CAA 3 71 m occ 04:00 2 C 6 3 43

CAA 4 78 f par 04:20 3 C 3 0 44

CAA 5 89 f occ 07:35 2 C 5 2 43

CAA 6 70 f par 04:00 3 C 6 3 33

CAA 7 80 f par 05:10 2 C 4 2 43

CAA 8$ 71 m par 07:15 2 A 1 0 32

CAA 9 97 m occ 05:10 3 C 5 3 43

CAA 10 65 m occ 04:30 2 O 0 0 33

CAA 11 88 m par 03:55 3 C 5 3 44

CAA 12 88 m occ 05:00 2 C 4 2 43

CON 1 84 m par 05:35 0 A 1 0 33

CON 2 84 f par 04:45 0 O 1 0 33

CON 3 80 m par 06:30 0 A 0 0 33

CON 4 85 m par 04:15 0 O 1 0 44

CON 5 72 f par 06:50 0 A 1 0 33

CON 6 88 f par 05:55 0 A 1 0 33

CON 7 75 f occ 09:10 0 A 1 0 32

CON 8 61 f occ 06:50 0 O 0 0 32

CON 9 82 f occ 07:00 0 O 1 0 33

CON 10 84 m occ 07:05 0 O 1 0 33

CON 11 74 m occ 08:00 0 A 0 NA 32

CON 12 89 m occ 06:50 0 O 2 0 33

AD 1 67 f occ 07:35 0 C 5 3 33

AD 2 82 m par 03:35 0 C 6 3 44

AD 3 79 f par 05:10 0 C 6 3 43

AD 4 85 f occ 04:05 0 C 5 3 43

AD 5 77 m par 06:35 0 C 6 3 44

AD 6 71 f par 04:20 0 C 5 NA 33

AD 7 72 f occ 06:30 0 C 4 3 43

AD 8 66 f occ 04:12 0 C 6 3 33

AD 9 85 f par 06:00 0 C 4 2 33

AD 10 67 m par 08:20 0 C 5 2 33

AD 11 89 f occ 04:00 0 C 6 3 43

AD 12 78 f occ 08:15 0 C 5 3 33

AD 13 91 f par 07:50 0 C 5 3 43
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The brain microvasculature of CAA type 1 displays 
a distinct proteomic profile with enrichment of multiple 
secreted proteins
For the proteomic analysis, individual vessel preparations 
were subjected to LC/MS–MS followed by label-free 
quantification (LFQ) of protein abundances. As a first 
step, we performed a comparison of CAA samples with 

neurologically healthy controls. A total of 3752 proteins 
consistently identified by at least two unique peptides in 
at least six samples of each group were used for analysis 
(Fig. 2a and Additional file 2: Table 2). We found 35 pro-
teins to be significantly altered with an abundance ratio 
of > two-fold (log2 ratio > 1) or < 0.5-fold (log2 ratio < − 1). 
The majority of them (n = 32) were enriched, 10 of 
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Fig. 1  Study workflow and characterization of microvessel preparations used for the proteomic analysis. a Study workflow (top): Parenchymal 
microvessels were isolated from cryopreserved post-mortem brain samples of patients with cerebral amyloid angiopathy type 1 (CAA), control 
subjects (CON) or patients with Alzheimer’s disease (AD) and analyzed by LC–MS/MS. Confocal microscopy images (bottom) of a brain tissue section 
of a representative CAA, control and AD case immunostained for the amyloid beta (Aβ) peptide (red) and for the basement membrane marker 
collagen IV (pseudocoloured in white). Prominent vascular Aβ immunoreactivity in arterioles and capillaries (indicated by filled yellow arrows) are 
only observed in CAA. Parenchymal amyloid plaques, indicated by empty yellow arrows, are observed in CAA and AD. b Confocal microscopy image 
of a capillary network isolated from a CAA patient with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) and stained for 
Aβ (red) and for the basement membrane marker collagen IV (pseudocoloured in white). c, d Level of the amyloid species Aβ1-40 (c) and Aβ1-42 (d) in 
the microvessel extracts determined by ELISA. p-values were calculated using ANOVA with Tukey post hoc analysis, **p = 0.0078, ****p < 0.0001. Of 
note, the HCHWA-D case showed the highest levels of both Aβ1-40 (40,929 pg/μg) and Aβ1-42 (1699 pg/μg) across all samples
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which showed a ratio of > four-fold (Fig.  2b) revealing a 
strong overall tendency towards protein accumulation. 
As inferred from their mean intensity-based absolute 
quantification (iBAQ) intensities, significantly altered 
proteins were distributed across the full abundancy 
range (Fig. 2c). However, most of the proteins that were 
strongly enriched in CAA demonstrated high abundance, 
including apolipoprotein E (APOE), clusterin (CLU) and 
pleiotrophin (PTN). In contrast, the three depleted pro-
teins prenylcysteine oxidase 1-like (PCYOX1L), VGF 
nerve growth factor inducible protein (VGF) and ubiq-
uitin specific peptidase 39 (USP39) showed an overall 
lower abundance. A subcellular localization analysis 
based on UniProt database information revealed strong 
overrepresentation of secreted proteins (23 out of 35 
proteins, 66%) (Fig.  2d). While some of these proteins 
such as APOE, CLU, serum amyloid P component (SAP, 
encoded by the APCS gene), vitronectin (VTN) and tis-
sue inhibitor of metalloproteinases 3 (TIMP3) have 
previously been reported to be enriched in vascular 
amyloid deposits [18, 25, 38, 62], we also identified sev-
eral novel proteins including serpine E2 (SERPINE2), 

olfactomedin-like protein 3 (OLFML3), the complement 
components C3, C1QB and C1QC, the extracellular 
matrix protein tenascin-C (TNC), the secreted glycopro-
tein slit guidance ligand 2 (SLIT2), PTN and the serine 
protease 23 (PRSS23) that have so far not been associated 
with CAA​.

Next, we compared the proteome of brain microves-
sels from AD cases versus controls. A total of 3780 
consistently identified proteins were used for analysis 
(Fig.  3a). Overall, we identified 82 proteins with a sig-
nificantly altered abundance ratio of > two-fold (log2 
ratio > 1) or < 0.5-fold (log2 ratio < − 1) (Fig. 3b and Addi-
tional file 3: Table 3). As in the CAA profile, significantly 
altered proteins distributed across a broad abundancy 
range (Fig.  3c). However, the overall extent of protein 
accumulation was substantially lower, with TNC as the 
single protein exceeding an abundance ratio of 4. Also, 
the subcellular localization profile of the 82 significantly 
altered proteins differed substantially from the CAA type 
1 profile, in that there was an overrepresentation of cyto-
plasmic proteins but no enrichment of secreted proteins 
(Fig. 3d). This is in accord with the absence of detectable 
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vascular Aβ deposits in the AD samples and indicates a 
less pronounced disruption of protein homeostasis.

As a third step, we compared the microvascular pro-
teomic profiles of CAA and AD considering proteins 
that surpassed the significance and fold change thresh-
old (p < 0.05 and log2 fold change < − 1.0/ > 1.0) in either 
dataset. There was a significant overlap of 12 proteins, 
which further showed directional consistency, whereas 
93 proteins did not overlap. Out of those, 23 and 70 pro-
teins were specifically altered in CAA and AD, respec-
tively (Fig. 4a). The comparison of individual LFQ ratios 
for CAA type 1 and AD (each compared to the control 
group) demonstrated a CAA type 1-specific cluster with 
high abundant changes whereas this was not observed 
for proteins constituting the AD-specific profile or for 
proteins that overlapped between the CAA type 1 and 
AD profiles (Fig.  4b). Subcellular localization analysis 
highlighted that the vast majority of proteins constitut-
ing the CAA-specific profile were annotated as secreted 
(21 out of 23 proteins, 91%) whereas proteins constitut-
ing the AD-specific profile or overlapping between the 
two profiles were distributed among all main subcellular 

localizations (Fig.  4c). Collectively, these findings define 
a distinct proteomic profile with enrichment of multiple 
secreted proteins in CAA type 1.

CAA type 1 and CADASIL microvessels show a similar 
profile of protein accumulation
The accumulation of secreted proteins in the CAA type 
1 profile was reminiscent of our recently determined 
brain microvascular proteome of CADASIL [72]. We, 
therefore, investigated a possible relationship by com-
paring proteins quantified in both datasets and exhibit-
ing significantly altered abundance ratios (CAA type 1: 
n = 38, CADASIL: n = 67). This comparison revealed a 
significant overlap of 12 proteins (p = 1.47 × 10–13) rep-
resenting almost one third of the CAA type 1 profile 
(Fig. 5a). Notably, there was no overlap between the AD 
and CADASIL profiles. The abundance changes of the 
proteins overlapping between CAA type 1 and CADASIL 
showed complete (100%) consistency in directional-
ity, with all proteins enriched in both datasets (Fig. 5b). 
Moreover, there was a significant correlation (R = 0.58, 
p < 0.05) of the log2 LFQ ratios of the 12 overlapping 
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proteins. Furthermore, all the overlapping proteins 
belonged to the secretory category providing additional 
evidence for shared mechanisms between CAA type 1 
and CADASIL possibly related to the presence of abnor-
mally folded proteins (Aβ and Notch3ECD, respectively) 
that characterize these conditions. Plotting the Aβ1-40 lev-
els (as determined by ELISA) against the iBAQ intensi-
ties of the 12 proteins shared by the CAA and CADASIL 
profiles revealed significant correlations for all but 2 
proteins (Fig. 5c and Additional file 4: Figure 1) indicat-
ing that their accumulation is indeed Aβ-dependent and 
not a general feature of disrupted vessel architecture. Of 
note, this included data from a patient with HCHWA-D, 
which were fully consistent with the results in sporadic 
CAA type 1 patients.

Accumulation of HTRA1 and its substrates in CAA type 1
Among the proteins shared by the CAA type 1 and 
CADASIL profiles was HTRA1, a serine protease geneti-
cally linked to hereditary SVD [23, 63] and further found 
to co-localize with Notch3 deposits in the vasculature of 
CADASIL patients [72]. Hence, we performed immuno-
fluorescence co-staining of HTRA1 and Aβ in isolated 
capillaries from a CAA type 1 sample, which revealed a 
near-complete co-localization (Fig.  6a). This confirms 

and extends previous findings from Hondius et  al. [25] 
and suggested a recruitment of HTRA1 to pathological 
Aβ deposits including a possible sequestration process. 
To investigate whether the overlap between CAA type 
1 and CADASIL could be attributed to HTRA1 sub-
strate enrichment and thus indicate a loss-of-function 
mechanism as proposed for CADASIL [72], we con-
ducted a three-way comparison between the CAA type 
1, the CADASIL and our published HTRA1−/− mouse 
microvessel profile. Notably, proteins accumulating in 
HTRA1−/− mice, can be considered putative HTRA1 
substrates, as these mice do not develop protein depos-
its. Eight of the 12 proteins that were enriched in both 
the CAA type 1 and CADASIL profiles (OLFML3, APOE, 
VTN, TIMP3, SERPINE2, CLU, NDP and PRSS23) also 
showed increased abundancy in HTRA1−/− microves-
sels (Fig.  6b, c) suggesting that these proteins indeed 
represent HTRA1 substrates. HTRA1 was exclusively 
found in the wild-type animals and thus did not contrib-
ute to the signature. The same applies for APCS, which 
was not identified in mice. Thus, only C3 and C1QC 
were consistently quantified but showed no significant 
changes in HTRA1−/− mice. Importantly, this find-
ing was fully confirmed in a recent independent study 
on HTRA1-deficient mice [34]. Also, seven of the eight 
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proteins (OLFML3, APOE, VTN, TIMP3, SERPINE2, 
CLU and NDP) have previously been shown in proteoly-
sis assays to be HTRA1 substrates [1, 9, 14, 44, 64, 72] 
(Fig. 6c). To explore the candidacy of APCS and PRSS23 
as potential substrates of HTRA1, we next performed 
cell-based cleavage assays: APCS was the most strongly 
enriched protein in the overlap signature; PRSS23 shares 
features with HTRA1 in that it represents a member of 
the family of chymotrypsin-type serine proteases and is 
primarily secreted by astrocytes [53, 61]. We expressed 
epitope-tagged constructs in HEK293 cells, a commonly 
used approach for analyzing HTRA1 proteolytic activity 
in a cellular setting [4, 72], co-incubated substrate- and 
protease-containing supernatants and investigated the 
resulting protein levels using Western Blotting (Fig.  6d, 
e). While HTRA1 was secreted as a ~ 55-kDa protein 
(bands of lower molecular weight represent autopro-
teolysis products), APCS was detected as a single band 
of ~ 51  kDa (26-kDa full-length protein plus the 25-kDa 
epitope tag) and PRSS23 migrated as a 37-kDa band 
(most likely generated from the 45-kDa full-length pro-
tein by intracellular cleavage at a furin consensus site). 
Upon co-incubation with wild-type HTRA1, APCS and 
PRSS23 levels were strongly reduced close to detection 
limit, whereas this was not the case upon co-incubation 

with HTRA1S328A, an artificial mutation which eliminates 
the catalytic serine residue resulting in a complete loss 
of proteolytic activity, or in the presence of a HTRA1-
specific inhibitor. We thus identified APCS and PRSS23 
as novel HTRA1 substrates providing further support for 
a role of functional deficiency of HTRA1 in CAA type 1 
pathogenesis.

Discussion
Applying untargeted proteomics to isolated parenchymal 
microvessels from post-mortem CAA type 1 brain sam-
ples, we identified a distinct profile that was character-
ized by an enrichment of multiple secreted proteins and 
substantially overlapped with the proteomic profile of 
CADASIL, a genetic form of cerebral SVD. This overlap, 
which was not observed in a comparison with the brain 
microvascular profile of AD patients lacking vascular 
amyloid pathology, can for the most part be attributed to 
the accumulation of HTRA1 and several of its substrates. 
HTRA1 is a protease implicated in the regulation of 
extracellular protein homeostasis and centrally involved 
in the pathogenesis of yet another form of hereditary cer-
ebral SVD [23, 63]. Collectively, these findings indicate a 
critical role of impaired HTRA1-mediated protein degra-
dation in the CAA type 1 microvasculature and suggest 
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shared mechanisms across different types of cerebral 
SVD.

In many respects, the current study represents a major 
advancement over previous proteomic investigations 
on CAA [18, 25, 28, 38]. Aside from focusing on iso-
lated brain microvessels we determined the proteome 
of CAA patients with pronounced capillary Aβ pathol-
ogy. Generating proteomic data on a large sample of 
patients and controls in unprecedented depth and using 
label-free quantification, we identified a distinct set of 
proteins with strongly increased abundance. This profile 
recapitulates the enrichment of proteins reported in ear-
lier studies (APCS, APOE, CLU, HTRA1, NDP, TIMP3, 
VTN), while also revealing an accumulation of several 
proteins so far not associated with CAA including PTN, 
SLIT2, TNC, the complement components C3, C1QB 
and C1QC as well as OLFML3, PRSS23 and SERPINE2. 
For a considerable fraction of these proteins we provide 
evidence for a link to HTRA1 proteolytic function (see 
below), but other proteins including PTN, SLIT2, TNC 
and the complement components might independently 

contribute to pathogenesis via alternative mechanisms: 
PTN, a pericyte-secreted neurotrophic growth factor 
that is exclusively expressed in the brain, has been shown 
to protect neurons against ischemic and excitotoxic 
injury [46]. Its recruitment to microvascular Aβ depos-
its might result in functional inactivation of PTN and 
thus enhance the adverse effects of vascular dysfunction 
on neuronal integrity in CAA. The extracellular signal-
ing factor SLIT2, has been implicated in angiogenesis 
and the regulation of vascular permeability [30, 35] and 
might thus contribute to the loss of BBB integrity in CAA 
[36]. TNC, an ECM glycoprotein linked to inflamma-
tory processes in the brain, has been shown to associate 
with cored Aβ plaques as well as vascular Aβ deposits in 
AD patients and cognitively normal elderly individuals 
showing plaque pathology [40] and might represent an 
immune response modulator during CAA pathogenesis 
[70]. Support for a role of inflammatory processes further 
comes from the increased abundance of C3, C4A, C1QB 
and C1QC, components of the classical and alternative 
complement pathways.
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We found the proteomic profile of CAA type 1 to 
show remarkable overlap with the profile of brain 
microvessels in CADASIL, another SVD caused by 
protein misfolding. Like CAA, CADASIL is character-
ized by vascular protein deposits, whose primary con-
stituent, however, is Notch3ECD, a receptor fragment 
generated at the surface of mural cells. Notch3ECD 
deposits differ from Aβ deposits regarding structure 
[72] and ultrastructure [31]. As such, the enrichment 
of a shared set of proteins, most notably HTRA1, is 
noteworthy. HTRA1 is implicated in ATP-independent 
protein quality control across multiple species includ-
ing removal of misfolded or mislocalized polypeptides 
[15]. The extensive co-localization of HTRA1 with Aβ 
deposits in isolated brain capillaries is in accord with 
this concept, although the mechanisms of HTRA1 
recruitment remain to be identified. HTRA1 accumu-
lation related to vascular Aβ pathology has previously 
been reported on a qualitative level in human brain 
vasculature obtained by microdissection [25] and in 
vessel-enriched fractions from Tg-SwDI mice [52] and 
TgDI rats [51]. Indeed, a recent review of available lit-
erature proposed there is an overlap between the pro-
files of CAA and CADASIL, which, however, was not 
formally assessed [71].

The majority of highly enriched proteins shared by our 
CAA type 1 and CADASIL profiles also accumulate in 
brain microvessels of Htra1 knockout mice [34, 72] and 
thus represent putative HTRA1 substrates. Accordingly, 
HTRA1-mediated processing of a number of these pro-
teins has been demonstrated by us and others in in-vitro 
cleavage assays [1, 9, 14, 44, 64, 72]. We now expand on 
this list by demonstrating HTRA1-dependent process-
ing of APCS and PRSS23 providing further support for 
an important role of HTRA1 activity in SVD pathogen-
esis. Several observations suggest that the accumulat-
ing proteins we found here to overlap between the CAA 
type 1 and CADASIL profiles and to possibly represent 
a HTRA1 loss-of-function signature contribute to the 
pathophysiology of CAA type 1 and are not a mere reflec-
tion of vessel degeneration. First, inactivating mutations 
in HTRA1 have previously been shown to cause degen-
erative changes in brain microvessels [23, 47, 54] thus 
placing loss of HTRA1 function upstream of vessel dam-
age. Second, we did not find these proteins to accumulate 
in brain microvessels from patients with sporadic SVD, 
which likewise show degenerative changes (unpublished 
results). Third, some of the HTRA1 substrates includ-
ing TIMP3 have previously been shown to contribute to 
SVD pathogenesis [10, 11]. Still, the precise mechanisms 
linking HTRA1 to vascular degeneration in CAA type 1 
remain unknown. Notably, a recent large-scale sequenc-
ing study in the general population has uncovered an 

association of rare loss-of-function HTRA1 variants with 
white matter lesion volume, a quantitative marker of cer-
ebral SVD, indicating a potential role of HTRA1 also in 
sporadic SVD forms [37].

In light of our findings, we propose a refined model 
for the molecular function of HTRA1. We hypothesize 
that, under physiological conditions, HTRA1 degrades 
excess proteins thus safeguarding extracellular proteosta-
sis. Support for this comes from studies demonstrating 
HTRA1-mediated degradation of oligomeric/fibrillar Aβ 
and tau species [19, 49, 56] and from previous findings 
showing an accumulation of multiple constituents of the 
vascular ECM in Htra1-deficient mice [34, 72]. In CAA 
type 1 and CADASIL, HTRA1 is recruited into the vas-
cular Aβ and Notch3ECD deposits characterizing these 
vasculopathies. We propose, this occurs to remove mis-
folded and excess polypeptides. Progressive growth of 
the deposits may result in a sequestration and depletion 
of HTRA1 from the extracellular environment leading 
to functional inactivation, substrate accumulation and 
eventually disruption of proteostasis [22]. While direct 
evidence for this concept remains to be presented, we 
would argue that the accumulation of multiple HTRA1 
substrates supports our hypothesis. Upon first sight, 
HTRA1-related genetic cerebral SVDs lacking distinct 
protein deposits seem to be at odds with this concept. 
Of note, however, brain vessels of these patients exhibit 
prominent abnormalities in angioarchitecture including 
intimal thickening and ECM expansion [23, 47] consist-
ent with altered proteostasis. An alternative explanation 
for the vascular structural alterations would be dysregu-
lated TGFβ signaling [23, 29, 39]. However, we found 
constituents of the TGFβ pathway to be either not 
detected in a sufficient number of samples or abundance 
changes did not reach significance. A proteomic inves-
tigation of vessels from patients with HTRA1-related 
familial cerebral SVD was not feasible due to a lack of 
appropriate autopsy material.

While HTRA1 is present in human senile plaques 
[19], it was not enriched in brain microvessels from our 
AD patients. Accordingly, there was no accumulation 
of HTRA1 substrates that we found here to be shared 
between the CAA type 1 and CADASIL profile. Still, we 
found the CAA type 1 and AD profiles to show some 
overlap, evidencing shared molecular pathways inde-
pendent of vascular Aβ deposition. Overall, this overlap 
was less pronounced in terms of the abundance ratios of 
individual proteins, which further belong to various cel-
lular pathways. As such, the underlying mechanisms may 
be more complex.

Specific strengths of this study include the applica-
tion of untargeted and quantitative proteomics to iso-
lated microvessel preparations from a large sample 
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of well characterized cases of CAA type 1 patients, 
healthy controls, and AD patients without vascular 
pathology, and cross-referencing of proteomics results 
to those from CADASIL patients. However, this study 
also has limitations. In particular, the transferability of 
our findings to CAA type 2 patients is unclear and the 
mechanistic details of the recruitment of HTRA1 to 
pathological deposits and its functional consequences 
remain to be determined. Still, our findings argue 
for a critical role of HTRA1 in CAA type 1-affected 
microvessels and reveal an unanticipated molecular 
link between CAA type 1 and other forms of microvas-
cular disease thus emphasizing the importance of this 
pathway in brain health.
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