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Abstract 

Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, 
and is the early pathological change associated with Alzheimer’s disease (AD). To elucidate patterns of structural 
change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of 
human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were 
obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known 
history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic 
registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using 
serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. 
Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology sever‑
ity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after 
correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in 
the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low 
levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and 
the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.
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Introduction
Alzheimer’s disease (AD) pathology is characterized by 
phosphorylated-tau in the form of neurofibrillary tan-
gles (NFTs) and extra-cellular deposits of amyloid-beta 
(Aβ) [1–3], which are thought to lead to neurodegenera-
tion and cognitive decline. Measures of Aβ, tau and neu-
rodegeneration (A/T/N) can be obtained using positron 
emission tomography (PET), cerebrospinal fluid (CSF) 
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or structural magnetic resonance imaging (MRI), and 
are now being used to biologically define AD within a 
research framework [4]. Compared to Aβ, the accumu-
lation of NFTs in particular is strongly correlated with 
neurodegeneration and cognitive decline [5–8]. The 
medial temporal lobe (MTL), which consists of the hip-
pocampal formation and the adjacent entorhinal, tem-
poropolar, perirhinal and parahippocampal cortices, 
is the earliest cortical region affected by NFT pathol-
ogy [1, 2]. According to the staging model of Braak and 
Braak [1, 2], NFTs initially manifest in a specific region 
of the MTL surrounding the border between the lateral 
part of the entorhinal cortex (ERC) and transentorhi-
nal cortex. The transentorhinal cortex corresponds to 
Brodmann area (BA) 35, itself encompassing the medial 
portion of the perirhinal cortex (PRC). The NFTs then 
spread further into the ERC before emerging in the sub-
iculum (SUB) and cornu ammonis 1 (CA1) subfield of 
the hippocampus. Studies have shown that the stratum 
radiatum lacunosum moleculare (SRLM) layer of SUB/
CA is also an early target of NFT pathology [9, 10]. Even-
tually, the NFTs spread to other cortical regions of the 
brain. Because of the MTL’s early involvement, its subre-
gions are expected to be among the most sensitive brain 
regions to early pathological changes in AD.

A growing number of studies have used in vivo struc-
tural MRI to derive measurements of subtle volumet-
ric changes in the MTL caused by neurodegeneration 
[11, 12]. However, the specificity of these measures to 
AD pathology is limited by the fact that the MTL is also 
affected by several co-occurring pathologies such as TAR 
DNA-binding protein 43 (TDP-43), α-synuclein, vascular 
disease, and even aging [6, 13, 14]. Although the MTL is 
thought to display different patterns of regional vulner-
ability to the different pathologies, the specific contribu-
tion of NFT pathology to atrophy is not well established 
[6]. Identifying macroscopic patterns of structural change 
in the MTL that are specific to underlying NFTs could 
help guide the development of in  vivo MRI biomark-
ers that are more sensitive to AD-related changes. Sev-
eral studies have looked at the association between MTL 
structure and either pathological [15–17], CSF [18–20] 
or more recently, PET [21–23] measures of tau burden. 
Although tau PET enables in vivo quantification and 3D 
mapping of tau burden, it lacks the spatial resolution to 
obtain measurements within specific MTL subregions 
affected during the early stages of AD [24]. Most recently, 
Wisse et al. conducted a postmortem study which inves-
tigated the association between the thickness of MTL 
subregions in ex  vivo MRI and semi-quantitative rat-
ings of different neurodegenerative pathologies derived 
from histology samples taken from the contralateral 
hemisphere [25]. However, thickness was only sampled 

at specific hand-picked anatomical locations in the MTL, 
thus providing only a limited window into the structure/
pathology relationships.

Here we develop a methodological framework that 
allows detailed 3D mapping of the relationships between 
MTL thickness and pathological measures. We generate 
the first-of-its-kind high-resolution 3D computational 
atlas of the human MTL generated by applying group-
wise image registration to 200 × 200 × 200 µm3 resolu-
tion post-mortem MRI scans of intact MTL specimens 
from twenty-nine brain donors. To overcome challenges 
due to the complex geometry of the hippocampus and 
MTL cortex and significant anatomical variability across 
specimens, we leverage advanced computational anat-
omy techniques to co-register the individual ex vivo MRI 
scans and capture the “average” shape of the MTL. Ana-
tomical regions in the atlas are derived by combining 
information from eleven specimens in which serial Nissl 
histology was used to annotate MTL and hippocampal 
subregions based on cytoarchitecture. Leveraging this 
atlas, we report regional patterns of association between 
MTL thickness and NFT pathology (measured both in 
ipsilateral and contralateral hemispheres), while account-
ing for the confounds of TDP-43 pathology.

Methods
Specimen preparation and MRI
Brain hemispheres were obtained from twenty-nine 
donors; one specimen from the brain bank operated by 
the National Disease Research Interchange (NDRI), six-
teen specimens from autopsies performed at the Uni-
versity of Pennsylvania Center for Neurodegenerative 
Disease Research (CNDR) and twelve specimens from 
the University of Castilla-La Mancha (UCLM) Human 
Neuroanatomy Laboratory (HNL) in Spain. Human 
brain specimens were obtained in accordance with the 
University of Pennsylvania Institutional Review Board 
guidelines, and the Ethical Committee of UCLM. Where 
possible, pre-consent during life and, in all cases, next-of-
kin consent at death was given. CNDR hemispheres were 
fixed in 10% formalin solution for at least 30 days before 
extracting intact MTL blocks. HNL cases were fixed 
by perfusion with 4% paraformaldehyde through both 
carotid arteries. The blocks were then imaged on a Var-
ian 9.4 T animal scanner at a 200 × 200 × 200 µm3 reso-
lution. Details of the imaging protocol are provided in 
Additional file 1: Section 1.1 and Additional file 1: Fig. S7.

Histological processing and immunohistochemistry
Following MRI scanning, each of the specimens under-
went histological processing for neuropathological exam-
ination and neuroanatomical analysis. In twenty-seven 
specimens, dense serial histology was performed. The 
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specimens were cut into 2 cm blocks using custom molds 
that were 3D printed to fit each MTL specimen, cryo-
protected and sectioned at 50  μm intervals in a sliding 
microtome coupled to a freezing unit (Microm, Heidel-
berg). For neuropathological diagnosis, we were inter-
ested in examining the anterior ERC at the mid-level of 
the amygdala, and the dentate gyrus (DG) and CA sub-
fields at the mid-level of the body of the hippocampus. 
Therefore, for the remaining two specimens that did not 
undergo serial histology, two tissue blocks were cut at 
the level of the amygdala and hippocampal body, cryo-
protected and sectioned into 50  μm sections. For each 
of the specimens, two adjacent sections were sampled 
at the mid-level of the amygdala and the hippocampal 
body for immunohistochemistry. In each case, the two 
sections were immunostained for tau and TDP-43 using 
anti-human PHF-Tau (monoclonal antibody (mAb), 
mouse, Thermo Scientific, Product Number MN1020, 
1:500) and 66318-1-Ig Anti-phospho (409/410) TDP-43 
(mAb, mouse, Proteintech, 1:350) respectively. Sections 
were then mounted on 7.5 cm × 5 cm slides and digitally 
scanned at 20× resolution.

Semi‑quantitative neuropathology ratings
Regional thickness analysis was performed using histo-
pathology ratings of tau and TDP-43 pathologies derived 
from the MTL both ipsilateral and contralateral to the 
one that was scanned. Semi-quantitative ratings for tau 
and TDP-43 pathology were obtained for the contralat-
eral hemisphere by obtaining tissue samples at the time 
of autopsy and are available for a subset of twenty-eight 
donors (CNDR and HNL specimens) in three MTL 
regions routinely examined in the CNDR neuropathol-
ogy evaluations [26]. More specifically, the contralat-
eral tissue was embedded in paraffin blocks and cut 
into 6  μm sections for immunohistochemistry using 
phosphorylated tau PHF-1 (mAb, 1:1000, a gift from Dr. 
Peter Davies) to detect phosphorylated tau deposits and 
pS409/410 (mAb, 1:500, a gift from Dr. Manuela Neu-
mann and Dr. E. Kremmer) to detect phosphorylated 
TDP-43 deposits. Three MTL locations, namely the ERC, 
DG and CA, were each visually assigned a semiquanti-
tative rating on a scale of 0–3 i.e. “none (0)”, “rare (0.5)”, 
“mild (1)”, “moderate (2)” or “severe (3)” [3]. For the anal-
ysis, the average rating across all three locations was used 
as a measure of general pathology burden in a specimen.

To generate the ipsilateral ratings, an expert neuro-
pathologist (D.J.I) provided semi-quantitative ratings 
of the severity of tau and TDP-43 pathology burden in 
the MTL using the scanned digital immunohistochem-
istry images for each of the neurodegenerative patholo-
gies. Once again, the average ipsilateral rating across the 
three MTL locations was used in the analysis. We note 

that unlike the contralateral ERC ratings which are based 
on tissue sampled at the level of the lateral geniculate 
nucleus, ipsilateral ERC ratings are obtained using ante-
rior ERC sections at the level of the amygdala.

Manual segmentation of the medial temporal lobe cortex 
to guide atlas construction
The atlas construction pipeline used in this work relies on 
segmentations of the MTL and SRLM to guide the reg-
istration process. To reduce the manual effort needed to 
generate these 3D segmentations, we adopted semi-auto-
matic segmentation methods to label the MTL and SRLM 
[27]. In some specimens, opposing banks of the collateral 
sulcus can appear fused together due to tight folding pat-
terns and collapsing of cerebrospinal fluid spaces. There-
fore, sulcus delineation was explicitly enforced by using 
different labels to segment the medial and lateral por-
tions of the collateral sulcus. Another challenge in ex vivo 
datasets is the presence of imaging artifacts caused by 
small air bubbles trapped in brain folds or tearing of the 
tissue during the extraction and cutting process. While 
segmentations of these affected regions can be used to 
guide the registration, incorporating intensity informa-
tion from these regions would introduce errors in any 
intensity-based registration steps. We therefore intro-
duced a separate label to segment regions of the MTL 
which should be excluded from intensity-based registra-
tion, and the eventual thickness analysis. For more details 
on the semi-automated segmentation approach and seg-
mentation protocol see Additional file 1: Section 1.1 and 
Additional file 1: Fig. S1.

MRI atlas generation
An ex vivo MRI atlas of the MTL was generated by lever-
aging the registration pipeline developed by Adler et al. 
to build an ex vivo atlas of the human hippocampus [28]. 
Conventional deformable registration techniques applied 
to high-resolution ex vivo scans result in poor alignment 
between specimens. To address this, Adler et al. propose 
a three-stage algorithm which incorporates segmenta-
tions of the structure of interest to initialize groupwise 
deformable registration. The first two stages perform 
shape-based alignment using the MTL and SRLM seg-
mentations. This establishes geometric correspondences 
between specimens and yields an average MTL and 
SRLM shape. The final stage uses these correspondences 
to initialize groupwise MRI intensity registration which 
resolves residual misalignments between specimens. 
Extending this framework to include the extrahippocam-
pal regions required optimization of the registration met-
rics and parameters (Additional file  1: Section  1.3 and 
Additional file 1: Table S1). To better capture the collat-
eral sulcus fold, registrations between medial and lateral 
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banks of the sulcus were optimized separately using the 
multi-label segmentations. We also introduced the capa-
bility to handle image artifacts by masking out affected 
regions from intensity-based registration computations. 
The final probabilistic atlas consists of a template (syn-
thetic 3D image capturing the “average” MTL anatomy), 
a template segmentation, and a set of non-linear diffeo-
morphic transformations between the template and each 
individual specimen’s scan.

Histology reconstruction and cytoarchitectural annotation 
of MTL subregions
In eleven of the specimens that underwent serial his-
tological processing, every tenth section (i.e., 0.5  mm 
intervals) in each tissue block was stained for Nissl using 
0.25% thionin and digitally scanned at 20× resolution. 
For each block, the scanned sections were reconstructed 
into a 3D volume and aligned to MRI space using a cus-
tom deformable 3D registration pipeline. Further details 
of the histology protocol and the approach for 3D recon-
struction and matching of histology to MRI are provided 
in Yushkevich et al. [29].

For each of the specimens, the boundaries between 
MTL subregions cornu ammonis (CA) 1, CA2, CA3, DG, 
SUB, presubiculum, parasubiculum, hippocampal amyg-
dala transition area (HATA), SRLM, ERC, BA35, BA36, 
area TE and the parahippocampal cortex (areas TF and 
TH) were identified on the basis of cytoarchitectural 
features in the Nissl stained sections following the ana-
tomical rules presented in the Atlas of the Human Brain 
by Mai et al. [30]. Annotations were performed on each 
histology slice by the team of neuroanatomists at UCLM 
(the hippocampal subfields and  ERC were annotated 
by  M.M.A, E.A.P,  M.M.R, M.M.L, C.R.P, S.C.S,  J.C.D, 
M.C.P and F.M.R., supervised by R.In; R.In annotated 
the  boundaries of the temporopolar cortex, PRC and 
PHC, and revised the annotations of the  group). The 
neuroanatomists viewed scanned Nissl slides in an open-
source web-based system (https://​github.​com/​pyush​
kevich/​histo​annot) and used line drawings and text labels 
to annotate boundaries between adjacent anatomical 
regions. Following histology reconstruction and registra-
tion to MRI, the boundary annotations were overlaid on 
the co-registered MRI and histology images. Addition-
ally, the manual segmentations of the whole MTL cortex 
and SRLM that were used to guide groupwise registra-
tion were registered to the histology images to inform 
the outer MTL boundary. The MRI, histology and MTL 
segmentation images were displayed side-by-side in ITK-
SNAP [31] to facilitate manual tracing of the subfield seg-
mentations in 3D MRI space, which was performed by 
S.L. with supervision from L.E.M.W and R.In (Additional 
file 1: Fig. S9).

For each of the eleven specimens, the completed seg-
mentations were then mapped to the MRI atlas using the 
deformable transformations generated by the groupwise 
registration pipeline. Note that for each specimen, small 
gaps in the segmentation may exist between blocks. A 
consensus segmentation of the MRI atlas was obtained 
by application of voxel-wise majority voting among 
the eleven segmentations with slight regularization 
by a Markov Random Field prior. More details on this 
approach are provided in the supplemental information, 
Section S1.4.5 of Adler et al. [28].

Statistical analysis
Regional thickness of the MTL cortex, hippocampal gray 
matter, and SRLM was estimated by warping the atlas to 
the native MRI space of each specimen and performing 
Voronoi skeletonization (Additional file  1: Section  1.4). 
To test the effects of tau pathology on regional thickness, 
we fit a general linear model (GLM) at each vertex on 
both the MTL and SRLM surfaces with the average rating 
of tau pathology as the independent variable, thickness 
as the dependent variable, and age and TDP-43 rating 
as covariates. More details on the statistical analysis are 
provided in Additional file 1: Section 1.5.

Results
Demographics
The specimens included in this study contain varying 
neuropathological diagnoses, including AD neuropatho-
logic change and neuropathological diagnoses such as 
argyrophilic grain disease (AGD), frontotemporal lobar 
degeneration (FTLD) with TDP-43 inclusions, cerebro-
vascular disease and Lewy body disease. Figure  1 sum-
marizes the demographic and neuropathology data for 
this brain donor cohort. The average ipsilateral tau and 
TDP-43 ratings across the twenty-nine specimens are 
1.50 ± 0.97 and 0.54 ± 0.82 respectively. The average age 
is 74 years (range 44–93 years). Additional file 1: Table S2 
provides more detailed demographic data and pathology 
information for each specimen.

Computational atlas of the medial temporal lobe
Figure  2 shows the MRI atlas of the MTL constructed 
from twenty-nine ex vivo specimens as a synthetic “aver-
age” MR image and a consensus MTL subregion segmen-
tation derived from serial histology in eleven specimens. 
The atlas construction pipeline achieves excellent group-
wise alignment between ex vivo MRI scans and captures 
the average shape of the MTL (Additional file  1: Sec-
tion  2.1, Additional file  1: Fig. S2, Additional file  1: Fig. 
S3 and Additional file  1: Fig. S4). Following groupwise 
registration, each specimen has a pointwise spatial cor-
respondence to this atlas. This correspondence is limited 
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Fig. 1  Demographic and diagnostic summaries for the twenty-nine brain donors. The tau and TDP-43 pathology ratings refer to the average 
rating computed from measurements sampled at three medial temporal lobe locations (entorhinal cortex at the mid-level of the amygdala and 
subiculum/cornu ammonis and dentate gyrus at the mid-level of the hippocampus). Dashed lines are used to indicate the mean value across 
specimens

Fig. 2  Computational atlas of the medial temporal lobe (MTL) constructed by groupwise registration of the magnetic resonance image (MRI) 
scans of twenty-nine ex vivo specimens. Three coronal sections are shown ordered from anterior (ant) to posterior (post), indicated as I, II and III, as 
well as a sagittal and axial section through the MTL. For each section, the “average” MRI is shown with and without the consensus MTL subregion 
segmentation derived from serial histology in eleven specimens. In the top right, a 3D reconstruction of the MTL atlas is shown along with a 3D 
brain rendering indicating the location of the MTL within the brain. (med medial, lat lateral, sup superior, inf inferior, SUB subiculum, SRLM stratum 
radiatum lacunosum moleculare, CA cornu ammonis, DG dentate gyrus, HATA​ hippocampal amygdala transition area, ERC entorhinal cortex, BA 
Brodmann Area)
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to the region of the MTL cortex which was semi-auto-
matically segmented in each specimen. Figure 3 provides 
a visualization of the quality of the registration between 
individual specimen images and the final atlas. In some 
specimens, the PRC, which includes BA35, was particu-
larly challenging to register due to significant anatomical 
variability in cortical folding and branching patterns [32, 
33]. Overall, the warped specimens look similar to each 
other following registration, although some minor mis-
registrations remain. Quantitative and visual evaluation 
of atlas quality at different stages of atlas construction, 
and comparisons with an alternative atlas-building strat-
egy are presented in Additional file 1: Section 2.1.

Effects of tau pathology on regional thickness
Figure  4 shows the results of the pointwise thickness 
analysis performed on the MTL and SRLM examining 

the regional effects of tau pathology on cortical thick-
ness using pathology ratings derived from the MTL 
ipsilateral to the thickness measures. Cases CNDR12 
(44 y.o.) and HNL01 (45 y.o.) were excluded from the 
thickness analyses since these younger cases are outli-
ers in terms of age and including them skews age effects, 
thereby dampening the associations between pathology 
and thickness. In this work we only consider the effects 
of tau and TDP-43 pathology on MTL structure since 
recent work studying the contribution of mixed pathol-
ogy to MTL atrophy in AD showed no clear relationship 
between neurodegeneration and either Aβ or α-synu-
clein [6]. The analysis considering both tau and TDP-43 
pathology in the model reveals a significant association 
between tau rating and atrophy in the ERC region (cor-
rected p = 0.038) with a smaller effect at a trend level in 
the SRLM (corrected p = 0.098). When using only age 

3210
NFT Rating

Fig. 3  Coronal view of the MRI scans of each of the twenty-nine specimens warped into the space of the MRI atlas. The corresponding atlas image 
is outlined in blue, in the bottom-right corner. The more similar the warped images are, the better the atlas quality. The dashed blue circles point 
out examples where the perirhinal cortex (region surrounding the collateral sulcus) was particularly challenging to register due to significant 
variability in cortical folding patterns. The color bar at the bottom of each image indicates the average neurofibrillary tangle (NFT) rating for that 
specimen. Yellow represents a rating of 0 (no/rare pathology) and red represents a rating of 3 (severe Alzheimer’s disease)
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as a covariate (i.e., excluding TDP-43 from the model), 
stronger associations between tau pathology and thick-
ness are observed in the ERC region, extending towards 
the transentorhinal cortex (corrected p = 0.01) and SRLM 
(inferior cluster: corrected p = 0.003, superior cluster: 
p = 0.046). Additionally, a significant cluster is observed 
in the SUB/CA1 region (corrected p = 0.031). To evalu-
ate the effects of tau in the absence of severe TDP-43 
pathology, regional thickness analysis was repeated in 

the subset of twenty-two specimens with low levels of 
TDP-43 pathology (average MTL TDP-43 rating < 1), 
using only age as a covariate. Once again, significant 
associations are found between tau and thickness in the 
ERC region (corrected p = 0.035) and SRLM (corrected 
p = 0.032), with a weakened association in the SUB/CA1 
region (corrected p = 0.092). To further understand the 
weakened tau effects in the presence of TDP-43 pathol-
ogy, we performed a supplementary analysis looking at 
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Fig. 4  Statistical map of the correlation between cortical thickness and the severity of tau pathology. These analyses were performed in the subset 
of specimens age 59 years and older. The covariates used in each analysis are provided in parentheses. The clusters outlined in black indicate 
regions where a significant correlation was observed after correction for multiple hypothesis testing (corrected p < 0.05). The clusters outlined 
in blue indicate regions where a trend level correlation was observed (corrected p < 0.10). (SUB subiculum, SRLM stratum radiatum lacunosum 
moleculare, CA cornu ammonis, DG dentate gyrus, HATA​ hippocampal amygdala transition area, ERC entorhinal cortex, BA Brodmann Area)
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effects of TDP-43 pathology on regional thickness with 
age and tau as covariates. Our analysis reveals significant 
associations between TDP-43 rating and atrophy in the 
posterior parahippocampal cortex (corrected p = 0.027), 
anterior hippocampus (corrected p = 0.01) and SRLM 
(inferior cluster: corrected p = 0.003, superior cluster: 
p = 0.011) (Additional file 1: Fig. S5).

Evaluating neuropathological asymmetry
For a subset of twenty-eight specimens, neuropatho-
logical examinations were performed in the hemisphere 
both ipsilateral and contralateral to the MTL that was 
scanned. Unlike the contralateral neuropathological 
examinations, which were performed for use in a clinical 
setting, the ipsilateral ratings are based on thicker histol-
ogy sections intended for 3D serial reconstruction and 
are more experimental. Figure  5 shows Bland–Altman 
plots comparing average ipsilateral and contralateral rat-
ings of tau and TDP-43 pathology. Cases with an FTLD 
neuropathological diagnosis are indicated using a dif-
ferent color since these cases are known to demonstrate 
prominent asymmetry [34, 35]. For most cases, the ipsi-
lateral and contralateral ratings are consistent with each 
other. In five cases, there is some asymmetry in tau rat-
ings (difference in average rating > 1). As expected, the 
largest discrepancies in ratings are observed in cases with 
FTLD neuropathology. CNDR15 demonstrates severe 
asymmetric tau burden (ipsilateral—3, contralateral—0) 
and has a neuropathological diagnosis of FTLD-TDP. 

Similarly, CNDR06 demonstrates significant asymmetry 
in TDP-43 pathology, with a difference of 2.33 in average 
rating between both sides and has an FTLD-tau neuro-
pathological diagnosis.

In a secondary analysis, we were interested in using 
this data to evaluate the degree to which differences 
between ipsilateral and contralateral protocols, as well as 
hemispheric asymmetry and potential sampling effects, 
impact the results of our cortical thickness analyses. Fig-
ure 4 includes the result of the regional thickness analysis 
using contralateral pathology data, correlating cortical 
thickness and tau pathology with age and TDP-43 pathol-
ogy as covariates. We observe patterns of correlation 
between thickness and tau pathology consistent with the 
ipsilateral analysis (cluster in ERC, corrected p = 0.048), 
and associations in the SRLM (corrected p = 0.014 and 
0.017) and SUB/CA1 region (corrected p = 0.047) that are 
stronger in absolute terms than in the ipsilateral analysis. 
Similar patterns of correlation are also observed between 
thickness and contralateral ratings of TDP-43 pathology 
when compared to the results of the ipsilateral TDP-43 
analysis (Additional file 1: Fig. S5).

Discussion
Using a highly customized registration framework, we 
generated a first-of-its-kind 3D probabilistic atlas of the 
human MTL that combines ultra-high-resolution ex vivo 
MRI scans of 29 specimens, with histology-based annota-
tions in 11 specimens from a cohort of brain donors that 
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includes patients with AD and related dementias, as well 
as neurologically unimpaired individuals. In prior work, 
we generated an ex vivo probabilistic atlas of the human 
hippocampus [28]. Here, we show that the same atlas 
construction framework can be optimized to co-register 
the extrahippocampal regions which present a separate 
set of challenges for groupwise alignment due to signifi-
cant variability in patterns of cortical folding [32, 36]. In 
contrast to [28], where clinical diagnosis of AD was used 
to characterize the effects of AD on the hippocampus, we 
use neuropathological ratings to more specifically char-
acterize the effects of tau and TDP-43 pathology on MTL 
morphometry. Leveraging this atlas and histology-based 
pathology measures, we are now able to provide a direct 
link between changes in MTL structure and the under-
lying neurodegenerative pathologies to identify specific 
regions in the MTL where patterns of structural change 
are associated with the severity of tau pathology during 
the early stages of the disease.

Early works by Braak and Braak describe a character-
istic pattern of spread of NFTs within the brain which 
encompasses six stages [1]. The first three Braak stages 
are defined by the stereotypical pattern of involvement of 
specific MTL regions, suggesting differential vulnerabil-
ity of these regions to early tau pathology and neuronal 
loss. When looking at the relationship between corti-
cal thinning and ratings of tau severity, after account-
ing for age, our analysis reveals significant correlations 
in the ERC and SUB/CA1 region of the MTL, consist-
ent with the earliest regions affected by NFTs based on 
early Braak staging. We also observe significant asso-
ciations in the SRLM, in agreement with histopathology 
studies showing early involvement of tau pathology in 
the SRLM of CA1, as well as prior in  vivo MRI studies 
which have demonstrated SRLM atrophy in patients with 
AD [9, 28, 37, 38]. Similar associations, albeit weakened, 
are observed when we perform thickness analysis in the 
subset of specimens with low levels of TDP-43 pathology 
(average MTL TDP-43 rating < 1) further confirming the 
specificity of atrophy in these regions to tau pathology.

Interestingly, this set of locations is also in agreement 
with the results of an in  vivo study that analyzed the 
association between 18F-flortaucipir uptake in the MTL 
and atrophy [21]. Although tau PET is limited by its spa-
tial resolution and confounds such as off-target binding 
[39], the matching patterns of atrophy provide support 
for the specificity of 18F-flortaucipir uptake to underly-
ing tau pathology. However, in our thickness analysis, we 
find that after accounting for the presence of co-existing 
TDP-43 pathology in the full dataset, the associations 
between tau and thickness are weakened in the ERC and 
SRLM, while the SUB/CA1 associations no longer reach 
significance. In the supplementary analysis looking at the 

effects of TDP-43 pathology on MTL atrophy, we observe 
significant associations between cortical thinning and 
TDP-43 pathology in the anterior hippocampus, SRLM 
and posterior PHC region. Our finding of TDP-43 effects 
in the anterior hippocampus is consistent with previous 
studies [6, 40]. The strong TDP-43 effects suggest that by 
covarying for TDP-43 pathology in our analysis, we may 
be obscuring some of the associations due to tau pathol-
ogy, and vice versa. We note that for one of the cases 
included in the study (CNDR06), which demonstrates 
severe tau and TDP-43 pathology, the ex vivo MTL scan 
displayed significantly less atrophy when compared to 
the donor’s antemortem in  vivo MRI scan. We hypoth-
esize that this is likely due to brain swelling. Additional 
file  1: Fig. S6 shows the results of the primary analysis 
with this specimen excluded, with similar patterns of tau/
thickness correlations (with age and TDP-43 pathology 
as covariates) but weakened significance, likely explained 
by the fact that despite the swelling, this case had lower 
than average thickness, and removing the case from the 
analysis reduced the degrees of freedom in the analy-
sis. While this issue was not observed in the remainder 
of the dataset (16 of the 29 ex  vivo scans had antemor-
tem MRI available), further research needs to be done to 
understand how to account for this potential source of 
variability.

Our finding of tau effects in the anterior ERC and SUB/
CA1 region appears inconsistent with an antemortem 
study by de Flores et  al. [6] that correlated antemortem 
MTL subregional volumes with semi-quantitative tau 
pathology ratings in the MTL as well as global Braak stag-
ing scores and found a significant association between 
tau and the posterior hippocampus but no other MTL 
subregions. It is important to note that there are signifi-
cant differences in the study population; the de Flores 
et  al. study consisted of a larger dataset with a greater 
number of TDP-43 positive cases which may have con-
cealed tau effects in anterior MTL regions. Indeed, the 
heat maps in Fig. 4 in the de Flores et al. study show hints 
of correlation with tau in the anterior MTL, but these do 
not reach significance at a whole ROI level. Surprisingly 
we do not detect posterior hippocampal tau effects in the 
current study. This may be due to the small sample size, 
the fact that de Flores et al. only included cases with at 
least low levels of AD neuropathologic change in their 
study, and the limited number of cases with late-stage 
AD in the present study. The stronger posterior effect in 
de Flores et  al. could be explained in part by the larger 
number of cases in their study with high AD neuropatho-
logic change, since advanced AD is associated with more 
diffuse tau burden, spreading away from anterior MTL 
structures [41]. Once our dataset grows to include more 
pathology specimens, we will be able to better examine 
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this by studying the evolution of NFT-specific “hotspots” 
as AD pathology progresses.

On the contrary, our results complement the recent 
postmortem study by Wisse et  al. [25] that measured 
MTL thickness at seven hand-picked locations and 
reported associations with clinical neuropathology meas-
ures from the contralateral hemisphere. Wisse et  al. 
found significant associations between tau pathology and 
the thickness of BA35, SRLM and ERC (at a trend level), 
and widespread associations between TDP-43 pathol-
ogy and almost all MTL subregions. The current analy-
sis includes twenty-six of the fifty-eight specimens in 
[25] plus three additional specimens (the inclusion crite-
ria for our morphological study are more stringent than 
[25], requiring good quality MRI signal over most of the 
MTL extent); and it uses ipsilateral as well as contralat-
eral pathology measures. The computational atlas of the 
MTL allows us to study patterns of thinning associated 
with neurodegenerative pathologies at a much more fine-
grained level than Wisse et  al. [25]. Indeed, our results 
show refined patterns of atrophy specific to tau pathol-
ogy in the ERC and SRLM, consistent with [25]. Unlike 
[25], we do not observe tau effects in BA35. We note that 
given the early involvement of NFTs in BA35, one would 
expect to see stronger correlation patterns along the 
medial bank of the collateral sulcus. While our groupwise 
registration approach enables reliable quantification of 
thickness in most specimens, accurate characterization 
of the collateral sulcus during atlas construction is chal-
lenging due to large anatomical variability and complex 
sulcal geometry [33]. Therefore, unresolved misalign-
ments between odd sulcal patterns in some specimens 
likely weaken the power of measurements fully within 
BA35 and the ability to detect associations in this region.

Furthermore, the weakened associations in BA35 
could be partially attributed to variability in the loca-
tion of BA35 within the MTL cortex between speci-
mens. Prior studies have reported that the anatomical 
extents of BA35 and BA36 are highly dependent on the 
depth and branching pattern of the anterior collateral 
sulcus (CS) [32, 33]. In specimens with a deep continu-
ous sulcus, BA35 occupies part of the medial bank of 
the CS, whereas in specimens with a discontinuous sul-
cus, where the depth of the anterior branch is generally 
shallow, BA35 occupies a more superior portion of the 
medial bank, and even goes over the fundus to cover the 
lateral bank of the sulcus up to the midpoint of the fusi-
form gyrus in some cases. A similar pattern is observed 
in our dataset, as shown in Fig.  5 which illustrates the 
location of BA35 in the space of the ex vivo atlas for the 
eleven specimens with histologically derived MTL sub-
region labels. Although the registration pipeline deforms 
each specimen’s anatomy to create an average sulcus 

morphology, we notice that in the atlas space, for cases 
with a discontinuous sulcus, BA35 tends to start further 
along the medial bank of the CS and extends over the 
fundus. On the other hand, for cases with a continuous 
CS, BA35 only occupies the medial bank of the CS. Fig-
ure 6 also plots heatmaps indicating the overlap between 
BA35 across all specimens as well as the anatomi-
cal boundaries between the SUB/ERC, ERC/BA35 and 
BA35/BA36. We see that the boundaries between ERC/
BA35 and BA35/BA36 are highly dispersed and span the 
entire length of the CS. In contrast, the SUB/ERC bound-
ary is not as variable. In general, the boundary disper-
sion is greater in the anterior portion of the MTL, likely 
due to greater variability in sulcal depth in this region. 
While our registration approach significantly improved 
atlas quality compared to a more conventional method, 
a more advanced computational method which explicitly 
enforces cortical geometry needs to be developed to fully 
address this problem.

In a secondary analysis, we investigated the degree 
to which hemispheric asymmetry impacts the findings 
of our regional thickness analyses using data from the 
twenty-eight donors for whom we had neuropathological 
ratings sampled from both hemispheres. Previous stud-
ies have shown some asymmetry in ratings of tau pathol-
ogy, and TDP-43 in 15–43% of cases with AD [42, 43]. 
In our dataset, we observe discrepancies in the ratings of 
tau pathology between both sides in 18% of cases, with 
the largest discrepancies in the average ratings of tau 
and TDP-43 pathology in cases with a neuropathological 
diagnosis of FTLD-TDP and AGD respectively. Patholog-
ical asymmetry is expected in these types of cases with 
FTLD neuropathology. It is important to note that differ-
ences in sampling location, protocols and staining used 
to obtain the ipsilateral and contralateral ratings may be 
contributing to some variability between the two sides. 
Despite these differences, the regional thickness analysis 
performed using the contralateral ratings reveals signifi-
cant associations between MTL thickness and tau/TDP-
43 pathology in regions consistent with the results of the 
ipsilateral analysis. Although one might expect the cor-
relations to be weaker when using contralateral ratings, 
the stronger correlations may be explained by the obser-
vation that several of the cases in our dataset that have a 
contralateral TDP-43 rating of zero, tend to have an ipsi-
lateral TDP-43 rating in the range of zero to one which 
is considerable on a scale from 0 to 3. This variability in 
ratings between the two sides is likely due to the fact that 
the contralateral ratings are derived using a more clini-
cal protocol unlike the ipsilateral ratings, which are more 
experimental.

The limitations of the present study are the clini-
cal heterogeneity of our dataset and the reliance on 
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semi-quantitative ratings of tau and TDP-43 pathology. 
The semi-quantitative measures are sensitive to inter-
rater and intra-rater errors and likely contribute to some 
uncertainty in our findings [44]. Additionally, current 
ratings of tau and TDP-43 pathology do not distinguish 
between the various subtypes of pathology. Tau pathol-
ogy takes multiple forms, including tangles, pre-tangles, 
FTLD-tauopathy, or aging-related tau astrogliopathy 
(ARTAG) [45]. Likewise, there are distinct subtypes of 
TDP-43 pathology (neuronal cytoplasmic inclusions, 
neuronal intranuclear inclusions, dystrophic neurites, 
white matter threads), which may be linked to differ-
ent clinical manifestations of neurodegenerative disease 

[46]. Although the current measures do not assess NFTs 
specifically, we believe that the patterns of atrophy iden-
tified in our analyses likely reflect NFT-related changes 
since they are consistent with the regions affected early 
in Braak staging. Moreover, as per the B scores pro-
vided in Additional file  1: Table  S2, Braak I, or higher 
stage tau pathology was observed in at least 69% of our 
specimens, indicating the presence of NFTs specifically. 
Example patches of ipsilateral tau IHC sections sampled 
at the locations corresponding to the AD-specific “hot-
spots” found in Fig.  4B are shown in Additional file  1: 
Fig. S10. By visual assessment, we can observe some tan-
gles among the specimens without primary FTLD-Tau 

Fig. 6  Location of medial temporal lobe (MTL) subregion, Brodmann Area 35 (BA35), defined histologically in eleven specimens and mapped into 
the space of the MRI atlas. Different color labels are used to indicate the type of sulcal pattern each speciemen has: type 1, deep continuous sulcus; 
type 2, discontinuous sulcus with shallower anterior branch. Panels A and B each show a cross-sectional view through the MTL at an anterior and 
more posterior level respectively. Each panel includes a heat map (top-left corner) showing the degree of overlap across the different specimens. 
The bottom row demonstrates the variability in the location of specific anatomical bondaries between different specimens. Note that boundaries in 
which a background label is adjacent to a non-background label are not considered, i.e. in some cases, the ERC label is adjacent to the background 
instead of the para-subiculum. (ERC entorhinal cortex, ParaSUB para-subiculum, BA Brodmann Area)
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or AGD. However, more evidently, we observe a trend 
of increased neuropil threads, which are a part of Braak 
staging [47], as cortical thickness in the region of the hot-
spot decreases. Furthermore, we note that the cases with 
primary FTLD-Tau/AGD are evenly distributed between 
cases with high and low thickness, particularly in the SUB 
and SRLM hotspots, suggesting that FTLD-associated 
tau is unlikely to be driving the tau-structure associa-
tions in these regions. To further examine the contribu-
tion of NFTs to neurodegeneration in the hotspots, we 
performed a preliminary analysis in a subset of fifteen 
specimens for which 3D quantitative maps of NFT bur-
den derived from dense serial histology are available [29]. 
These NFT density maps are generated using a weakly 
supervised deep learning algorithm, trained to specifi-
cally detect tangles and pre-tangles on AT8-stained sec-
tions and have been shown to correlate strongly with 
manual NFT counts [29]. Three cases with a primary 
FTLD-Tau or AGD diagnosis (CNDR01, CNDR06 and 
CNDR07) were excluded from the analysis since they 
likely contain 4R-tau inclusions which can be difficult 
to distinguish from AD-related NFTs. In the remaining 
twelve cases, we examined the correlation between the 
average NFT burden computed within each hotspot and 
the median thickness of each hotspot, and observe very 
strong correlations, although the hotspot in the ERC does 
not reach significance (Additional file 1: Fig. S12). These 
results are weakened when we include age in the model. 
This is likely due to the small sample size and the fact that 
age and tau are significantly correlated (average R = 0.61 
across the three hotspots). Despite the small dataset, 
these results are encouraging and suggest that NFTs are 
indeed playing a role in driving neurodegeneration in the 
ERC, SUB and SRLM hotspots. As we expand our data-
set, collect more quantitative histology data and develop 
automated methods to extract quantitative measures of 
the different types of tau and TDP-43 pathology, in future 
work we will be able to better overcome the above-men-
tioned limitations and validate the relationship between 
NFTs and thickness.

Overall, our findings provide a more refined under-
standing of how tau pathology is associated with cor-
tical thinning within the MTL and motivate further 
characterization of the MTL in AD using detailed 
ex  vivo MRI analysis. The clusters identified from the 
tau thickness analyses indicate granular MTL regions 
where in  vivo measures of neurodegeneration are 
expected to be strongly associated with tau pathol-
ogy. In an exploratory analysis, we attempted to use 
the ex  vivo derived, AD-specific hotspots (Fig.  4B) as 
biomarkers in a longitudinal analysis of ADNI data 
(not shown). While the hotspots did not show statis-
tical effects in a group comparison of Aβ negative, tau 

negative (A−T−) and Aβ positive, tau positive (A+T+) 
patient groups with mild cognitive impairment, BA35 
achieved the strongest group discrimination. The lack 
of statistically significant group differences with the 
hotspots may be due to the small ex  vivo sample size, 
clinical heterogeneity in our dataset and difficulties in 
accurately aligning BA35 in the atlas.

Constructing a probabilistic atlas of the MTL has far-
reaching applications in AD research beyond the work 
shown here. Perhaps future analyses leveraging this 
technology in a patient cohort more consistent with 
the one we would expect to encounter in an AD clini-
cal trial would result in hotspots that are more sensitive 
to longitudinal change in the presence of NFT pathol-
ogy, potentially enabling the development of neurode-
generation biomarkers which are more effective during 
early AD clinical trials. Furthermore, in future work, 
3D quantitative maps of NFT density derived from 
serial histology imaging will be mapped into ex  vivo 
atlas space to generate a comprehensive probabilis-
tic description of the progression of NFT pathology 
at each Braak stage [29, 48, 49]. This will allow us to 
describe NFT topography during the different stages 
of AD in more detail than current descriptions, which 
are in 2D and based on selective sampling of the MTL 
[1, 2]. Additionally, in a future version of the atlas, 
cytoarchitecture-guided anatomical labels of MTL sub-
regions will be included from a larger number of speci-
mens. Such an atlas would reflect anatomical ground 
truth and can be used to inform in vivo MRI protocols 
for segmentation of MTL subregions, thereby improv-
ing the accuracy of MRI biomarkers derived from these 
subregions.
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