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Abstract

Huntington Disease (HD) is an inherited movement disorder caused by expanded CAG repeats in the Huntingtin
gene. We have used single nucleus RNASeq (snRNASeq) to uncover cellular phenotypes that change in the disease,
investigating single cell gene expression in cingulate cortex of patients with HD and comparing the gene
expression to that of patients with no neurological disease. In this study, we focused on astrocytes, although we
found significant gene expression differences in neurons, oligodendrocytes, and microglia as well. In particular,
the gene expression profiles of astrocytes in HD showed multiple signatures, varying in phenotype from cells that
had markedly upregulated metallothionein and heat shock genes, but had not completely lost the expression of
genes associated with normal protoplasmic astrocytes, to astrocytes that had substantially upregulated glial
fibrillary acidic protein (GFAP) and had lost expression of many normal protoplasmic astrocyte genes as well as
metallothionein genes. When compared to astrocytes in control samples, astrocyte signatures in HD also showed
downregulated expression of a number of genes, including several associated with protoplasmic astrocyte
function and lipid synthesis. Thus, HD astrocytes appeared in variable transcriptional phenotypes, and could be
divided into several different “states”, defined by patterns of gene expression. Ultimately, this study begins to fill
the knowledge gap of single cell gene expression in HD and provide a more detailed understanding of the
variation in changes in gene expression during astrocyte “reactions” to the disease.
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Introduction
Huntington Disease (HD), a neurodegenerative disorder
caused by CAG repeats in the Huntingtin gene, leads to
the accumulation of the mutant protein and an associated
neuronal degeneration and gliosis [34]. Although Hun-
tingtin is expressed in all cell types, the neuropathology of
the disease shows substantial variation. For instance, there
are caudal-rostral and medial-lateral gradients of severity
in the neostriatum [57], and relative sparing of the nucleus
accumbens in advanced grade HD [44]. Neuronal degen-
eration in the isocortex involves the motor and sensory
cortices but relatively spares the superior parietal lobule
[37], and in some patients, the anterior cingulate cortex is
also involved, and cortical layers III, V, and VI are espe-
cially vulnerable [45].

Understanding the differences in microenvironment be-
tween affected and relatively resistant regions may illu-
minate the cellular and molecular mechanisms underlying
vulnerability and resilience to neurodegeneration. Astro-
cytes, in particular, are a key to maintaining the neuronal
microenvironment, and display regional variation across
the dorsal-ventral, rostral-caudal, and medial-lateral axes
according to developmentally-determined domains [55].
Additionally, astrocytes exhibit intra-regional heterogen-
eity. For example, subpial and white matter astrocytes
contain more glial fibrillary acidic protein (GFAP) and
CD44 than protoplasmic astrocytes but lower levels of
protoplasmic astrocyte markers, such as glutamate trans-
porters and glutamine synthetase [51]. Astrocytes in the
affected regions of the HD brain show a “reactive” state,
generally defined by histochemistry or by an increase in
GFAP [48, 58], but also by a decrease in the expression
and protein levels of the major astrocytic glutamate trans-
porter, EAAT2 [2, 9]. In mouse models of HD, expression
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of mutant Huntingtin (mHTT) in astrocytes leads to de-
crease in the expression of the glutamate transporter [5],
and the failure to buffer extracellular potassium and glu-
tamate leads to neuronal hyper-excitability and a HD-like
phenotype, which is reversed by restoration of astrocytic
membrane conductance [53]. In addition, astrocytes in
HD contribute to an inflammatory environment [16, 27],
which likely participates in the progression of the path-
ology. Thus, there is substantial evidence that astrocytes
play a primary role in the evolution of HD.
Whereas bulk transcriptome-wide studies have pro-

vided important insights into molecular changes in HD
[1, 14, 15, 23, 29, 38], bulk samples comprise a mixture
of cell types, so astrocyte-specific signatures in HD may
be obscured. Single cell RNA sequencing (scRNAseq) is
a powerful technique to interrogate cellular heterogen-
eity [6, 42]. Although brain banks house hundreds of
frozen postmortem brain specimens, technical difficul-
ties limit the application of scRNAseq to these samples.
However, this is not a limitation of single nucleus RNA
sequencing (snRNASeq), which accurately elucidates cel-
lular heterogeneity in a manner comparable to whole/
cytoplasmic scRNAseq [25], and can be applied to frozen
brain tissue [22]. This technique has been used to iden-
tify multiple novel, regionally-diversified cortical excita-
tory and inhibitory neuronal sub-types [24]. Recently,
massively parallel snRNASeq using droplet technology
revealed cellular heterogeneity in the human postmor-
tem cortex and hippocampus [11, 17]. The disease-
specific cell-type specific transcriptional signatures were
described in oligodendroglia in multiple sclerosis [18]
and multiple cell types in Alzheimer Disease [31] and
microglia in Alzheimer disease [39].
In this study, we performed snRNASeq of fresh frozen

cingulate cortex from Grade III/IV HD patients and
compared the results to those from non-neurological
control patients to examine single cell differences in
gene expression. We have focused here on astrocytes, al-
though we found significant differences in all cell types.
We examined the cingulate cortex, which is often af-
fected in HD patients, because the cortical pathology is
less severe than the neostriatal pathology, and because
there is little known about cortical astrocyte pathology
in HD. Finally, we focused on Grade III/IV to identify
astrocyte gene expression changes in an intermediate
stage of evolution rather than at an end stage.
Overall, we found substantial heterogeneity in astrocyte

signatures, with clear differences in population structure
between control and HD tissue samples. In particular, the
“reactive” astrocytes in HD could be divided into several
different “states”, defined by patterns of gene expression.
These ranged from astrocytes that had markedly upregu-
lated metallothionein (MT) and heat shock genes, but had
not completely lost the expression of genes associated

with protoplasmic astrocytes, to astrocytes that had sub-
stantially upregulated GFAP and had lost expression of
many normal protoplasmic genes as well as the MT genes.
The variation in astrocytes is not surprising, given that
HD is a degenerative disease that progresses over years
and one would not expect all astrocytes to respond syn-
chronously during the course of the disease.
Studies like this one will begin to fill the knowledge

gap of single cell gene expression in HD and give us a
more detailed understanding of the variation in changes
in gene expression during astrocyte “reactions.” Further-
more, network building from these gene sets will help
define interacting genes and important regulatory genes
behind reactive astrocyte states.

Methods
Dissection of the cingulate cortex from frozen tissue
Postmortem anterior cingulate cortex specimens frozen
during autopsy from control and grade III/IV HD were
obtained from the New York Brain Bank. Four cases
(two HD and 2 control) were selected for snRNAseq and
12 cases (6 and 6) for bulk RNAseq, all with RNA integ-
rity numbers of > 7. Cortical wedges measuring ~ 5 ×
4 × 3mm were dissected on a dry ice cooled stage and
processed immediately as described below. A table of
the cases and controls used is provided in Table 1.

Single nucleus RNAseq
Nuclei were isolated as described in [22]. Briefly, cortical
tissue was homogenized in a Dounce homogenizer with
10–15 strokes of the loose pestle and 10–15 strokes of
the tight pestle on ice in a Triton X-100 based, sucrose
containing buffer. The suspension from each sample was
filtered through a BD Falcon tubes with a cell strainer
caps (Becton Dickinson, cat. no. 352235), washed, re-
filtered, washed, followed by a cleanup step using iodixa-
nol gradient centrifugation. The nuclear pellet was then
re-suspended in 1% BSA in nuclease-free PBS (contain-
ing RNAse inhibitors) and titrated to 1000 nuclei/μl.
The nuclear suspensions were processed by the Chro-
mium Controller (10x Genomics) using single Cell 3′
Reagent Kit v2 (Chromium Single Cell 3′ Library & Gel
Bead Kit v2, catalog number: 120237; Chromium Single
Cell A Chip Kit, 48 runs, catalog number: 120236; 10x
Genomics).

Sequencing and raw data analysis
Sequencing of the resultant libraries was done on Illu-
mina NOVAseq 6000 platformV4 150 bp paired end
reads. Alignment was done using the CellRanger pipeline
(10X Genomics) to GRCh38.p12 (refdata-cellranger-
GRCh38–1.2.0 file provided by 10x genomics). Count
matrices were generated from BAM files using default
parameters of the DropEst pipeline [41]. Filtering and
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QC was done using the scater package [32]. Nuclei with
percent exonic reads from all reads in the range of 25–
75% were included. Nuclei with percent mitochondrial
reads aligning to mitochondria genes of more than 14%
were excluded. Genes were filtered by keeping features
with > 10 counts per row in at least in 31 cells.

Normalization and data-cleanup
The count matrix was normalized by first running the
quickcluster function, then estimating sizefactors by call-
ing scran::computeSumFactors() function with default
options and clusters set to clusters identified by calling
quickcluster function. Scater::normalize function was
then used to generated normalized counts. Of note,
batch effects were taken into account when normalizing
the data (Scater package in R). Doublet identification
was done using scran::doubletCells function with default
options, and cells with doublet score of > = 1.5 were ex-
cluded. A total of 5199 cells passed QC at this point
(C5382: 893 nuclei, H5575: 646 nuclei (Batch1), and C
5404: 1096 nuclei, H5493: 2151 nuclei (Batch 2)). We fil-
tered low-quality nuclei using the percentage of the cell-
lineage specific genes that are expressed (Identity score
– see below). If the cell’s identity score was less than
20%, a nucleus was considered low-quality and was ex-
cluded. A total of 4786 nuclei remained after this step.

Clustering and classification of nuclei
Clustering, cell-lineage assignment, and sub-clustering
was done as follows. First, an unsupervised pre-clustering
step was performed to split the nuclei into small pre-
clusters. Second, the pre-clusters were assigned a class
using gene set enrichment analysis and GO term

enrichment analysis of the pre-cluster markers. Third,
mixed pre-clusters (with mixed enrichment scores for
lineage genes) were identified, and the nuclei within these
clusters were assigned to new pre-clusters based on their
highest identity score (see below). Fourth, the pre-clusters
were agglomerated into master classes (Astrocytes, Neu-
rons, Microglia, Endothelial cells, Oligodendrocytes, and
Oligodendrocyte Precursor Cells (OPCs). Finally, master
classes were sub-clustered using the SC3 clustering algo-
rithm. These steps are described in Additional file 1:
Figure S7 and in detail below.

Pre-clustering
First, dimensionality reduction methods including tSNE
and PCA (prcomp) were conducted using functions pro-
vided in scater package. Briefly, dimensionality reduction
by tSNE was done using scater::runtSNE() or runPCA()
functions. For runPCA() function, a random seed was
set (12345) and theta was set to default (0.5). Multiple
perplexity levels were tested –a level of 527 was empiric-
ally chosen. We then used an unbiased clustering
approach using shared nearest neighbor utilizing the
scran::buildSNNGraph() function, with dimensionality
reduction set to “TSNE”. Multiple K values were tested
(6–16) and the number of pre-clusters generated was ex-
amined. K = 6 yielded 35 discrete pre-clusters, with the
least number of mixed pre-clusters (based on results
from the cell classifier- below). K = 6 was thus chosen
for further clustering. We appreciate that using a highly
nonlinear reduction such as tSNE as input for building a
SNN graph is not preferable to using PCA. However,
our experience is that using tSNE reduced dimensions
yielded fewer pre-clusters with mixed signatures of well-

Table 1 HD and Control Patient Data

Patient Age Gender CAG
Repeats

Other Neuropathology Cause of Death RNASeq PMICOLD PMIFROZEN

HD5493 48 F 46–25 Glial scars, dentate, cerebellum, small PE, pneumonia SN + BULK N/A 9:33

HD5575 71 M 44–18 AA, H/I acute Cardiac Arrest SN + BULK 0:07 15:04

HD5301 54 M 46–19 AA, H/I acute N/A BULK 1:27 18:52

HD4929 50 M 49–16 H/I acute Inanition BULK 0:05 43:08

HD3859 36 M 50–17 NS N/A BULK 0:40 15.:00

HD5300 53 F 46–22 NS Pneumonia BULK 0:58 20:03

C5382 62 M AA Acute,PE SN + BULK N/A 5:24

C5404 54 F AA Acute, MI SN + BULK 6:41 16:36

C4812 36 M H/I acute Acute, MI BULK N/A 8:37

C180 52 F AA, H/I acute, infarcts, C, precentral gyrus N/A BULK 2:25 6:07

C98 55 M AA Acute collapse BULK 6:05 37:00

C4518 56 M AA, focal, old hem & infarcts, thalamus, stem, basal ganglia Acute cardiac arrest BULK N/A 8:50

PE Pulmonary embolism, MI Myocardial infarction, AA Athero-arteriosclerosis, NS No other significant neuropathology, H/I Hypoxic/ischemic changes, C Caudate, N/
A Not available. PMICOLD hours between death and preservation of brain on ice. PMIFROZEN hours between preservation on ice and freezing. Note that some of
these patients died outside of Columbia University Medical Center and brains were sent here on ice. Cause of death was not available for some patients who died
outside the medical center and whose autopsy was limited to the brain
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studied, known cell classes. Moreover, we used an inde-
pendent method to ascertain the quality of the pre-
clusters (see next section).
We developed a simple algorithm to assign cell classes

based on the highest proportion of cell-class specific genes
(referred to thereafter as Cell classifier tool). The tool also
classifies nuclei into master classes (Neurons, Astrocytes,
Oligodendrocytes, OPCs, Microglia, and Endothelial
Cells). More specifically, each nucleus is given an identity
score that is equal to the percentage of genes that are
expressed from a cell-class specific gene list. The gene lists
used to classify nuclei are based on the literature [36, 63],
modified, and are provided (Additional file 2: Table S1).
Each nucleus is given identity scores for all 6 cell types:
Neuron, Astrocyte, Oligodendrocyte, OPC, Microglia, and
Endothelial. The cell is assigned the class (identity) for
which it scores the highest identity score. Additionally, an
ambiguity status is assigned based on whether the curve of
identity scores is skewed (Unambiguous) towards the
highest score versus flattened (Ambiguous). More specific-
ally, if the sum of second and third highest identity scores
is higher than 2X the highest identity score, the identity
curve is flattened, and the cell is considered ambiguous.
This helps identify problematic nuclei in mixed clusters -
as explained in the section below.

Pre-cluster identity assignment
To assign pre-cluster identities, we used multiple ap-
proaches to ascertain pre-cluster and nuclei identities.
First, we used the mean of normalized counts per gene
per cluster to perform gene set enrichment analysis using
the gsva R package (‘gsva’ method with kcdf = “Gausian”
and mx.diff = FALSE). We used cell-type specific genesets
based on a literature search (provided in Additional file 2:
Table S1 – the same as those used for the cell classifier
tool). Second, we manually examined the top marker
genes that differentiate pre-clusters and determined
whether any pre-clusters showed lineage-discordant
marker genes. For example, if one pre-cluster was charac-
terized by oligodendrocytic (MBP, TMEM120, MOBP) as
well as neuronal (CCK, MAP1B, BEX3, NRGN) or micro-
glial (HLA-B, IBA1, C1QB) genes, a cluster was consid-
ered mixed. Finally, we also performed GO term
enrichment analysis on the top marker genes and manu-
ally examined the terms that distinguished each cluster.
Pre-cluster markers were discovered using the scran::find-
markers() function with default options.
The majority of pre-clusters were homogeneous, and

showed high enrichment scores in one lineage. However,
some pre-clusters, like pre-clusters 2, 7, 27, and 17, were
mixed, showing high enrichment scores for microglial and
oligodendrocytic genes (2 and 17), or astrocytic and neuronal
genes (7 and 27). Thus, we used supervised classification, as
above, and re-assignment of the nuclei in the ambiguous

clusters based on the maximum score assigned by the cell
classifier scores (cluster_max_score). This resulted in the fol-
lowing pre-clusters: Microglia_r2_17, Oligodendrocyte_r2_
17, Astrocyte_r2_17, Neuron_r17_2, Endothelial_r2, Astro-
cyte_r7_1, Astrocyte_r27_2, Neuron_r7_1, and Neuron_r27_
2. In addition, cluster 31 showed mixed neuronal and micro-
glial enrichment scores, but based on the cell classifier scores
the majority of cells 51/59 were designated as neurons, and
only one cell was called microglial. (Astrocyte- 6, endothelial
cells- 0, Microglial-1, Neuron-51, Oligodendrocyte − 1).
Thus, this cluster was renamed as 31_Neuron. Note, for
endothelial cells, only supervised assignment was able to de-
tect a discrete cluster.
Afterwards, clusters of the same lineage were conglom-

erated into master classes: Astrocytes (1064 nuclei), Endo-
thelial cells (19), Microglia (147), Neuron (2085 nuclei),
Oligodendrocytes (1230 nuclei), and OPC’s (241 nuclei).
For neuronal clusters, a minority of nuclei expressed

astrocytic genes despite the neuronal identity being the
highest as assigned based on the cell-classifier results.
These cells had ambiguous scores per the cell classifier.
Thus, all neuronal nuclei that were classified as ambigu-
ous were excluded (219 nuclei), leaving 1866 nuclei for
downstream analysis (to do SC3). GFAP and AQP4
genes were excluded from the analysis of neuronal nu-
clei (the counts were re-normalized without reads from
GFAP/AQP4 genes).

Consensus clustering using SC3 for sub-clustering
To determine objectively the optimal way to cluster the
astrocytic, oligodendrocytic, and neuronal nuclei, we
used consensus clustering as described in the SC3 pack-
age [19]. Values for K (number of clusters in K-mean
clustering) were empirically tested and silhouette widths
average values for the resultant clusters were examined.
For astrocytes K = 6 was chosen as silhouette values were
all above 0.5 (except cluster 2, an HD astrocytic cluster
with both GFAP expression and MT gene expression.
We decided to keep this cluster as it made biological
sense. Cluster markers (generated through the SC3 pipe-
line) were then generated using pairwise t-test. To find
marker genes (SC3 package), a binary classifier was con-
structed as informed by the mean cluster expression
values for each gene. Prediction accuracy was tested
using the area under the receiver operating characteristic
(AUROC) curve. Wilcoxon signed rank test p-values
were assigned per gene. Here we used (AUROC) > 0.65
and with the p-value < 0.05. Cluster markers were also
generated using pair-wise t-test (as per scran library in
R). Note, for the astrocytic sub-cluster gene list used to
classify astrocytic nuclei, the following options were
using for the scran::findmarkers() function: log fold
change 0.5 and markers were detected in “any” direction.
A selected list of astrocytic sub-cluster top gene markers
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and cell-type cluster markers are provided in Table 2
and Additional file 2: Table S1, respectively. These lists
were generated as follows: For each cluster, the log-fold
change values for each gene were summed across the
other clusters. The genes were then ranked in descend-
ing order by these sums. Genes with one or more nega-
tive log-fold changes or FDR-corrected p values> 0.05
were excluded from the marker list, even if the sum of
the log-fold changes was high. This imparts specificity to
the markers selected for each cluster.

Supervised classification of astrocytes
To classify astrocytic nuclei into astrocytic states, we
used monocle 2.0 [54]. We used the following rules to

assign astrocytes into four states based on log-
transformed expression values: Quiescent- SLC1A2 > =
2, MT2A < 4, and GFAP < 3; State-1Q: SLC1A2 > = 2,
MT2A > =4, and GFAP < 3; State-2R: SLC1A2 < 2,
MT2A > =4, and GFAP > = 3; and State-3R: SLC1A2 < 2,
MT2A < 4, and GFAP > = 3. Events that did not meet
any of the conditions, or met more than one condition
were classified as unknown or ambiguous, respectively.

Differential gene correlation analysis and gene multiscale
embedded gene co-expression network analysis
Differential gene correlation analysis and gene network
analysis were done in DGCA [35] and MEGENA [49] R
packages, respectively. In brief, the count matrix was

Table 2 Astrocyte sub-cluster markers

Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Cluster_6

MT2A HSP90AA1 COL5A3 MICALL2 APOE MALAT1 ID2

MT1F HSPB1 FGFR3 ATP1B2 PTN GFAP S100B

MT1E CRYAB C1orf61 CARMIL1 TTYH1 NEAT1 FOS

MT1X MTATP6P1 NTM CAPN2 GLUL FP236383.2 DBI

MT1G HSPA1A AC007325.2 NPIPB12 CALM2 SORBS1 HES1

MT1M UBC SLC1A2 ATP1A2 SLC1A3 PLP1 JUNB

FTL CALM1 CIRBP ACSL6 WIF1 CEBPD FABP7

MT3 HSP90AB1 ADGRV1 SYNE1 SLITRK2 TSC22D1 H3F3B

FAM171B ATP1B1 NAT8L ADGRG1 TNIK PRRG3 ID3

TPD52L1 GPM6B NCAN COL16A1 AC092535.1 SP100 PTGDS

EGLN3 CCK SFXN5 AL391807.1 MAP1B HILPDA MT1H

CPE VAMP2 SON ACSS1 SDC4 COL6A3 IFITM3

GJB6 MAP1A SNRNP70 GABBR1 TUBB2A RASD1

EPHX1 NRGN MIAT LINC00982 CKB CHI3L1

TKT EEF1A1 LCNL1 ADGRB1 HNRNPL SLC14A1

CLU EIF1 NDRG2 ANKDD1A CXCL14 SAT1

RGCC TMSB4X SRRM2 LSAMP F3 HNRNPH1

NUPR1 LUC7L3 ACADVL HES4 PCDH9

DST RNA5-8S5 TMSB10 PRKCA

MFGE8 RNA5-8SN5 PON2 BCL6

MTSS1L LGI4 BEX1 LINC00969

MACF1 FNBP1 ITM2C ANKRD36B

IQCA1 GOLGA8B SNAP25 HIF3A

NPIPB5 PCSK1N ITGB8

PLXNB1 RNA5-8SN1 DTNA

NPIPB3 IGFBP7 HSPA1B

PDGFRB DDX17 ETNPPL

RBM6

GAN

TOB1

ACTB
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filtered to keep the top 5% most highly expressed astro-
cytic genes by average using the filtergenes() function with
the following options: filterTypes = “mean” and filterCen-
tralPercentile = 0.95. The resultant matrix had a total of
856 genes. The DGCA pipeline was performed using the
ddcorAll() function with the following options: adjust = “
perm”, nPerm = 100, nPairs = 1000. Visualization was
done in ggplot2 [61]. Identification of astrocytic gene
modules was done in MEGENA R package with default
options (min size =10). GO term enrichment analysis of
genes in the modules was done using the moduleGO()
function in DGCA R package with a p value set at 0.05.
Gene set variation analysis of module genes was done
using the GSVA() R package as described below.

Gene set variation analysis (GSVA)
The average normalized count per gene per cluster was
calculated. The resultant cluster-wise count matrix was
used as input to the GSVA pipeline [12]. Gene sets used
for various tests are provided in the Additional file 2:
Table S1. The options used for performing the GSVA
pipeline are as follows: method = ‘gsva’, kcdf = “Gauss-
ian”, mx.diff = FALSE. Heat maps were generated using
the heatmap.2 in R function from the package gplots
[60] and scores z-scaled were indicated.

Bulk RNAseq
RNA was extracted from cingulate cortical specimens
using Trizol™ method. RIN values were determined, all
samples had values> 7.0. Sequencing was done on Illu-
mina Hiseq 2000™ platform. Raw reads were aligned to
the reference (GRCh38.p12) using STAR aligned [8].
Ribosomal RNA reads were removed using SortMeRNA
[21]. For data analysis was done in R v 3.5 in Linux or
Windows 10 environment. Genes with fewer than 10
reads per row were excluded. Principal component ana-
lysis of normalized variance stabilized counts (product of
DESeq2::varianceStabilizingTransformation) in FactoMi-
neR R package [26] revealed that the first two compo-
nents explained 47.4% of the variance in the data, and
that the variance was captured entirely in the first 11
components. Condition (HD versus control) was the
variable that is best correlated with PC1 (eta2 = 0.62,
cos2 = 0.88). After variance stabilization, library size was
not correlated with PC1 (correlation coefficient 0.08).
For differential gene expression and statistical analysis,
EdgeR [33, 43] with incorporating age and gender into
the design matrix. The likelihood ratio test (LRT)
method was used with an adjusted p value of 0.05 and
an absolute log fold change threshold set at 1.4. Princi-
pal component analysis and visualization were done
using DESeq2 package [30]. Sample distances were cal-
culated from normalized counts (DESeq2) using the
Manhattan metric using the dist() function from base

package in R (v3.5.2). pheatmap from pheatmap package
was used for visualizing utilizing the ward method for
clustering [20]. Gene Ontology term analysis was done
in gProfiler web platform (https://biit.cs.ut.ee/gprofiler/
gost) by supplying an ordered query and determine stat-
istical significance using the Benjamini-Hochberg FDR
method (p < 0.05). The terms shown in the Figures are
selected based on ordering the results based on nega-
tive_log10_of_adjusted_p_value followed by the ratio of
the shared of number of genes enriched in a term to that
of the total number of genes in the GO term (desc(inter-
section_size/term_size)).

Quantitative PCR
Total RNA was extracted from brain specimens using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA
concentration and purity were determined using Nano-
Drop (Thermo Scientific™, MA). A bioanalyzer was used
to determine RNA integrity. RNA was converted to cDNA
using High capacity RNA-to-cDNATM kit (Thermo
Fisher Scientific, Applied BiosystemsTM,MA). Specific
qPCR primers were designed using Primer3 and from Pri-
mer Bank. Each 15 μL qPCR reaction contained 5 ng of
cDNA, 7.5 μL of 2- SsoAdvanced™ Universal SYBR® Green
Supermix (Biorad, PA), 400 nM of each primer and
nuclease free water. The qPCR plates were read on a
Mastercycler® RealPlex2 (Eppendorf, NY). The reactions
were done in triplicates. Relative gene expression was cal-
culated using the delta delta Ct Pfaffl method with
UBE2D2 and RPL13 as reference genes (Pfaffl MW. 2001).
Statistical analysis was done using one-tailed Mann
Whitney U test. The GFAP primers were AGGTCC
ATGTGGAGCTTGAC (forward) and GCCATTGCCT
CATACTGCGT (reverse) and ACTNB primers were
CTGGAACGGTGAAGGTGACA (forward) and AAGG
GACTTCCTGTAACAATGCA (reverse) [62].

Human brain tissue processing, histology, in situ
hybridizations, and immunohistochemistry
Standard H&E and Cresyl violet histochemical stains
were done in the histology core at the Department of
Pathology and Cell Biology at Columbia University. The
cases and controls used are provided in Table 1. Stand-
ard chromogenic and fluorescent immunohistochemistry
was done as described previously in Sosunov A et al.
[51] in paraffin-embedded formalin-fixed tissue sections
or fresh frozen sections briefly fixed in 4% PFA, for 10
min (4o C) in 4% PFA in PBS. Paraffin sections after
deparaffinization were treated with Antigen Unmasking
Solution according to the manufacturer’s recommenda-
tions (Vector Laboratories, Burlingame, CA). GFAP and
Huntingtin dual immunohistochemical (IHC) stains
were done using standard DAB and alkaline phosphatase
dual staining on a Leica Bond™ auto-stainer. The
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following antibodies and dilutions were used GFAP (rabbit
polyclonal, 1:1000, DAKO Z0034 or chicken polyclonal,
Abcam Cat# ab4674, 1:300), CD44 (rat monoclonal, 1:100,
Millipore A020), glutamine synthetase (GS) (mouse
monoclonal, 1:1000, Transduction Laboratories 610,518),
C3 (rabbit monoclonal, 1:200, Abcam Ab20999), metallo-
thionein (MT) (mouse monoclonal, 1:200, Abcam
ab12228), HTT (mouse monoclonal, 1:2000 Millipore
MAB5492 1:2000), ALDH1L1 (mouse monoclonal, Encor
Cat# MCA-2E7, 1:100), IBA1 (Wako # 019–19,741 Rabbit
polyclonal, 1:300–1:500), LN3 (mouse monoclonal, 1;75,
MP Biomedicals LLC, #69303). For fluorescent IHC, sec-
ondary antibody conjugated to fluorophores: anti-mouse
Alexa Fluor 488 and 594, anti-rabbit Alexa Fluor 488 and
594, and anti-chicken Alexa Fluor 620; all from goat or
donkey (1:300, ThermoFisher Scientific, Eugene, OR) were
applied for 1 h RT. In situ hybridization was done using
RNAscope™ multiplex fluorescent v2 (ACDbio cat no
323100) per the manufacturer’s protocol in 5-μm paraffin-
embedded, formalin-fixed tissue sections. We used cus-
tom designed probes for GFAP and PLP-1 (cat no.’s 584,
791-C3 and 564,571-C2, for GFAP and PLP-1, respect-
ively). The probes were designed to cover all transcripts.
We used an available probe for MBP (Cat. no. 573051).
Images were taken on a Zeiss 810 Axio confocal micro-
scope. Brightfield and chromogenic images were taken on
an Aperio LSM™ slide scanner at 20X (Brightfield).

Results
Major gene expression alterations in the HD cingulate
cortex
To explore gene expression alterations in the cingulate
cortex, we analyzed bulk RNA expression profiles from
six grade III and grade IV HD and six non-neurologic
controls (Table 1). Analysis of sample distance showed
HD samples clustered together, except for one case of
Juvenile onset HD (H3859) (Fig. 1a). A recent report
suggests that in juvenile HD the cerebral cortex is largely
unchanged compared with controls [52]. We next per-
formed differential gene expression analysis from bulk
RNAseq specimens, and identified 3165 downregulated
genes and 1835 upregulated genes at a Benjamini-
Hochberg adjusted false discovery rate of 0.05 (Fig. 1b).
Reactome pathways and GO terms enriched in the up-
regulated genes revealed an enrichment in HD of mul-
tiple immune response genes including complement,
toll-like receptor signaling, and Interleukin pathways,
featuring IL-13 and IL-10 (Fig. 1d). In addition, genes in-
volved in responses to metal ions, metal sequestration,
and metallothionein binding were also enriched in HD.
GO term analysis of genes reduced in HD revealed that
the majority of these genes were associated with neur-
onal identity or function (Additional file 3: Figure S5D).
This is further discussed in the Additional file 4: Results.

A full list of the top differentially upregulated and down-
regulated genes in HD is provided in Additional file 5:
Table S5.
Next, we examined astrocytic genes that were differen-

tially expressed in HD. We chose to look at the expres-
sion of astrocyte genes from Zamanian et al. and
Liddelow et al. [27, 63], described as A1 (neurotoxic),
A2 (neuroprotective), and pan-reactive astrocytic genes
(Fig. 1c). We found that a subset of A1, A2, and pan-
astrocytic genes were significantly increased in HD, in-
cluding GFAP, CD44, OSMR, FKBP5, STEAP4, and
CXCL10 for pan-reactive genes, C3, SRGN, and GBP2
for A1 genes, and EMP1, CD14, and CD109 for A2
genes. In contrast, the gene AMIGO2, an A1-specific
gene, was reduced in HD. We next performed geneset
enrichment analysis of select astrocytic genesets (astro-
cyte differentiation and astrocyte markers [28]) and
found them enriched in HD (Fig. 1e-f). Of note, there
was significant heterogeneity in differential gene expres-
sion of astrocytic genes among HD cases. For example,
RNA expression profiles from the aforementioned juven-
ile HD case (H3859) as well as another grade IV HD
case (H4929) showed little upregulation of astrocytic
genes (Fig. 1c). We investigated this further using immu-
nohistochemistry for astrocytic markers GFAP, GS, and
ALDH1-L1 (Additional file 6: Figure S1G). The results
showed no qualitative changes in pattern of staining or
densities of astrocytes in the cingulate cortex in case
H3859 compared to non-neurologic controls (Additional
file 6: Figure S1G). Taken together, the data show major
gene expression changes in the HD cingulate cortex, in-
volving upregulation of immune genes as well as astro-
cytic genes.

Single nucleus RNAseq from control and HD cingulate
cortices identifies major cell types
The results of the bulk RNAseq showed heterogeneity
within the HD cases, with some cases not showing sig-
nificant differences in expression of astrocytic genes
compared to controls (T4929 and T3859). Moreover, a
subset of A1 “neurotoxic”, A2 “neuroprotective”, and
pan-reactive genes were increased HD, and it was not
clear whether this represents a coexistent increase in A1
and A2 astrocytes, versus increased expression of A1
and A2 genes in the same cells. To address the issue of
astrocytic heterogeneity, we selected 2 HD (grade III)
and 2 control cases, extracted nuclei from the cingulate
gyrus, and then performed snRNAseq using the 10X
Genomics Chromium™ droplet-based single cell RNAseq
platform (Fig. 2a). Four thousand seven hundred eighty-
six nuclei passed quality control measures, of which
1989 were control and 2797 were HD nuclei, as shown
in the t-distributed stochastic neighbor embedding
(tSNE) plot in Fig. 2b. We used both unsupervised
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clustering and supervised classification to identify cell
types, including neurons, astrocytes, oligodendrocytes,
OPCs, microglia, and endothelial cells (Fig. 2c). Scaled
normalized gene expression in individual nuclei per cell-
type displayed in a heatmap show distinct gene expres-
sion profiles among nuclei in different cell types (Fig.
2d). Gene-set variation analysis of the average normal-
ized gene expression per cell type against cell-type spe-
cific gene-sets derived from thorough assessment of the
literature and genes from Gill B. et al. [10] (Additional
file 2: Table S1A) show high enrichment of cell-type

specific gene-sets in the classified cell types (Add-
itional file 7: Figure S2A-B). The proportions of each cell
type per condition are shown in Additional file 7: Figure
S2C. While the proportions of astrocytes (24% controls
and 21% HD) and microglia (3% each) were comparable,
the proportions of neurons (53% controls and 37% HD)
and oligodendrocytes (15% controls and 33% HD) were
divergent. We cannot ascertain whether this is due to
technical versus biological effects. The numbers and pro-
portions of nuclei per cell type per case are shown in
Additional file 7: Figure S2D-E, respectively.

Fig. 1 Bulk_RNASEQ. Transcriptomic analysis of Huntington disease cingulate cortex. Total RNA sequencing was done on 6 grade III/IV and 6 control
cingulate cortices. a Sample distance (Manhattan method) heatmap clustered using the Ward method. b Mean-Expression plot showing log2 fold-
change (LFC -HD versus control) on the y-axis, and mean normalized counts on the x-axis. Significantly differentially expressed genes are shown in red
and blue for upregulated and downregulated genes, respectively. c Differential gene expression heatmap of select astrocytic genes as described in
Liddelow et al. [27], with controls (Con) denoted by the red bar, and HD by the blue. Asterisks next to gene names indicate significance (Benjamini-
Hochberg adjusted p value < 0.05 and absolute log fold change > = 1.5). A1, A2, and pan-reactive astrocytic genes are denoted. Asterisks below case
numbers indicate which cases were selected for single cell nuclear RNAseq. d Representative GO ontology term analysis showing significantly
increased Reactome pathways in HD cases from bulk RNAseq (using the gProfiler web-platform, Benjamini-Hochberg adjusted p-values set at < 0.05).
e-f Gene set enrichment analysis of select astrocytic genes (Astrocyte markers and Astrocyte_differentiation -GO0048708). Normalized enrichment
scores (NES) are shown
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Astrocytes in the HD cingulate cortex
To investigate astrocytic changes in HD in the cingulate
cortex, we focused on astrocytic nuclei (1064) and pro-
jected these nuclei into the tSNE space (Fig. 3a). Control
and HD astrocytic nuclei were separated in the tSNE
space. We next performed sub-clustering using consen-
sus k-means clustering in the SC3 package in R and
identified six clusters, three control and three HD astro-
cytic, with minimal overlap between the conditions (Fig.
3b and Additional file 8: Video S1). We next identified
cluster-specific markers using the SC3 package pairwise
gene Wilcoxon signed test with p.value of 0.05, Holm’s
method for p.value adjustment, and area under receiver
operator curve (AUROC) 0.65 (Fig. 3c). We then exam-
ined differentially expressed genes in HD astrocytes ver-
sus control astrocytes. One thousand six hundred forty-
five genes were downregulated in HD while 607 genes
were increased (exact p value and Adjusted Benjamini-
Hochberg adjusted p.value < 0.05). Analysis of enriched
gene ontology terms and Reactome pathways showed
the top gene ontology molecular function terms in-
cluded terms related to heat shock protein binding, un-
folded protein binding, MHC binding, and metal ion

binding, while enriched Reactome pathways included re-
sponse to metal ions, metallothionein binds metals, and
Heat-shock factor 1 (HSF-1) dependent transactivation
(Fig. 3d). In contrast, molecular function gene ontology
terms enriched in downregulated astrocytic genes in-
cluded terms related to symporter activity, amino acid
binding, and neurotransmitter:Sodium symporter, while
enriched Reactome pathways included Notch signaling
and cholesterol biosynthesis (Fig. 3e). A list of differen-
tially expressed genes in HD versus control astrocytes as
well as the full results of GO term enrichment analysis
are provided in Additional file 9: Table S2A-B. A se-
lected list of astrocytic sub-cluster marker genes is pro-
vided in Table 2. The full results of differential gene
expression between each sub-cluster against all other
sub-clusters is provided in the Additional file 4: Supple-
mentary data.
Since Liddelow et al. [27] showed that astrocytes in the

HD caudate nucleus expressed markers of a putative
neurotoxic state (A1 state), we compared the cingulate
cortex to the caudate using an antibody to C3 – a marker
of the A1 astrocytic state. We confirmed that numerous
cells morphologically consistent with astrocytes in the

Fig. 2 Single cell nucleus RNAseq of the cingulate cortex in Control and HD. a Experimental scheme; first, cingulate cortex was dissected, nuclei
were extracted and visualized using DAPI nuclear stain under a fluorescence microscope to ascertain membrane integrity. The nuclei were subjected
to 10X chromium single cell RNAseq workflow involving encapsulation of nuclei in oil droplets along with enzymes and barcoded beads, followed by
cDNA synthesis and library preparation, and finally, sequencing. b Three-dimensional t-distributed stochastic neighbor embedding (tSNE) plot showing
individual nuclei (Points, n = 4786) colored as red (Control) or blue (HD), reduced into three dimensions. c Three dimensional tSNE plot showing the
classification of the nuclei into neurons (Cyan), Oligodendrocytes (Green), Astrocytes (Orange), Oligodendrocyte precursor cells (OPC- Black), Microglia
(Magenta), and endothelial cells (Purple). d Gene expression heat map of z-scaled normalized counts showing nuclei (Columns) and specific cell-type
markers (Rows), a subset of which are shown on the right. Condition (Con versus HD) and Cell-types are color-coded on the top as in panels b-c
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caudate nucleus of HD grades (III and IV) were C3 posi-
tive compared to controls. Double immunostaining for C3
and GFAP (Additional file 10: Figure S3D) as well as C3
and LN3 (microglial marker), showed immunopositivity
for C3 in GFAP-positive astrocytes, and minimal immu-
nopositivity in microglia (Additional file 10: Figure S3C,
D). In contrast, immunostaining in the cingulate cortex
showed C3 labeling of neurons in controls and HD cases,
but no astrocyte labeling, with no clear differences (Add-
itional file 10: Figure S3A-B). Together, these findings

confirm previous reports of the A1-astrocytic marker C3
immunopositivity in striatal astrocytes in HD, but, in con-
trast, show minimal astrocytic labeling with C3 in the HD
cingulate cortex.

Multiple genes are differentially correlated in HD and
control cortical astrocytes
We examined the gene-expression heatmap for the 6
astrocyte clusters (Fig. 3c). Clusters 1, 2, and 5 were
from HD cortex, while 3, 4, and 6 were from control

Fig. 3 Transcriptomic analysis of astrocytic nuclei in control and HD. a Three-dimensional t-distributed stochastic neighbor embedding (tSNE)
plot showing astrocytic nuclei (n = 1064–469 control and 595 HD) colored as red (Control) or blue (HD), reduced into three dimensions. b Three
dimensional tSNE plot showing the classification of the astrocytic nuclei into 6 sub-clusters using consensus k-means clustering (sc3 package).
c Gene expression heat map of cluster markers showing nuclei (Columns) and specific cell-type markers (Rows). Condition (Con versus HD) and
Cell-types are color-coded on the top and bottom, respectively. Cluster-specific gene markers were identified using Wilcoxon signed rank test
comparing gene ranks in the cluster with the highest mean expression against all others. p-values were adjusted using the “Holm” method. The
genes with the area under the ROC curve (AUROC) > 0.65 and p-value< 0.01 are shown as marker genes. d-e GO term analysis of differentially
expressed genes in HD versus control astrocytes identified using EdgeR likelihood ratio test with an adjusted p.value of 0.05. Significantly enriched GO
terms at Benjamini-Hochberg false discovery rate of 0.05 were identified. Selected Reactome pathways and Molecular function GO terms which are
increased in HD astrocytes (d) and decreased in HD astrocytes (e) are shown
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cortex. It is apparent that the control clusters 3 and 4
express high levels of genes associated with protoplasmic
astrocytes, like FGFR3, GLUL, and SLC1A2, although
there are differences from cluster to cluster and from
cell to cell, and control cluster 6 shows high levels of
GFAP. The HD clusters 1 and 2 express high levels of
MT genes (MT1F, MT1E, and MT1G.), as well as GFAP,
although MT genes were generally more highly
expressed in cluster 1 than in cluster 2 or cluster 5 and
GFAP was more highly expressed in cluster 2 and 6 than
in cluster 1. We provide the full differential gene expres-
sion between astrocytic clusters in Additional file 4.
Given this heterogeneity of gene expression, we set out to

identify how astrocytic genes are co-regulated. We per-
formed differential gene correlation analysis between the top
5% most highly expressed astrocytic genes on average using
the DGCA R package. The results revealed the MT genes
were highly correlated with each other, and the correlation
was significantly stronger in HD astrocytes than in control
astrocytes (Fig. 5a). Moreover, there were differences in the
correlation of many gene pairs between control and HD as-
trocytes. For instance, multiple MT genes were negatively
correlated with GFAP, including MT1G, MT1F, MT1E, and
MT2A in HD astrocytes. However, these gene pairs were ei-
ther not correlated or only minimally positively correlated
with GFAP in control nuclei (Fig. 5a and Additional file 11:
Table S3). As an example, a scatter plot showing the expres-
sion of the GFAP and MT1G in control and HD astrocytes
reveals that the two genes are negatively correlated (Fig. 5b);
with Pearson correlation coefficient of 0.21 in HD and 0.18
in control astrocytes (adjusted p value of difference < 0.0001).
In contrast, MT genesMT1F andMT2A were positively cor-
related with genes associated with protoplasmic astrocytes
including SLC1A3 in HD, but negatively correlated in control
astrocytes (Pearson correlation coefficients of 0.14 (HD) and
− 0.14 (Control) for MT2A - adjusted p value of difference <
0.01, and 0.1 (HD) and− 0.14 (Control) for MT1F -adjusted
p value of difference < 0.05 – Additional file 11: Table S3).
These analyses of HD and control astrocytes reveal a

heterogeneity of gene expression phenotypes in both the
HD and control populations that would not have been
detected without snRNA-seq. The heterogeneity also
adds a layer of complexity both to the populations of as-
trocytes in control cortex as well as to the populations
of astrocytes reacting to a disease.

Gene co-expression network analysis in HD and control
astrocytes
Next, we aimed to identify gene networks in which sub-
sets of astrocyte genes were linked to each other. We
used the Multiscale Embedded Gene Co-Expression
Network Analysis (MEGENA [49]). A usual application
involves building gene networks in the control condition,
and examining how the network structure changes in

the test condition. However, given that control and HD
astrocytes clustered separately, and there were signifi-
cant gene expression changes between the two condi-
tions, we decided to use all astrocytes from both
conditions for gene network analysis. This allowed dis-
covering both condition-specific and shared gene net-
works. Application of the algorithm produced 15 gene
clusters (modules). The network hierarchy structure is
shown in Fig. 5c. The modules on the same arm of the
hierarchy tree shared many genes. For example, modules
3 and 10, modules 22 and 26, as well as modules 9 and
20, shared many genes (Additional file 12: Table S4A-B,
which details all the module genes and hub genes).
Examples of modules are shown in Fig. 5d.
We then correlated each module with one or more of

the 6 astrocyte clusters. To indicate the functional char-
acteristics of the modules, we used Gene Ontology term
enrichment analysis to ascribe “Molecular Function”
gene ontologies that were enriched in each of the mod-
ules. Modules 9 and 20 were mostly enriched in the HD
cluster 1 (compare Figs. 5e and f) and have genes associ-
ated with molecular function gene ontology terms like
amyloid beta binding and low-density lipoprotein par-
ticle receptor binding – genes known to be associated
with reactive astrocytes in Alzheimer’s disease [31, 47].
Module 7 was also most enriched in cluster 1 and has
genes enriched for GO terms related to metal binding (see
above regarding MT genes). Modules 6 and 16 are
enriched in the HD cluster 5, and include genes enriched
for GO terms related to epithelial-mesenchymal transi-
tion, RNA-mediated gene silencing, and DNA binding
(Fig. 5e-f and Additional file 12: Table S4C-D). Modules 4,
12, 22, and 26 are enriched in control cluster 3 and have
genes enriched in GO terms related to regulation of
neurotransmitter levels, autophagy, sodium ion transport
(Module 12), and cell-cell signaling. Module 5 was most
enriched in control cluster 6 and has genes involved in
protein transport, localization, and biosynthesis. Module
17 was enriched in control cluster 4 and has genes
enriched for GO terms related to nucleotide triphospha-
tase, pyrophosphatase, and hydrolase activity. Shared be-
tween HD cluster 2 and control cluster 4 are Modules 3
and 10, which have genes enriched for GO terms related
to aerobic respiration, nucleotide metabolism, and ATP
biosynthesis. Of interest, Module 13 was enriched in
control astrocytic clusters Astrocyte_3 and Astrocyte_4
(Fig. 5f), and showed enrichment for GO terms relating to
fatty acid biosynthetic process, fatty acid binding, long-
chain fatty acid biosynthetic process, and prostaglandin
biosynthetic process (Additional file 12: Table S4C-D).
Conversely, Module 20 was enriched in HD cluster Astro-
cyte_1 and less so in control cluster Astrocyte_4. This
module was enriched for GO terms relating to lipid meta-
bolic process, phospholipid binding, and lipid transport
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(Additional file 12: Table S4C-D). The top gene ontologies
per module are provided in Additional file 12: Table S4D.
Thus, in most cases, the network modules appear distinct
for either control or HD astrocytes, although there is some
overlap. Molecular function analysis further highlights the
heterogeneity of both control and HD astrocyte
populations.

Validation of astrocytic gene expression changes in HD
The snRNASeq analysis revealed significant differences
in astrocyte gene expression between HD and controls.
We wanted to validate these gene expression differences
and therefore conducted immunohistochemical and in
situ hybridization studies in HD and control cingulate
cortices (Fig. 4). To quantify astrocytic activation in the
HD cingulate cortex we measured the cell density of
GFAP immunopositive cells (Fig. 4a). We found that the
number of GFAP immunopositive cells was increased in
grade III/VI HD compared to control (Fig. 4c and see
Additional file 4: Methods). We also confirmed that the
GFAP transcript levels were indeed increased in the HD
cingulate cortex using rt-qPCR (Fig. 4d). Moreover, we
quantified the optical density of the GFAP signal in fluo-
rescently immune-stained sections as a surrogate for
protein content in each astrocyte (Additional file 4:
Methods). We found that GFAP levels as measured by
GFAP signal optical density was increased in HD astro-
cytes (34.98 +/− 1.92 arbitrary units; mean +/− standard
error of the mean (sem)) compared to controls (19.83
+/− 1.95 arbitrary units; mean +/− sem, p < 0.001).
Because HD is caused by HTT mutations, we exam-

ined HTT transcript levels in astrocytes in control and
HD patients. We found that levels of HTT RNA were
reduced in HD astrocytes (Additional file 4: Results). We
next wanted to ascertain whether HTT accumulates in
HD astrocytes. Therefore, we double stained sections
with the GFAP antibody and an antibody for wild-type
HTT to detect HTT aggregates in astrocytes. We found
that HTT does indeed aggregate in HD astrocytes (Fig.
4b) mainly in layers V and VI. These data suggest that
astrocytic reactivity in HD may at least be partly cell-
autonomous, or possibly that astrocytes phagocytose
HTT aggregates from the surrounding neuropil.
We explored further the astrocyte heterogeneity indi-

cated by the transcriptional data by using multiple label
immunofluorescence on a larger group of control (n = 3,
two of which were cases on which we did not do
snRNASeq) and HD (n = 3, two of which were cases on
which we did not do snRNASeq) cingulate gyri. Here we
used antibodies to ALDH1L1, as a general astrocyte
marker, to MTs, as a marker for early reactive astrocyte
clusters, and to GFAP (Fig. 4e and Additional file 13:
Figure S8). The results showed more HD astrocytes co-
expressed MT; with 45.57 +/− 25.58% of GFAP+ or

ALDH1L1+ astrocytes co-labeling with MT compared to
10.24 +/− 7.64% of control astrocytes (mean +/− stand-
ard deviation, p = 0.043, one-sided t-test). Additionally,
we found that levels of MT were also increased in HD
astrocytes compared to control astrocytes. More specif-
ically, we measured MT fluorescent signal (optical dens-
ity) and found it was increased in HD astrocytes (24.33
+/− 1.76 arbitrary units; mean +/− sem) compared to
controls (12.3 +/− 1.14 arbitrary units; mean +/− sem,
p < 0.001). These results show that more HD astrocytes
expressed MT and that they expressed higher levels of
MT, confirming the snRNASeq results. Note that these
MT+/GFAP+ astrocytes are likely to represent HD clus-
ter 2, which, as noted above, expresses the highest levels
of MT genes.
To identify cluster 1 astrocytes, which express little

GFAP but relatively elevated levels of MT, we used
ALDH1L1 in triple immunofluorescent stains with
GFAP and MTs. We found that astrocytes in HD cluster
1 are indeed identifiable in the HD cingulate cortex, with
low to undetectable GFAP levels but immunopositivity
for ALDH1L1 and MT (Additional file 13: Figure S8C).
These astrocytes are in contrast to cluster 2 astrocytes
which show triple-immunopositivity for ALDH1L1,
GFAP, and MT (Additional file 13: Figure S8B, C and
Fig. 4e). Triple labeling also detected astrocytes that
stained for ALDH1L1 but not for either MTs or GFAP
(Additional file 13: Figure S8A). These represent astro-
cyte clusters 3 and 4, which are far more frequently
found in control than in HD cortex. Finally, we found
rare examples of astrocytes in control cortex that were
examples of cluster 6, showing ALDH1L1+/MT- or low/
GFAP+ (Additional file 13: Figure S8A).
Interestingly, we noted co-expression of proteolipid

protein (PLP-1), a myelin gene, and GFAP in HD cluster
5 (Fig. 3c). We verified this in tissue sections using in
situ hybridization. The results showed that while PLP-1
and MBP were co-expressed in oligodendrocytes, GFAP
and PLP-1 were co-expressed in a subset of astrocytes in
the HD cortex (n = 5 cases, Fig. 4f). In contrast, only one
case from 4 controls showed rare PLP-1 co-expression
with GFAP in the cortex. Notably, gene expression ana-
lyses did not reveal other oligodendrocyte genes, includ-
ing OPALIN, MOG, MAG, CA2, CD82, OMG MYRF,
SOX10, and NAFSC, implying that the GFAP+ astrocytes
were not upregulating a coordinated transcriptional pro-
gram of oligodendrocyte maturation.

Three astrocytic states of reactivity in HD
A simplified view of astrocytic gene expression profiles
reveals patterns based on the expression of protoplasmic
astrocytic genes, reactive astrocytic genes, and MTs. We
performed a supervised classification of astrocytes based
on expression of MT2A, GFAP, and SLC1A2.The results
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show three distinct astrocytic states in HD and control
astrocytes. Astrocytes with low levels of MT2A, low
GFAP and high SLC1A2 were classified as Quiescent.
Astrocytes with high levels of MT2A, low GFAP and
high SLC1A2 were classified as state-1Q – for quiescent
astrocytes with early reactive features. Astrocytes with

high levels of MT2A, high GFAP and lowSLC1A2 were
classified as state2-R – for reactive astrocytes with high
MTs. Astrocytes with lower levels of MT2A, high GFAP
and lowSLC1A2 were classified as state3-R – for reactive
astrocytes with lower MTs (Fig. 6a). As expected, unclas-
sified states are also seen. These represent astrocytes

Fig. 4 Validation of astrocytic activation in HD. a Representative micrograph of GFAP-HTT dual immunohistochemical stain showing increased
GFAP immunoreactivity in the HD cingulate cortex compared to control (scale bar = 50um, GFAP in red & HTT in brown). b Representative images showing
accumulation in HTT in the neuropil and in astrocytic in two HD cases (yellow arrows - scale bar = 20um). c Quantification of A, showing increased GFAP
immunoreactive cell density in the HD cingulate cortex, n =8 for control and 6 for HD (grade III and IV), P value = 0.012 (one-sided t-Mann-Whitney U test).
d Real-time quantitative PCR showing relative expression of GFAP transcript in grade III/IV HD (n =7 for HD and 6 for control) Delta CT value normalized to B-
Actin transcript levels are shown. P value = 0.0154 (one-sided t-test). e Representative fluorescent immunohistochemical stains showing GFAP
(red), metallothionein (MT-green), and DAPI stained nuclei (blue) from a representative control and grade IV HD case. There is increased GFAP
immune-positive cells in layers V/VI of the HD cingulate cortex, and large proportion of these astrocytes are MT positive, compared to control
(scale bar = 60um).60um). f In situ hybridization (RNAscope™) showing probes for MBP (red), GFAP (white), PLP1 (green), and DAPI-stained
nuclei (blue). Note the co-localization of GFAP and PLP-1 (white arrows). An MBP positive PLP-1 positive Oligodendrocyte is indicated by the
arrow head. (scale bar = 10um)
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that did not meet any of the classification criteria (“un-
known” type of astrocytes), or astrocytes that met more
than one category (“ambiguous”). Possibly, these may
represent transitional states. We then examined the rela-
tive preponderance of these astrocytic states in control
versus HD (Fig. 6b). We found that the Quiescent state
is abundant in control astrocytes (49.3%), but low in HD
(1.6%). In contrast, states1-Q and 2-R were more abun-
dant in HD (37.4 and 14.0% in HD versus 21 and 1.4%
in control). State3-R was relatively low in both condi-
tions, but more abundant in HD than control (7.9% ver-
sus 2.5%). As noted above, we found examples of all 3
states by immunofluorescence in all HD cases we exam-
ined. The presence of these states is therefore a more
general phenomenon than what we have found only by
transcriptomics.
The states of astrocyte reactivity correspond to spe-

cific astrocytic clusters (Fig. 6c). For example, in con-
trast to the Quiescent astrocytic state, which was
comprised of almost entirely control clusters, astro-
cytic state-1Q was mixed, with a major contribution
from HD cluster 1 and smaller contributions from
other astrocytic clusters. Moreover, state-2-R was pri-
marily composed of HD clusters 1 and 2, while state-
3-R was largely comprised of HD clusters 2 and 5. In
summary, we find three reactive astrocytic states
based on the expression of GFAP, SLC1A2, and MTs
(Fig. 6c). These states relate to reduction of expres-
sion of protoplasmic genes (e.g. SLC1A2, FGFR3,
GLUL), and increased MTs in one reactive subset of
astrocytes versus a preponderance of GFAP expression
in another reactive subset.
It is difficult to relate these states to the A1 versus A2

astrocytes. For starters, none of the “states” or clusters
in the cingulate cortex showed C3 expression. Moreover,
only 25 of 39 astrocytic genes described by the Barres
group were detected by scnRNAseq, and only 3 were sig-
nificantly increased in HD (GFAP, SRGN, and CD14).
Taken together, we cannot ascribe an A1 versus A2
phenotype to cingulate HD astrocytes.

Gene expression analysis of non-astrocyte cells
Although we have focused on astrocytes in this report,
snRNAseq provided gene expression patterns of all other
cell types, neurons, microglia, oligodendrocytes, oligo-
dendrocyte precursors, and endothelial cells. We found
differences in gene expression patterns for both neurons
and microglia that distinguished HD from control cor-
tex, and present these findings in the Additional file 4:
Supplement. For oligodendrocytes we have evidence that
the heterogeneity of cells of the oligodendrocyte lineage
is increased in HD, with a shift to less mature phenotype
(manuscript in preparation).

Discussion
The HD cingulate cortex contains multiple reactive states
of astrocytes
One of the most notable findings in this study is that
there are multiple states of astrocyte reactivity, rather
than a single reactive state. This is not surprising, given
that HD is a long-term, progressive disease in which the
neuropathology does not evolve in synchrony. HD clus-
ter 1 showed high levels of MT gene expression, and
relatively low GFAP expression. In contrast, HD cluster
5 showed high GFAP expression and relatively low MT
gene expression. Intermediate levels of MTs and GFAP
were the hallmark of HD cluster 2. In all HD astrocytes,
the mRNA levels of glutamate transporters SLC1A2 and
SLC1A3 expressed in quiescent astrocytes were reduced,
implying that HD astrocytes downregulate genes central
to some critical astrocytic functions. It is tempting to
speculate that these states reflect a temporal sequence of
astrocyte reactivity, and that one progresses to another
over time, so that the highest GFAP astrocytes that have
lost many normal genes as well as MTs represent an end
stage of reactivity. We do not have definitive evidence
that this is so. However, when we analyzed striata from
these same brains we saw a greater proportion of astro-
cytes in this possible end stage state (unpublished data),
given the far high degree of neuronal degeneration in
striatum than cingulate. Additional evidence from exam-
ining HD cases with different grades of severity as well
as evidence from experimental models such as astrocyte
lineage tracing experiments in conditional HD mice
models are needed to query this possibility further. Al-
ternatively, difference in astrocytic reactive states may
reflect spatial differences in astrocyte localization in
cortical layers with variable susceptibility to neurodegen-
eration, such as susceptible layers III, V, and VI versus
resilient layer II [7, 45].
The presence of high expression of MT genes, as well

as anti-oxidant genes in HD cluster 1 may suggest that
this astrocyte “state - State 1Q” is protective. In fact,
these astrocytes may be protective of neurons and also
of themselves, an “astro-protective” state. Resolving how
this state relates to the A2 state is an interesting matter,
however, it is not possible to evaluate this putative rela-
tionship without additional experimentation. Are both
states underpinned by the same molecular signaling
pathways, such as STAT3 activation for example? Or are
these states divergent? Such questions are intriguing and
will be the subject of future work.

Classifying astrocytic reactivity in the human brain
Our data showed that both A1 and A2 genes were in-
creased in bulk RNAseq samples, which is consistent
with recent whole tissue RNASeq data from Diaz-Castro
et al. [7]. However, these A1 versus A2 states did not
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become more clear on the single cell level. We antici-
pated finding expression of A1 genes in a subset of as-
trocytes, and A2 in another. However, we found that
only three genes were differentially expressed in HD
astrocytes (GFAP, CD14, and SRGN). Thus, applying the
A1 versus A2 classification is not appropriate in the HD
cingulate cortex. What is apparent from our data is that
protoplasmic genes, including genes related to calcium
signaling (Fig. 3e), are downregulated in reactive astro-
cytic states in HD. This data is consistent with Diaz-
Castro et al. [7], where the authors found that there are
common genes that are downregulated in both striatal
murine astrocytes and post-mortem human striatal-
derived microarray data, and that these genes were
mostly related to calcium ion transport, G-protein
coupled receptor signaling, and glutamate receptor sig-
naling. Thus, we contend that viewing astrocytosis in
HD in terms of loss of astrocyte function, and gain of
potentially neuroprotective phenotypes, is a useful way
to view reactive astrocyte states in HD. Note, however,
that the whole tissue RNASeq analysis [7] does not re-
veal astrocyte transcriptional heterogeneity and would
not have defined different astrocyte “states.”

The control cingulate cortex also contains a
heterogeneity of astrocytes
Not only did we find a heterogeneity of astrocyte pheno-
types in the HD cortex, we also found variation in astro-
cyte populations in the control cortex, based on the
gene expression profiles. For example, astrocyte cluster 6
appears different from both 3 and 4 in that it has higher
levels of GFAP, CRYAB, FOS, JUNB, ID2 and ID3 and
lower levels of GLUL, SLC1A2, and SLC1A3, indicating
that astrocytes of this group have downregulated proto-
plasmic astrocyte genes and upregulated “reactive”
genes. Clusters 3 and 4 also show differential gene ex-
pressions. The heterogeneity of astrocyte gene expres-
sion must be validated and explored in depth in the
future. However, it does raise the possibility that there is
a significant amount of astrocyte heterogeneity in the
control cortex. We do not know if this heterogeneity is
fixed, or whether gene expression variations are transi-
ent, depending on such factors as neuronal activity or
local blood flow, for example. Furthermore, the presence
of astrocytes with “reactive” markers in a “control” cor-
tex may well reflect an individual’s age, past medical his-
tory or terminal illness, even in patients without
histories of neurological diseases.

HD astrocytes upregulate metallothionein genes
MT genes are thought to confer neuroprotection. Levels
of MTs are increased in multiple injuries including ische-
mia, heavy metal exposure, infection, and neurodegenera-
tion in AD [46]. Mathys and colleagues investigated the

frontal cortex of human late onset Alzheimer disease
using snRNAseq and showed expression of MT2A,
MT1G, andMT1E in astrocytic cluster Ast1 [31]. Mice de-
ficient in MT1/2 show impaired repair and wound healing
after freeze injury, with increased microglia/macrophage
infiltration, astrocytosis, and apoptosis [40]. Neuronal sur-
vival was compromised in MT1/2 knockout mice after
middle cerebral artery occlusion [59]. Conversely, mice
overexpressing MT1 showed increased resilience to ische-
mic damage in the same model of injury [56]. The evi-
dence suggests that upregulation of MTs maybe a
protective response to injury and we propose that it may
be so in HD astrocytes. As we have noted above, upregula-
tion of MTs may not only be neuroprotective but also
astro-protective. A recent study of HD is also consistent
with upregulation of MT genes. Lin et al. [29] examined
transcriptional signatures in the motor cortex (BA4) of
grade 2–3 HD showed that GO terms involved in
Response to Cadmium Ion (GO0071276), Zinc ion
(GO0071294, GO0010034) were increased, while Choles-
terol synthesis was reduced (e.g. GO0006695). These data
are consistent with our results in HD astrocytes and sug-
gest that upregulation of MTs in reactive astrocytes is a
pan-disease reactive response. It is known that oxidative
stress is a characteristic of the HD brain [50]. The fact that
MTs are involved in combating oxidative stress, and that
they are upregulated in HD astrocytes, impart a potential
neuroprotective role for this phenomenon, perhaps an
A2-like state.
On another note, our data highlights fatty acid synthe-

sis and lipid metabolism as key processes that are differ-
entially regulated in HD astrocytes. We find that HD
astrocytic clusters had downregulated genes that are as-
sociated with fatty acid and prostaglandin biosynthesis.
Indeed, the gene PTGSD (Prostaglandin D2 Synthase)
and FASN (Fatty Acid Synthase) were reduced in HD
astrocytic clusters (Fig. 3c and Additional file 9: Table
S2C). Moreover, cholesterol biosynthesis was reduced in
HD astrocytes (Fig. 3e). In contrast, lipid binding and
metabolism were processes enriched in genes character-
istic of HD astrocytic cluster 1 (Module 20 - Fig. 5f and
Additional file 12: Table S4C-D).

Astrocyte modules
Analyzing astrocytic gene expression in terms of gene mod-
ules provides a useful way to examine correlated genes and
hub genes. The latter may be prioritized in functional studies
such as overexpression and knockdown/knockout studies.
We constructed the modules using all astrocytes, from con-
trol and HD brains. Had we constructed modules from HD
and control astrocytes separately, the network structures
would have been different. For example, module_26, a mod-
ule harboring many protoplasmic genes, would likely have
been devoid of CRYAB, a gene upregulated in reactive states.
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The strength of our approach; combining both con-
trol and HD astrocytes, is that it allows us to discover
both HD and control modules as well as shared mod-
ules, such as module_3 (shared between clusters
Astrocyte_2 and Astrocyte_4). Genes in this module

relate to oxidative phosphorylation and Wnt signaling
(Fig. 6c).
A summary of gene expression differences between astro-

cytic clusters in different states of reactivity summarized as
modules is shown in Fig. 6c. Control astrocytic clusters

Fig. 5 A deeper look into astrocytic gene regulation in HD. a Differential gene correlation analysis of the top 5% of genes in astrocytic nuclei by
mean normalized expression (856 genes). Pearson correlation coefficients are shown and empirical p-values were calculated by a permutation
test (100 permutations) in DGCA package in R. Top gene-pairs that are significantly differentially correlated between HD and control astrocytes
are labeled. b Scatterplot of normalized expression of GFAP and MT1G (A representative metallothionein gene) in Control (left panel) and HD
(Right panel) astrocytic nuclei. Pearson correlation coefficients are shown and are significantly different between control and HD. c Hierarchy
structure representing the astrocytic gene modules/networks (labeled here as c1_3, c1_5, … etc) as the output using Multiscale Embedded Gene
Co-Expression Network Analysis (MEGENA). Clusters on the same line are more related to each other than clusters on different lines. d Representative
gene modules/networks, illustrating modules 9, 16, and 26. Hub genes are shown as triangles, genes as nodes, different colors represent different
networks in the same graph (Left panel – Mod9). e Gene Ontology term enrichment analysis showing representative “Molecular Function” gene
ontologies enriched in astrocytic gene modules. f Gene set variation analysis showing enrichment scores of modules in different astrocytic clusters,
condition is shown as colored bars on the top
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Astrocyte_3 and Astrocyte_4 are represented in quiescent
and state1-Q, and are enriched in genes described by mod-
ules 22, 28, 10, and 17, which harbor genes involved in glu-
tamate transport, GABA receptors, autophagy, glycolysis, cell
respiration, and synaptic function. HD cluster 1 is repre-
sented in states 1-Q and 2-R, while HD cluster 2 is repre-
sented in states 2-R and 3-R. Both clusters are enriched in
genes of module_7 (MTs). Conversely, HD cluster 5 is repre-
sented mainly in state 3-R and is enriched in module 16, har-
boring genes involved in mesenchymal differentiation, DNA
damage, and negative regulation of transcription. Overall, we
present complementary views to understand gene expression
changes in HD astrocytes in the cingulate cortex, using un-
supervised clustering, supervised classification, and gene net-
work analysis.

Is HD astrocyte pathology cell-autonomous?
Whether the astrocytic reactivity in HD is a cell autono-
mous reaction or a secondary reaction to neurodegener-
ation, or both, is yet to be determined. We provide
evidence that HTT indeed accumulates in astrocytes in
the HD cortex. These HTT aggregates are seen in a mi-
nority of HD astrocytes, primarily in layers V and VI of
the cingulate cortex, where neurodegeneration is most
pronounced [13]. We also provide evidence that neur-
onal loss and dysfunction is evident in the HD cingulate
cortex (See Additional file 4: Supplement).
Thus, astrocytic reactivity in HD may indeed be sec-

ondary to neuronal loss. However, the astrocytic dys-
function may also contribute to neuronal loss and
dysfunction. HD transgenic mouse studies that target

Fig. 6 Three reactive astrocytic states in HD. a Supervised classification of astrocytic nuclei based on normalized expression levels of GFAP, MT2A,
and SLC1A2 in control (red) and HD (blue) presented as violin plots. Four states are noted: Quiescent, state1Q, state-2R, and state-3R. Ambiguous
and unknown state represent cells that met more than one classification condition or none, respectively. b Pie charts of the relative proportions
of the astrocytic states in control and HD. c Cartoon summary of the astrocytic states color coded as in (b) with respect to the expression of
reactive genes such as CRYAB, GFAP, and MTs, as well as protoplasmic astrocyte genes such as SLC1A2, FGFR3, and . The lower panel shows the
proportion of astrocytic clusters colored as described in the legend on the right (same as Fig. 3a-c) in each of the quiescent and reactive states
(as described in panels A-B). Top gene modules that characterize each astrocytic cluster are described
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mHTT to astrocytes exhibit neuronal loss, suggesting
that mutant HTT expressed in astrocytes alters homeo-
static functions and precipitates neuronal dysfunction
and loss. Restoration of astrocytic function ameliorates
the HD phenotype and prolongs survival in vivo [53].
Additional evidence from the HD mouse model R6/2 in-
dicates that chimeric mice engrafted with control human
glia including astrocytes exhibited slower disease pro-
gression. Conversely, control mice engrafted with HD
glia including astrocytes exhibited impaired motor co-
ordination [3]. Thus, it is possible that astrocytic
dysfunction in HD may be partly cell autonomous and
partly secondary to neuronal dysfunction. In support of
this notion, Diaz-Castro et al. [7] showed that silencing
of mHTT expression in murine striatal astrocytes re-
duced the accumulation of mHTT in medium spiny
neurons. Future studies to correlate the cortical locale of
reactive HD astrocytes with the transcriptional pheno-
type may also help to answer this question.
Our data on neuronal gene expression profiles on the

bulk RNAseq level and the single cell level as well as
neuronal estimates show major transcriptional and cellu-
lar alterations. First, we show that large (pyramidal) neu-
rons are depleted in the HD cingulate (as verified by
histopathologic quantification). Second, we show that
neuronal genes are downregulated in bulk RNAseq HD
samples. For example, pathways involved in glutamate,
GABA, neuropeptide Y neurotransmission were down-
regulated in HD. Finally, our snRNAseq show that gluta-
matergic neurons, in contrast to interneurons, cluster
separately between control and HD. Moreover, neurons
upregulate metallothioneins and pathways involved in
heat-shock response, voltage-gated ion channels, and
protein misfolding. Therefore, neuronal loss and dys-
function is evident in the HD cingulate cortex and may
underlie astrocytic reactivity, but it could also be at least
partially secondary to astrocytic dysfunction.

Upregulation of inflammatory genes in the HD cingulate
cortex
The bulk RNAseq analysis showed upregulation of a
number of inflammatory genes (see Additional file 4:
Supplementary Data and Additional file 14: Figure S6).
Our findings highlight the activation of the innate im-
mune system including toll-like receptor pathways. Mul-
tiple interleukin signaling pathways were enriched in
HD including IL-4, IL-13, and IL-10. Of note, we found
IL-10 to be significantly upregulated in HD versus con-
trols. IL-10 has been previously reported to be elevated
in the serum and CSF of HD patients [4].

Conclusions
In summary, we show using snRNAseq from post-
mortem human HD cingulate cortex, that astrocytic

reactivity can be described in three states with different
levels of GFAP, metallothionein genes, and quiescent
protoplasmic genes. Immune pathways were promin-
ently enriched in the HD cortex, although we were only
able to detect them using bulk RNAseq. There were sig-
nificant gene expression differences between HD and
control neurons, particularly in the excitatory neuron
populations, along with neuronal loss. We have made
our snRNAseq data available using an interactive web
application found here (https://vmenon.shinyapps.io/hd_
sn_rnaseq/).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40478-020-0880-6.

Additional file 1. Outline of the snRNAseq analysis pipeline. Briefly,
filtered raw un-clustered data is pre-clustered using a shared nearest
neighbor algorithm. The pre-clusters are classified into cell classes/
lineages using gene set enrichment analysis for specific lineage genes
and examining GO terms of the top pre-clusters markers. Next, mixed
pre-clusters are identified and the cells in these pre-clustered are re-
classified based on the cell-specific lineage-scores (Cell classifier tool).
Next, clusters of the same lineage are agglomerated and cell-classes/
lineages are analyzed in isolation from the remaining cell classes using
SC3 consensus clustering into sub-clusters (Astrocyte sub-clusters are
shown as an example). These sub-clusters are used for downstream
analysis.

Additional file 2. Genes used in gene set enrichment analysis [10], in
cell classifier, and discovered cell-type marker genes based on single
nuclei RNAseq data

Additional file 3. Differential gene expression patterns in neurons. A)
tSNE plot showing 9 different neuronal clusters. B) Here we divided up
nuclei in the tSNE plot into HD (blue) and control (red). Some of the
clusters appear relatively homogeneous with respect to condition, while
others appear more mixed. C) Differential gene expression as a volcano
plot, showing some of the highly differentially expressed genes. D) GO
terms and Reactome pathway enrichment analysis of genes significantly
increased in HD over all neurons. E) GO terms and Reactome pathway
enrichment analysis of genes significantly decreased in HD over all
neurons. The source of the GO term is color coded. P value of
enrichment is represented by the length of the bar. F) Gene expression
heat map of cluster markers showing nuclei (Columns) and specific
genes (Rows). Condition (Con versus HD) and neuronal clusters are color-
coded on the top and bottom, respectively. Cluster-specific gene markers
were identified using Wilcoxon signed rank test comparing gene ranks in
the cluster with the highest mean expression against all others. p-values
were adjusted using the “Holm” method. G) Examples of in situ
hybridization of 4 of the neuronal genes (© 2010 Allen Institute for Brain
Science. Allen Human Brain Atlas. Available from: human.brain-map.org).
Scale bars: GOT1 100µm, others 200µm.

Additional file 4. Supplementary Data. (1) Raw counts and RPKM
counts of Bulk RNAseq data. (2)Results of differential gene expression
analysis of each astrocytic cluster against all other clusters.

Additional file 5. Results of differential gene expression analysis of Bulk
RNAseq controled for age and gender with log fold change threshold of
1.5

Additional file 6. Cortical thickness of the cingulate in HD.
Representative images of cortical thickness measurements performed in
sections stained for CD44 (A), Hematoxylin and Eosin (H&E) (C), and
Cresyl violet (E). Bar graphs showing average cortical thickness in
individual cases in in the CD44 immunostain (B), with two regions
quantified highlighted in blue and red. Bar graphs showing average
cortical thickness of control and HD sections stained for H&E (D) and
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Cresyl violet (F). The regions quantified in the cingulate cortex are color-
coded in the images, which is reflected in the bar graphs. No significant
differences were identified between control and HD using unpaired t-
tests. N =4 control and 5 HD for CD44 immunostain, 6-9 HD and 6-8
control for H&E, and 5-8 HD and 6-7 control Cresyl violet. G)
Immunohistochemical staining for GFAP, Glutamine Synthetase (GS), and
ALDH1L1 of a representative control and the Juvenile Huntington
(T3859). Images are shown at 5X, and insets at 20X. Scale bars: 500μm,
inset scale bar: 50μm.

Additional file 7. Gene set variation analysis (GSVA) of the average
normalized expression of all nuclei in one cell-class/type. Cell-type
specific gene sets derived from the literature (A OA and JEG) and Gill et
al.53 (B) are shown in the rows. Cell-types are shown in columns. The z-
scaled enrichment scores of the cell-type averages are shown in the heat
maps (A-B). The proportions of cell-types in Control (Right) and HD (Left)
nuclei. Percentages per cell-type are shown in the pie chart (C). Bar-plots
of count of nuclei per cell-type per case (D). Barplots of the proportions
of cell-type per case (C=Control, H=HD) (E)

Additional file 8. Supplementary Movie 1. Three dimensional view of
Figure 3b

Additional file 9. Differential gene expression between control and HD
Astrocytic nuclei, GO term enriched in top differentially upregulated and
downregulated genes

Additional file 10. Complement factor 3 (C3) immunostaining in the
HD caudate and cingulate. A-B) Micrographs of immunostaining for C3
in the cingulate cortex (A) and caudate nucleus (B) of control and HD
grade III/IV taken at 10X (100X total magnification). The boxed areas are
shown at 40X in the lower panels (400X total magnification). C-D) Dual
immunostaining for C3 (green) and GFAP (red -C) or LN3 (red – D) in the
caudate nucleus of a representative HD case (C). Nuclei stained with
DAPI are shown in blue. Scale bars indicate ####. A total of 3-4 cases per
group were examined.

Additional file 11. Differential correlation analysis between astrocytic
genes in HD and control

Additional file 12. Astrocytic gene co-expression modules, module
information, module genes, GO term enrichment in modules

Additional file 13. Validation of astrocytic sub-clusters. A) Astrocytes in a
control cingulate cortex. Arrows indicate astrocytes that are ALDH1L1+/MT-/
GFAP- (example of Astrocyte Clusters 3 or 4). The arrowhead indicates an
astrocyte that is ALDH1L1+/MT+/GFAP-weak (example of Astrocyte Cluster
1). The two large reactive GFAP+/MT- astrocytes (not indicated by arrows)
are examples of cluster 6. A merged panel is displayed on the right. B)
Astrocytes in an HD cingulate cortex. Arrows indicate astrocytes that are
ALDH1L1+/MT-weak/GFAP+ (example of Astrocyte Cluster 5). Arrowheads
indicate astrocytes that are ALDH1L1+/MT+/GFAP+ (example of Astrocyte
Cluster 2). C) Astrocytes in an HD cingulate cortex. Arrows indicate
astrocytes that are ALDH1L1+/MT+/GFAP- or weak (example of Astrocyte
Cluster 1). Arrowheads indicate astrocytes that are ALDH1L1+/MT+/GFAP+
(example of Astrocyte Cluster 2). GFAP (green), ALDH1L1 (red), MT (cyan),
DAPI (white). Confocal microscopy in all panels; single optical planes are
shown. Scale bar = 20µm.

Additional file 14. Microglial gene expression alterations in the
cingulate cortex. A) Differential gene expression heatmap showing a
subset of significantly differentially expressed microglial genes in control
and HD cingulate cortex – cingulate cortex shown in red in the top right
pictogram (Microglial gene list was adapted from Patir et al [40]). B)
Principle component analysis plot of microglia nuclei. Control nuclei are
shown in red, HD in blue. C) Clustering of control (circles) and HD
(triangles) nuclei shows they cluster separately. Colors denote clusters as
determined by SC3 consensus clustering (K=2). D) Differential genes
expression of between control and HD microglial nuclei displayed as a
volcano plot with significance set at p<0.05 – genes with –log10 p value
(LogPV) of >3 are shown in blue, and those with -logPV of >3 and log2
fold change >2 are shown in red. Analysis was performed in EdgeR using
the likelihood ratio test. E) Differential genes expression heatmap
between control (red bar) and HD (blue bar) nuclei showing significantly
differentially expressed genes (-log10 p value scale shown on the left).
Significance was determined using Kruskal-Wallis test (p<0.05).

Additional file 15. Neuronal loss and dysfunction in the HD cingulate
cortex. A) Representative images of crystal violet stained cingulate cortex
sections from a control case and a grade 4 HD. The subcortical white
matter is shown in the lower right corner. Note the relative abundance
of the small “glial” nuclei in the HD cortex. Scale bar = 100um. B)
Representative images of cells with large nuclear area (5th quantile >104
um2) in the upper row and cells with small nuclear area (1st quantile <
30.8 um2) in the lower row. These areas correspond to neurons and glia,
respectively. C) Quantification of the relative proportions of nuclei
quantified (y-axis) within different area ranges (x-axis). Boxplots are
shown in addition to points representing individual cases. Clue indicates
HD and red controls. N=9 for control N=8 for HD. ***: p value < 0.001,
*****: p value < 0.000001. D) GO term and Reactome pathway
enrichment analysis of genes significantly downregulated in HD in the
bulk RNAseq analysis of the cingulate cortex. All of the pathways shown
are significantly enriched after Benjamini-Hochberg False discovery rate
correction (<0.05). The source of the GO term is color coded. P value of
enrichment is represented by the length of the bar per gene ontology.

Additional file 16. Differential gene expression between control and
HD neuronal nuclei, GO term enriched in top differentially upregulated
and downregualted genes.

Additional file 17. Microglial genes shown in heatmap of figure S6A
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