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Abstract 

Heterozygous, loss-of-function mutations in the granulin gene (GRN) encoding progranulin (PGRN) are a common 
cause of frontotemporal dementia (FTD). Homozygous GRN mutations cause neuronal ceroid lipofuscinosis-11 
(CLN11), a lysosome storage disease. PGRN is a secreted glycoprotein that can be proteolytically cleaved into seven 
bioactive 6 kDa granulins. However, it is unclear how deficiency of PGRN and granulins causes neurodegenera-
tion. To gain insight into the mechanisms of FTD pathogenesis, we utilized Tandem Mass Tag isobaric labeling mass 
spectrometry to perform an unbiased quantitative proteomic analysis of whole-brain tissue from wild type (Grn+/+) 
and Grn knockout (Grn−/−) mice at 3- and 19-months of age. At 3-months lysosomal proteins (i.e. Gns, Scarb2, Hexb) 
are selectively increased indicating lysosomal dysfunction is an early consequence of PGRN deficiency. Additionally, 
proteins involved in lipid metabolism (Acly, Apoc3, Asah1, Gpld1, Ppt1, and Naaa) are decreased; suggesting lysoso-
mal degradation of lipids may be impaired in the Grn−/− brain. Systems biology using weighted correlation network 
analysis (WGCNA) of the Grn−/− brain proteome identified 26 modules of highly co-expressed proteins. Three mod-
ules strongly correlated to Grn deficiency and were enriched with lysosomal proteins (Gpnmb, CtsD, CtsZ, and Tpp1) 
and inflammatory proteins (Lgals3, GFAP, CD44, S100a, and C1qa). We find that lysosomal dysregulation is exacerbated 
with age in the Grn−/− mouse brain leading to neuroinflammation, synaptic loss, and decreased markers of oligo-
dendrocytes, myelin, and neurons. In particular, GPNMB and LGALS3 (galectin-3) were upregulated by microglia and 
elevated in FTD-GRN brain samples, indicating common pathogenic pathways are dysregulated in human FTD cases 
and Grn−/− mice. GPNMB levels were significantly increased in the cerebrospinal fluid of FTD-GRN patients, but not 
in MAPT or C9orf72 carriers, suggesting GPNMB could be a biomarker specific to FTD-GRN to monitor disease onset, 
progression, and drug response. Our findings support the idea that insufficiency of PGRN and granulins in humans 
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Background
Frontotemporal lobar degeneration (FTLD) is the most 
common cause of dementia in people under the age of 
60 [7]. Frontotemporal dementia (FTD) is the clinical 
manifestation of FTLD neuropathology and major clini-
cal symptoms can be divided into either progressive defi-
cits in executive function and behavior or language [26]. 
Importantly, ~ 30% of FTD patients have a familial history 
of FTD or related neurodegenerative disease, highlight-
ing the important role of genetics in disease pathogenesis 
[26, 39, 43]. Taken together autosomal dominant muta-
tions in three genes, progranulin (GRN), chromosome 
9 open reading frame 72 (C9orf72), and microtubule 
associated protein tau (MAPT), account for the major-
ity of FTD heritability [43]. Less common mutations in 
other genes encoding TAR DNA binding protein 43 
(TDP-43; TARDBP) [19, 32, 95], sequestosome-1/p62 
(SQSTM1) [67, 121], charged multi-vesicular body pro-
tein 2b (CHMP2B) [104, 120], valosin-containing protein 
(VCP) [45, 126], TANK-binding kinase 1 (TBK1) [33, 38, 
92], among other rare genes can cause FTD [44]. Despite 
these advances in understanding the genetic causes of 
FTD, the normal, physiologic function of many proteins 
encoded by genes mutated in FTD is still unclear. Under-
standing the function and dysfunction of proteins linked 
to FTD is critical to developing effective therapies.

In particular, the function of the progranulin (PGRN) 
protein, encoded by GRN, has remained an enigma. The 
PGRN protein family is over a billion years old and evo-
lutionarily conserved across many species, suggesting 
PGRN has a critical function [85]. Heterozygous GRN 
mutations cause FTD by decreasing PGRN mRNA and 
protein by 50% or more [6, 24, 31, 36, 57, 73]. Although 
FTD-GRN mutations lead to TDP-43 pathology and dys-
function [17, 23, 81], it is still unclear why deficiency of 
PGRN ultimately causes neurodegeneration.

PGRN is a pleiotropic, cysteine rich secreted pro-
tein composed of one half-length and seven full-length 
domain repeats called granulins that are connected by 
peptide linker regions [112]. PGRN is highly expressed in 
neuronal and microglial cells throughout the brain [88]. 
PGRN has been implicated in various physiological func-
tions, ranging from extracellular signaling through mem-
brane receptors [25, 76, 80, 129], neuroprotection [35, 
65, 117, 130], to modulating inflammation [21, 70, 137]. 
PGRN can be cleaved by a variety of proteases to release 

individual ~ 6-kDa granulins, which are also bioactive 
[8, 47, 137]. However, the precise functions of PGRN 
and granulins are unclear, and the pathways that lead 
from deficiency of PGRN and granulins to FTD are still 
unknown, which has impeded progress towards develop-
ing therapies for FTD-GRN.

Another roadblock in the development of therapies for 
FTD is a lack of specific and sensitive biomarkers [40]. 
The identification of reliable biomarkers is important to 
distinguish FTD from Alzheimer’s disease or other neu-
rodegenerative diseases. Importantly, appropriate bio-
markers are also useful to monitor disease progression 
and assess efficacy of potential drugs. Elevated levels of 
neurofilament light chain (Nfl) in CSF and plasma are 
one promising biomarker for symptomatic FTD patients 
that harbor mutations in GRN, C9orf72, or MAPT [58]. 
However, increased levels of Nfl in plasma or CSF are not 
specific to FTD and Nfl is increased in several other neu-
rodegenerative diseases [124]. More research is needed 
to identify novel biomarkers to diagnose, discriminate, 
and ultimately treat the different sub-types of FTD.

To investigate the function of PGRN, provide insight 
into FTD pathogenesis, and identify potential biomark-
ers, we performed an unbiased quantitative proteomics 
analysis of whole-brain tissue from wild type (Grn+/+) 
and Grn knockout (Grn−/−) mice at 3- and 19-months of 
age. We utilized the Grn−/− mouse model because they 
share many pathological features with human FTD-GRN, 
including microgliosis, lipofuscinosis, accumulation 
of ubiquitinated proteins, and behavioral impairment 
[1, 82, 96]. We identified a variety of proteins that were 
increased or decreased in the Grn−/− mouse brain pro-
teome that were subsequently validated using biochemi-
cal and immunohistological approaches. In particular, 
lysosomal proteins were the most significantly altered in 
young Grn−/− mice, indicating that lysosomal dysfunc-
tion is an early event when PGRN expression is lost. In 
addition, we identified two proteins, transmembrane gly-
coprotein NMB (GPNMB) and galectin-3, which are pre-
dominantly expressed in microglia and are key hubs of a 
larger network of dysregulated proteins that change with 
age in Grn−/− mice. Moreover, GPNMB and galectin-3 
were significantly elevated in the lysates of FTD-GRN 
brain samples compared to healthy controls. Together, 
these data suggest that common pathogenic pathways are 

causes neurodegeneration through lysosomal dysfunction, defects in autophagy, and neuroinflammation, which 
could be targeted to develop effective therapies.
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dysregulated in both Grn−/− mice and human FTD cases 
caused by GRN haploinsufficiency.

Methods
Mouse brain sample processing for proteomics 
and biochemical analysis
Grn−/− mice used in this study were originally generated 
in Dr. Aihao Ding’s laboratory [131, 132] and purchased 
from the Jackson Laboratory (B6(Cg)-Grntm1.1Aidi/, 
IMSR Cat# JAX:013175, RRID:IMSR_JAX:013175). Mice 
were housed in the Department of Animal Resources at 
Emory University and all work was approved by the Insti-
tutional Animal Care and Use Committee (IACUC) and 
performed in accordance with the Guide for the Care and 
Use of Laboratory Animals of the National Institutes of 
Health. Mice were sacrificed at various ages and whole 
brains were dissected from the skull and frozen immedi-
ately in liquid nitrogen. Brain tissue was ground to a fine 
powder under liquid nitrogen using a mortar and pestle 
and stored at − 80 °C as previously described [48]. Frozen 
cerebral cortex brain samples from 3-month old Grn+/+ 
wild type (n = 4) and Grn−/− knock out (n = 4) mice 
and 19-month old Grn+/+ wild type (n = 4) and Grn−/− 
knock out (n = 4) mice were collected. For proteomic 
analysis, approximately 100  mg of mouse brain tissue 
powder was homogenized in 500 μL of urea lysis buffer 
(8  M urea, 100  mM NaH2PO4, pH  8.5), supplemented 
with 5 μL (100 × stock) HALT protease and phosphatase 
inhibitor cocktail (Pierce) using a Bullet Blender (Next 
Advance) and 750 mg of steel beads (Next Advance). Pro-
tein supernatants were then transferred to a new 1.5 mL 
Eppendorf tube and sonicated (Sonic Dismembrator, 
Fisher Scientific) 3 times for 5  s with 15  s intervals of 
rest at 30% amplitude. Protein concentration was meas-
ured with the bicinchoninic acid (BCA) assay, and sam-
ples were frozen in aliquots at − 80  °C. Protein integrity 
was checked by one-dimensional SDS-PAGE. For subse-
quent immunoblots or ELISAs, an equal weight of brain 
powder was homogenized with 6 × volume per weight in 
cytoplasmic extraction buffer (CEB), membrane extrac-
tion buffer (MEB) from a Subcellular Fractionation kit 
(Pierce), or with 10 × volume per weight in RIPA buffer 
(150 mM NaCl, 0.1% SDS, 1% Triton-X 100, 0.5% sodium 
deoxycholate, 50  mM Tris, pH 8.0), supplemented with 
1 × HALT protease and phosphatase inhibitor cocktail 
(UK286007, Thermo scientific) as previously described 
[47]. Brain powder suspensions were sonicated (Sonic 
Dismembrator, Fisher Scientific) 5 times for 2 s with 8 s 
intervals of rest at 30% amplitude. Brain lysates were 
obtained by centrifugation at 500 × rcf for 10 min at 4 °C. 
Protein supernatants were transferred to a new 1.5  mL 
Eppendorf tube. Protein concentration was measured 

with the bicinchoninic acid (BCA) assay and saved sam-
ples were saved at − 80 °C.

Tandem mass tag (TMT) peptide labeling and electrostatic 
repulsion‑hydrophilic interaction chromatography (ERLIC) 
fractionation
Proteolytic digestion of protein samples and cleanup was 
performed as previously described [14]. Briefly, protein 
samples were reduced with 1  mM dithiothreitol (DTT) 
for 30 min, alkylated with 5 mM iodoacetamide (IAA) in 
the dark for an additional 30 min and then diluted 8-fold 
with 50  mM triethylammonium bicarbonate (TEAB). 
Overnight digestion was performed with 1:100 (w/w) 
Lysyl endopeptidase (Wako) followed by an additional 
12-h digestion with Trypsin at 1:50 (w/w). Peptide solu-
tions were acidified and desalted with a C18 Sep-Pak col-
umn (Waters). A 2 μg equivalent of each sample elution 
was pooled and used to create a global internal standard 
(GIS) and all samples were dried under vacuum. Tandem 
mass tag (TMT) peptide labeling was performed accord-
ing to manufacturer’s instructions and as previously 
described [14]. One batch of 10-plex TMT kits (Thermo 
Fisher) was used to label 8 samples and two GIS mixtures 
per batch. Electrostatic repulsion-hydrophilic interac-
tion chromatography (ERLIC) offline fractionation was 
performed as previously described [14, 15]. Briefly, dried 
samples were re-suspended in 100 μL of ERLIC buffer A 
(90% acetonitrile with 0.1% acetic acid) and separated on 
a PolyWAX LP column (20  cm by 3.2  mm packed with 
300 Å pore, 5  μm beads (PolyLC Inc.) and elution frac-
tions were recovered over a 45-min gradient from 0 to 
50% ERLIC buffer B (30% ACN with 0.1% FA).

LC–MS/MS and TMT data acquisition
Assuming equal distribution of peptide concentration 
across all ERLIC fractions, 10 μL of loading buffer (0.1% 
TFA) was added to each of the fractions and 2  μL was 
separated on a 25 cm long 75 μm internal diameter fused 
silica column (New Objective, Woburn, MA) packed in-
house with 1.9 μm Reprosil-Pur C18-AQ resin. The LC–
MS/MS platform consisted of a Dionex RSLCnano UPLC 
coupled to an Orbitrap Fusion mass spectrometer with 
a Flex nano-electrospray ion source (Thermo Fisher). 
Sample elution was performed over a gradient of 3 to 
30% Buffer B (0.1% formic acid in ACN) over 105  min 
(flow rate started at 300  nL/min and ended at 350  nL/
min), from 30 to 60% B over 20 min at 350 nL/min, and 
from 60 to 99% B over 5 min at 350 nL/min. The column 
was equilibrated with 1% B for 10 min at a flow rate that 
increased from 350 nL/min to 400 nL/min. The MS was 
operated in positive ion mode and utilized the synchro-
nous precursor selection (SPS)-MS3 method for reporter 
ion quantitation as described [90]. The full scan range 
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was 380–1500 m/z at a nominal resolution of 120,000 at 
200 m/z and automatic gain control (AGC) set to 2 × 105. 
Collision-induced dissociation (CID)-Tandem MS/MS at 
35% normalized collision energy (CE) and higher energy 
collision dissociation (HCD) SPS-MS3 at 65% normal-
ized collision energy (CE) were collected at top speed 
with 3  s cycles. For SPS, the top 10 product ions were 
notched and fragmented.

Protein identification and quantification
Raw data files from the Orbitrap Fusion were processed 
using Proteome Discover (version 2.1). Collected MS/
MS spectra were searched against the UniProt mouse 
proteome database (54,489 total sequences). SEQUEST 
parameters were specified as: trypsin enzyme, two 
missed cleavages allowed, minimum peptide length of 
6, TMT tags on lysine residues and peptide N-termini 
(+ 229.162932 Da) and carbamidomethylation of cysteine 
residues (+ 57.02146  Da) as fixed modifications, oxida-
tion of methionine residues (+ 15.99492 Da) and deami-
dation of asparagine and glutamine (+ 0.984016  Da) 
as a variable modification, precursor mass tolerance of 
20  ppm, and a fragment mass tolerance of 0.6  Da. Pep-
tide spectral match (PSM) error rates were determined 
using the target-decoy strategy coupled to Percolator [16] 
modeling of true and false matches. Reporter ions were 
quantified from MS3 scans using an integration tolerance 
of 20 ppm with the most confident centroid setting. An 
MS2 spectral assignment false discovery rate (FDR) of 
less than 1% was achieved by applying the target-decoy 
strategy. Following spectral assignment, peptides were 
assembled into proteins and were further filtered based 
on the combined probabilities of their constituent pep-
tides to a final FDR of 1%. In cases of redundancy, shared 
peptides were assigned to the protein sequence with 
the most matching peptides, thus adhering to princi-
ples of parsimony. In total, 8695 proteins were identified 
by tandem mass spectrometry. The search results and 
TMT quantification as well as raw LC–MS/MS files are 
included in the ProteomeXchange online repository with 
identifier (to be uploaded and assigned). Prior to data 
analysis, preliminary network connectivity outliers were 
determined as samples with connectivity beyond 3 stand-
ard deviations from the mean using Oldham’s “Sample-
Networks” v1.06 R script as previously published, but no 
cases were identified for removal [84, 102].

Data preparation
Each TMT batch consisted of a single age group, either 
3 month or 19 month, of Grn+/+ and Grn−/− mice which 
led to some proteins being measured in one batch and 
not in the other. As a result, batch wise missing values 
for these proteins across the two TMT multiplexes led to 

exactly 50% missing values. To limit the effects of batch 
wise differences on data analysis methods, initial analysis 
was conducted on the 6566 unique proteins which were 
measured across all batches. Proteins with 50% of quanti-
fied values were later mapped into the existing network 
and volcano plots (2129 proteins).

Differential expression analysis and MetaScape
Differentially enriched or depleted proteins (p ≤ 0.05) 
were identified by one-way ANOVA with post-hoc Tukey 
HSD test comparing four groups: 3-month-old Grn+/+, 
3-month-old Grn−/−, 19-month-old Grn+/+ mice and 
19-month-old Grn−/− mice. Differential expression of 
proteins were visualized with volcano plots generated 
using the ggplot2 package in Microsoft R Open v3.4.2. 
Significantly differentially expressed proteins were deter-
mined by both having a p ≤ 0.05 and a fold change differ-
ence of greater than log2(1.25) or less than − log2(1.25) (a 
minimum 25% fold change).

Proteins that were significantly differentially expressed 
in Grn+/+ and Grn−/− mouse brain proteomes were 
analyzed using MetaScape as described [136]. Briefly, 
differentially expressed genes were analyzed using the 
MetaScape web portal (https​://metas​cape.org/) to iden-
tify enriched ontology clusters in the data set. Statistically 
enriched terms (i.e. GO/KEGG terms), accumulative 
hypergeometric p-values, and enrichment factors were 
calculated and used for filtering. The significant terms 
were hierarchically clustered into a tree based on Kappa-
statistical similarities among their gene memberships, 
then 0.3 kappa score applied as threshold to cast the tree 
into term clusters.

Weighed co‑expression network analysis
Following previously described procedures of WGCNA 
[102], a weighted protein co-expression network was 
generated using the protein abundance network of 6566 
unique proteins. WGCNA::blockwiseModules() func-
tion was used with the following settings: soft threshold 
power beta = 29, deepSplit = 4, minimum module size of 
25, TOMdenom = “mean”, merge cut height of 0.07, pam-
Stage = TRUE and a reassignment threshold of p < 0.05. 
Hierarchical protein correlation clustering analysis was 
conducted using 1‐TOM, and initial module identifi-
cations were established using dynamic tree cutting as 
implemented in the WGCNA::blockwiseModules() func-
tion [66]. Module eigenproteins were defined as the first 
principal component of coexpression module protein 
log2(abundances) [74]. The module membership measure 
is defined as kME. KME is the pearson correlation between 
the expression pattern of the protein and the module 
eigenprotein. Bicor correlation was used for pairwise 
complete correlation of non-missing measurements with 

https://metascape.org/
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the cognate samples’ levels in module eigenproteins. The 
top correlated eigenprotein was used to assign the pro-
teins with 50% missing values to a module, albeit with 
diminished confidence due to N = 8 instead of 16.

Gene ontology (GO) and cell‑type enrichment analysis
To characterize groups of differentially expressed pro-
teins and co‐expressed proteins, we used GO Elite v1.2.5 
as previously published [102] with pruned output visual-
ized using an in‐house R script. Overrepresentation of 
ontologies in each module was determined by Z-score 
value. Enrichment of cell type across co‐expression mod-
ules was investigated by intersecting module proteins 
with lists of proteins known to be expressed by each cell 
marker [103] and assessing significance of overlap using 
a one‐tailed Fisher exact hypergeometric overlap test. 
After assessing significance, the p‐values were corrected 
by the Benjamini–Hochberg method. Cell type-specific 
gene lists are provided in Additional file 1: table S1.

Mouse plasma samples
Mouse blood samples were collected by cheek vein punc-
ture into EDTA tubes and chilled on ice for 1 h. Plasma 
samples were separated by centrifugation at 500 rcf for 
10 min at 4 °C and stored at − 80 °C for ELISA.

Human samples processing
Human brain samples
Human brain tissue was provided by the Emory Brain 
Tissue Bank (Emory University Goizueta  Alzheimer’s 
Disease Research Center, Atlanta, Georgia, USA) and the 
Mayo Clinic Brain Bank (Jacksonville, Florida). A sum-
mary of the neuropathological and clinical descriptors of 
human post-mortem samples used for immunostaining 
and ELISA is provided as a supplementary table (Addi-
tional File 2: table  S2). This included a total of frozen 
frontal cortex samples from FTD-GRN  patients (n = 21, 
11 males and 10 females, mean age 66.81 ± 1.66  years), 
cognitively normal controls (n = 23, 13 males and 10 
females, mean age 62.17 ± 2.51  years), among which 5 
corresponding paraffin-embedded brain sections in each 
group were collected. Human brain tissue was processed 
as described for mouse brains described above. Briefly, 
an equal weight of brain powder was homogenized with 
10 × volume per weight in RIPA buffer and saved for pro-
tein analysis (BCA), immunoblot, and ELISA.

Human CSF samples
Human cerebrospinal fluid (CSF) samples were obtained 
from the Advancing Research and Treatment for Fronto-
temporal Lobar Degeneration (ARTFL) and the Longi-
tudinal Evaluation of Familial Frontotemporal Dementia 
Subjects (LEFFTDS) studies (ARTFL-LEFFTDS), which 

were housed at the National Centralized Repository for 
Alzheimer Disease and Related Dementias  (NCRAD). 
CSF was obtained by lumbar puncture from individuals 
with genetic mutations associated with FTD (FTD-GRN 
n = 13, FTD-C9orf72 n = 13, or FTD-MAPT n = 12) or 
cognitively normal controls (n = 14) and stored at − 80 °C 
before analysis. NCRAD receives government support 
under a cooperative agreement grant (U24 AG21886) 
awarded by the National Institute on Aging (NIA).

Immunostaining and imaging
Immunohistochemistry bright field staining was per-
formed on 5  μm human and mouse brain paraffin sec-
tions as previously described [77, 99, 122]. In brief, 
sections were deparaffinized in xylene and rehydrated 
using a descending series of ethanol concentrations 
(100%, 95%, 70%). To retrieve the antigens, sections were 
boiled in 10 mM sodium citrate buffer (pH = 6.0) using a 
microwave oven and cooled down for 1 h to reach room 
temperature. Brain tissue was treated with 3% H2O2 in 
deionized water for 20 min to block endogenous peroxi-
dase activities. Slides blocked in 5% normal animal serum 
in 0.01  M TBS for 1  h at room temperature. Next, sec-
tions were incubated overnight at 4  °C with anti-mouse 
Cathepsin D (Goat, AF1029, 1:500, R&D Systems), anti-
mouse Cathepsin Z (Goat, PA5-47048,1:500, Thermo 
Fisher Scientific), anti-mouse GPNMB (Goat, AF2330, 
1:1000, R&D Systems), anti-mouse Galectin-3 (Goat, 
AF1197,1:1000, R&D Systems), anti-mouse progranu-
lin (Sheep, AF2557, 1:500, R&D System), or anti-human 
GPNMB (Rabbit, AF2550, 1:500, R&D System) anti-
body. ImmPRESS HRP polymer detection kits horse 
anti-goat IgG (MP7405-15, Vector laboratories) or horse 
anti-rabbit IgG (MP-7401-15, Vector laboratories) was 
used for detecting primary antibodies and amplifying 
signals. For mouse progranulin staining, biotinylated 
donkey anti-sheep secondary antibody (713-065-003, 
1:200, Jackson ImmunoResearch) was used. To visualize 
staining, diaminobenzidine (DAB) with nickel enhance-
ment (SK4100, Vector Laboratories) was performed and 
hematoxylin (72511, Thermo Fisher Scientific) was used 
for nuclear counterstain. Finally, sections were dehy-
drated with increasing concentrations of ethanol (70%, 
95%, 100%) and xylene for 2 min each then mounted with 
permanent mounting media (8312-4, Thermo Fisher Sci-
entific). Whole slide images were captured on an Aperio 
AT2 Slide Scanner (Leica) and analyzed in Aperio Imag-
eScope software.

Immunofluorescence staining was also performed on 
5 μm mouse and human brain paraffin sections. Depar-
affinization, rehydration and antigen retrieval steps were 
the same as immunohistochemistry staining above. Per-
meabilization was performed by incubating slides with 
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0.01  M TBS buffer containing 0.4%Triton-X 100 solu-
tion and 1% normal animal serum for 10 min. Non-spe-
cific binding was blocked with a one-hour incubation 
at room temperature with 5% normal animal serum 
in 0.1%Triton-X 100 in 0.01  M TBS. Autofluorescence 
from lipofuscin and blood vessels was blocked using 
Trueblack (#23007, Biotium) diluted in 70% ethanol for 
30  s, followed by a rinse with TBS. Then, sections were 
incubated overnight at 4 °C with primary antibody: anti-
mouse GPNMB (Goat, AF2330, 1:1000, R&D Systems), 
anti-mouse Galectin-3 (Goat, AF1197, 1:1000, R&D Sys-
tems), anti-Iba1 (Rabbit, mAb17198, 1:1000, Cell Sign-
aling Technology), anti-GFAP (Rabbit, Z0334, 1:1000, 
Agilent Dako) or anti-NeuN (Rabbit, mAb24307, 1:1000, 
Cell Signaling Technology) antibody. The following day, 
sections were incubated with fluorescent secondary anti-
bodies: Donkey anti-rabbit Alexa Fluor 488 (R37118, 
1:500, Invitrogen), and Donkey anti-rabbit Alexa Fluor 
647 (A-21447, 1:500, Invitrogen) for 1 h at room temper-
ature. DAPI (#62248, 1:1000, Thermo Fisher Scientific,) 
was used to stain the nucleus and Prolong Gold anti-fade 
mountant (P36930, Thermo Fisher Scientific) was used 
for cover slipping to protect fluorescent signals.

Immunoblot
Immunoblots were performed as previously described 
[27, 55, 72]. Briefly, human and mouse brain running 
samples were prepared in loading buffer with 50  mM 
2-Mercaptoethanol (BME) followed by denaturing at 
70 °C for 15 min. Protein samples were separated on Bio-
Rad 4–20% 18-well midi gels at 100  V and transferred 
to a 0.2 µm nitrocellulose membrane using the Bio-Rad 
Trans-blot Turbo system. Membranes were stained with 
total protein stain (926-11010, Licor) and imaged on the 
Odyssey Fc (Licor) to access transfer efficiency and nor-
malize protein abundance between samples. After block-
ing with Licor Odyssey blocking buffer for 1  h at room 
temperature, membranes were incubated overnight at 
4  °C with primary antibody: anti-mouse Cathepsin D 
(Goat, AF965, 1:500, R&D Systems), anti-mouse Cath-
epsin Z (Goat, PA5-47048, 1:1000, Thermo Fisher Scien-
tific), anti-mouse GPNMB (Goat, AF2330, 1:1000, R&D 
Systems), anti-mouse Galectin-3 (Goat, AF1197, 1:1000, 
R&D Systems), anti-human Galectin-3 (Goat, AF1154, 
1:1000, R&D Systems), or anti-human GPNMB (Goat, 
AF2550, 1:1000, R&D Systems) antibody. All primary 
antibodies were diluted in 1:1 TBST/Blocking buffer. 
Alpha-tubulin (Rabbit, 1878-1, 1:10,000, Epitomics) and 
beta-actin (Rabbit, ab8227, 1:1000, Abcam) were used 
as loading controls. Near-infrared fluorescent secondary 
antibodies (diluted in TBST) or HRP-conjugated (diluted 
in 0.5% milk in TBST) antibodies were incubated for 
1 h at room temperature: Donkey anti-goat Alexa Fluor 

680 (A21084, 1:10,000, Invitrogen), goat anti-rabbit 790 
(A11369, 1:10,000, Invitrogen), donkey anti-rabbit 680 
(A21109, 1:10,000, Invitrogen), or donkey anti-goat HRP 
(705-035-003, 1:15,000, Jackson ImmunoResearch) were 
used. For HRP visualization, blots were incubated in 
WesternSure PREMIUM Chemiluminescent Substrate 
(926-95010, Licor) for 5 min before imaging. Near-infra-
red or chemiluminescent blots were imaged using the 
Odyssey Fc (Licor) and analyzed by Image Studio soft-
ware 5.2.

ELISA
General ELISA protocols were performed as previously 
described [55, 63, 64]. Levels of GPNMB and galectin-3 
in tissue were quantified using ELISAs Duosets according 
to the manufacturer’s protocol: human GPNMB (AF2550, 
R&D Systems), mouse GPNMB (AF2330, R&D Systems), 
human Galectin-3 (DY1154, R&D Systems), or mouse 
Galectin-3 (DY1197, R&D Systems). Additional ELISA 
reagents were from ELISA reagents kit 2 (DY008, R&D 
Systems). Briefly, ELISA plates were coated with 100 µL/
well coating antibody diluted in coating buffer overnight 
at room temperature. After washing with 1 × wash buffer 
3 times, plates were blocked with 1X reagent diluent 
300 µL/well at least 1 h. Human brain RIPA lysates, CSF 
samples, mouse brain RIPA lysates or mouse plasma were 
diluted at 1:20, 1:4, 1:50, or 1:10 respectively, in 1X rea-
gent diluent and added to plates with standard at 100 µL/
well and incubated for 2 h. Next, 100 µl of diluted detec-
tion antibody was added per well. 100  µL of the work-
ing dilution of Streptavidin-HRP was added to each well 
and plates were incubated for 20 min in the dark. Then, 
100 µL of substrate solution was added to each well and 
incubated for 15  min while still avoiding light. To stop 
the reaction, 50 µL of 2 N sulfuric acid was added to each 
well. Finally, ELISA plate sample absorbance (450  nm 
signal and 570  nm for background correction reading) 
was measured on an Epoch plate reader (BioTek) and 
processed using Gen5 software (BioTek). All samples 
were run in duplicate and values fell within the stand-
ard curve generated with recombinant human or mouse 
GPNMB or galectin-3 protein provided in DuoSet ELISA 
kits. Protein measurements in human and mouse brain 
samples were normalized to the amount of total protein 
added per well.

Statistical analysis
Standard curve generation and statistical analyses were 
performed by GraphPad Prism 8.0. An unpaired student’s 
t-test for two groups and one-way or two-way ANOVA 
for more than two groups were used to generate p values. 
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All quantitative data are presented as mean ± SEM and 
significance levels are denoted ****p < 0.0001, ***p < 0.001, 
**p < 0.01 and *p < 0.05.

Results
Proteomic analysis of Grn+/+ and Grn−/− mouse brain
We used unbiased proteomics to quantify how PGRN 
deficiency changes the mouse brain proteome with age 
to provide insight into the function of PGRN and how 
PGRN deficiency causes neurodegeneration. This was 
accomplished using Tandem Mass Tag (TMT) isobaric 
labeling and synchronous precursor selection-based 
MS3 (SPS-MS3) mass spectrometry to perform quanti-
tative proteomic analysis of the cerebral cortex in 3- and 
19-month old Grn+/+ and Grn−/− mice (Fig. 1a). The use 
of 10-plex TMT labeling followed by off-line electro-
static repulsion-hydrophilic interaction chromatography 
(ERLIC) fractionation prior to LC–MS/MS enabled iden-
tification of 8,695 unique proteins. Next, we determined 
which proteins were differentially enriched or depleted 
(p ≤ 0.05; one-way ANOVA-Tukey HSD) in the brain 
proteomes of 3- or 19-month old Grn+/+ compared to 
age-matched Grn−/− mice (Fig.  1b, c); Additional file  1: 
table  S3). In the 3-month Grn−/− mouse brain sam-
ples, 29 proteins increased and 26 proteins decreased 
in abundance compared to Grn+/+ mice of the same 
age (Fig. 1b). Gene ontology (GO) analysis of all signifi-
cantly altered proteins Grn−/− mouse brain using MetaS-
cape revealed a significant enrichment (− log10(p) > 10) 
of proteins involved in lysosome function (Kegg path-
way: mmu04142) and glycosphingolipid metabolism 
(Reactome: R-MMU-1660662) (i.e. Gns, Scarb2, Hexa, 
Hexb, Fuca 2, Pppt1, and Ctsa) [136]. GO analysis focus-
ing on downregulated proteins in the 3-month Grn−/− 
brain proteome identified a significant enrichment 
(− log10(p) > 4) of proteins involved in lipid catabolism 
(Acly, Apoc3, Asah1, Gpld1, Ppt1, Naaa; GO:0016042), 
which may indicate that PGRN deficiency causes impair-
ment of the lysosomal degradation and recycling of 
lipids.

In 19-month-old Grn−/− mice, 119 proteins were 
increased and 20 proteins were decreased compared 
to Grn+/+ mice. In the brains of 19-month-old Grn−/− 
mice we found that an even larger number of lysosomal 
proteins were increased, including glycoprotein NMB 
(GPNMB), which is the most upregulated protein in aged 
Grn−/− mice (Fig. 1c). In addition to lysosome alterations, 
GO analysis revealed novel upregulated pathways in 
19 month old Grn−/− mice including proteins involved in 
gliogenesis (C1qa, Dbi, Gfap, P2rx4, Stat3, Bin1, Zfp365) 
as well as inflammation, complement, and coagulation 
cascades (C1qa, C1qb, C1qc, C4b, Itgb2, and A2m) [136]. 
Thus, our initial analysis of the mouse brain proteome 

reveals an early dysregulation of proteins involved in 
lysosomal function and lipid metabolism in 3-month-old 
Grn−/− mice, which is exacerbated with age, leading to 
upregulation of proteins involved in the innate immune 
response and inflammation.

Co‑expression protein analysis with Grn+/+ and Grn−/− 
mouse
Next, we performed weighted co-expression network 
analysis (WGCNA) on the Grn+/+ and Grn−/− mouse 
brain proteome datasets to determine the relationship 
between the changes in protein abundance we observed 
and biological pathways and cell types [66]. Network 
analysis identified 26 modules of strongly co-expressed 
groups of proteins (Fig.  1d; Additional file  1: table  S4, 
table  S5). Each protein co-expression module is defined 
by its first principal component, an eigenprotein, which 
is also the most representative weighted protein expres-
sion pattern across samples for a group of co-expressed 
proteins [102]. Modules were clustered based on related-
ness defined by the correlation distance between eigen-
proteins (Fig. 1d). We calculated the relationship between 
modules and the biweight midcorrelation (bicor) [106] 
of eigenproteins to genotype and age of Grn mice and 
identified a number of modules that significantly cor-
related (Fig.  1e). Comparison of modules in the Grn+/+ 
19-month versus Grn+/+ 3-month data set or Grn−/− 
19-month versus 3-month Grn−/− data set identified 
many of the same modules, suggesting this analysis iden-
tifies common or shared protein modules that are gener-
ally altered during aging (Additional file 3: Fig. S1, online 
resource).

In contrast, comparison of 3-month old Grn−/− mice 
to 3-month old Grn+/+ mice identified 6 modules that 
significantly correlated to Grn deficiency (Fig.  1e). The 
ontology of these modules are described by a structural 
component, function, or biological process: modules M2 
myelin, M7 lysosome/immune response, M8-synapse, 
M15-cation channel/transport, M16 lysosome/hydro-
lase activity, M20 ribosome (Fig. 2 and Additional file 1: 
table  S5; Additional file  3: Fig. S2–5, online resource). 
The M2 myelin and M15-cation channel module were 
modestly, but significantly (p = 0.003 and p = 0.02, 
respectively), decreased in the 3-month cohort. The M16 
(Fig.  2b, h) and M7 (Fig.  2a, g) lysosome modules were 
the most upregulated modules and the most significantly 
correlated (p = 6 × 10−6 and p = 5 × 10−4, respectively) 
to Grn deficiency in the 3-month old Grn−/− brain pro-
teome, indicating these modules are key drivers of dis-
ease pathogenesis.

Comparison of 19-month old Grn−/− mice to 
19-month old Grn+/+ mice identified 14 modules with 
significant correlation to Grn deficiency (Fig.  1e). Three 
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Fig. 1  Proteomics and network analysis of Grn+/+ and Grn−/− mouse brain. a Schematic overview of experimental design. Quantitative proteomic 
analysis of the cerebral cortex of 3-month-old (n = 4 Grn+/+, n = 4 Grn−/−) and 19-month-old (n = 4 Grn+/+, n = 4 Grn−/−) mice was performed 
using Tandem Mass Tag (TMT) isobaric labeling and synchronous precursor selection-based MS3 (SPS-MS3) mass spectrometry. b, c Volcano plots 
illustrating differentially expressed proteins in 3- and 19-month-old mouse brains. Relative protein abundance (log2 Grn−/−/ Grn+/+) plotted against 
significance level (− log10 P-value), showing significantly (p < 0.05) decreased (Grn−/−/ Grn+/+ ratio < log2(− 1.25); green) and increased (Grn−/−/ 
Grn+/+ ratio > log2(1.25); red) proteins in Grn−/− mice. d WGCNA cluster dendrogram generated by hierarchical clustering of highly co-expressed 
genes followed by identifying 26 distinct modules coded by different colors. e Two-color heatmap is showing the relationship between modules 
and the bicor correlation of genotype. Significance levels are ****p < 0.0001, ***p < 0.001, **p < 0.01 and *p < 0.05. f Significance of cell type overlap 
is shown by one-color heatmap with P values. Relevance between each module and cell type was assessed by protein module overlap with known 
mouse microglia, astrocyte, neuron and oligodendrocyte markers. Significance levels are ****p < 0.0001, ***p < 0.001, **p < 0.01 and *p < 0.05
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of the same modules (M7, M16, and M20) that were 
increased in 3-month old Grn−/− mice were similarly 
increased in the 19-month old group. Novel modules that 
were altered in the 19-month old Grn−/− brain proteome 
include: modules M3-microtubule/cell-cycle (Fig. 2e, k), 
M5-postsynaptic/glutamate signaling (Fig. 2d, j), M6-lys-
osome/oxidation–reduction (Fig.  2c, i), M11-ribosome/
translation, M12-nucleus/nucleic acid metabolism, 
M14-GPCR signaling, M19-synaptic membrane/secre-
tion (Fig.  2f, i), M22-pyruvate/acetyl–CoA metabolism, 
M24-axon/defense response, and M26-membrane/
mitochondria (Fig. 2a–l and Additional file 3: Fig. S2–5, 
online resource). The three most significantly upregu-
lated modules M6 (Fig.  2c, i; p = 9 × 10−5), M7 (Fig.  2a, 
g; p = 3 × 10−6), and M16 (Fig.  2b, h; p = 3 × 10−6) are 
related to lysosome function, further implicating the 
importance of this pathway to normal PGRN function 
and alteration following Grn deficiency. Interestingly, 
the most significantly decreased modules in 19-month 
old Grn−/− brain contain proteins important for post-
synaptic function and glutamate signaling (M5, Fig.  2d, 
j; p = 0.002), synaptic membrane/secretion (M19, Fig. 2f, 
i; p = 0.04), and mitochondria function (M22, p = 0.01; 
M26, p = 0.02; Additional file 3: Fig. S5).

Next, we asked if the changes we observed in specific 
modules were driven by changes in cell types. To do this, 
we evaluated whether a given module was enriched in 
marker proteins for particular CNS cell types using a pre-
viously established cell-type specific proteome derived 
from the mouse brain [53](Fig.  1f; Additional file  1: 
table  S1). We observed significant enrichment of neu-
ronal proteins in the M5 postsynaptic module (Fig.  1f; 
Dbn1, Shank2, Shank1, Camk4) and M1 module (Fig. 1f; 
Dpysl5, Madd, Sugp2, Lamb1). Further, oligodendrocyte 
protein markers were enriched in the M2 myelin mod-
ule (Fig. 1f; Plp1, Mbp, Mog, cldn11) and the M19 syn-
aptic membrane module (Fig.  1f; Ncald, Anks1b, Jak2, 
Gpr158). The observation that neuronal (M5, p = 0.002) 
and oligodendrocyte (M19, p = 0.033) modules are 
decreased specifically in the brain of 19-month, not 
3-month, Grn−/− mouse brain suggests that neuronal loss 

and demyelination are a late-stage consequence of Grn 
deficiency.

We also found significant enrichment of microglial pro-
teins in the M16 lysosome module (Fig. 1f; Lgmn, Uap1l1, 
Stk11ip), the M7 lysosome module (Fig.  1f; Gpnmb, 
P2rx4, Lgals3, Tcirg, Hexb), the M6 lysosome module 
(Fig.  1f; Cotl1, Msn, Ctsd, Tgm2), and the M2 myelin 
module (Fig. 1f; Aldh3b1). Protein markers of astrocytes 
were significantly enriched in the M6 module (Fig.  1f; 
Gja1, Dhrs4, Acsf2, Nadk2) as well as the M4 (Fig.  1f; 
Gstt1, Ccbl2, Abat, Aldh4a1, Gcsh) and M25 modules 
(Fig.  1f; Fam213a, Vcl, Hrsp12, Acadvl, Hadha), both of 
which contain mitochondrial proteins. Our observation 
that M7 and M16 modules are both enriched in microglia 
markers and lysosomal proteins, and are the most signifi-
cantly elevated modules in the 3-month old Grn−/− brain 
proteome, suggests that dysregulation of microglial lys-
osomes may be the earliest pathologic change in Grn−/−.

Aged Grn−/− mouse brains accumulate lysosomal proteins 
and markers of neuroinflammation
Because GO and network analysis revealed that dysregu-
lation of the lysosomal pathway was an early and highly 
significant event in the Grn−/− mouse brain proteome, we 
focused on validating and examining these changes using 
biochemical and immunological orthogonal approaches. 
First, we examined the expression levels and neuroana-
tomical location of two lysosomal proteins, cathepsin Z 
(protein abbreviation, Cat Z; gene, Ctsz) and cathepsin 
D (protein abbreviation, Cat D; gene Ctsd), enriched in 
modules M7 and M6, respectively. We performed immu-
noblotting of whole brain lysates from 3-month (n = 8) 
and 18-month-old (n = 8) Grn+/+ and Grn−/− mice. First, 
we examined Cat Z, a unique cysteine cathepsin, previ-
ously implicated in neurodegenerative diseases, but not 
examined in the context of FTD or PGRN biology [3, 
13, 110]. Levels of Cat Z increased in Grn+/+ (1.5-fold) 
and Grn−/− (2.3-fold) in whole brain lysates of 18-month 
mouse brain as measured by quantitative immunob-
lotting (Fig.  3a, b). Next, we examined the levels of Cat 
D, a key lysosomal aspartyl protease that has been sug-
gested to play an important role in PGRN function [9, 

Fig. 2  Modules that correlate to Grn deficiency and age highlight dysregulation of proteins involved in the lysosome, inflammation, and neuronal 
synaptic function. a–c Box plots illustrate eigenprotein values for modules (M7, M16, and M6 red) that are upregulated in 3- or 19-month-old Grn−/− 
mice compared to Grn+/+ mice. d–f Box plots of M5, M3 and M19 modules that have decreased eigenprotein values in Grn−/− versus Grn+/+ in 
19-month-old mice. Values were analyzed by two-way ANOVA. Gene ontology (GO) enrichment analysis, calculated using GO Elite v1.2.5, of proteins 
in modules, highlights proteins involved in: g immune effector process, glycoprotein-binding, lysosome (M7), h protein transport, hydrolase 
activity, lysosome (M16), i oxidoreductase activity, regulation of NF kappa B cascade, lysosome (M6), j glutamate signaling, postsynaptic density, 
neuron spice and dendrite (M5), k regulation of neurotransmitter secretion, voltage-gated potassium channel activity, cytoplasmic microtubule 
(M3), i regulation of creation, synaptic membrane and synapses (M19). Light-green bars: biological process, light-blue bars: molecular function, 
brown-bars: cellular component

(See figure on next page.)
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115]. We observed a significant increase in both the pro- 
(~ 46 kDa) and heavy chain (~ 33 kDa) isoforms of Cat D 
(Fig. 3a, c, d). There were no significant differences in Cat 
Z and Cat D levels between Grn+/+ and Grn−/− mouse 
brain at 3  months, suggesting PGRN deficiency leads 
to an age-dependent increase of both Cat Z and Cat D. 
Next, we performed immunostaining on 19-month-old 
(n = 14) Grn−/− brain coronal sections to determine the 
regions of Cat Z and Cat D expression and upregula-
tion. We found strong immunostaining of Cat D in the 
thalamus, corpus callosum, striatum, and hippocampus 
in Grn−/− mouse brains (Fig.  3e). Immunostaining of 
Cat Z was also increased in the thalamus, corpus callo-
sum, and striatum of Grn−/− mice, but to a lesser extent 
than Cat D (Fig. 3f ). Taken together, immunoblotting and 
immunostaining of Grn−/− mouse brains confirm our 
proteomic results and demonstrate that PGRN deficiency 
leads to an age-dependent increase in the lysosomal pro-
teins Cat Z and Cat D.

An age‑dependent increase of GPNMB and Galectin‑3 
in Granulin Knockout mice
Next, we focused on examining the expression of trans-
membrane glycoprotein NMB (GPNMB) and galectin-3 
(LGALS3), because these were two of the most enriched 
proteins in the Grn−/− brain proteome, and are key hub 
proteins of module M7 (Figs.  1d, e, 2a). Additionally, 
excess levels of GPNMB and galectin-3 have not been 
previously associated with neurodegeneration associ-
ated with FTD, suggesting they might be involved in 
pathogenesis or serve as biomarkers. Towards this goal, 
we examined GPNMB and galectin-3 expression levels in 
Grn+/+ and Grn−/− at different ages using immunoblot-
ting and immunohistochemistry (Figs. 4, 5).

First, we were unable to detect mouse GPNMB in 
either 3-month old Grn+/+ or Grn−/− mouse brains by 
immunoblot analysis of detergent brain extracts. How-
ever, in 18-month-old Grn−/− mouse brain lysates, we 
detected strong immunoreactive bands for mature (gly-
cosylated; top band) and immature GPNMB compared 
to Grn+/+ mice (Fig.  4a). This result confirms our prot-
eomic data that GPNMB is a highly upregulated protein 

in aged 18-month-old Grn−/− mouse brain. Next, we 
used ELISAs to quantify the level of GPNMB in whole 
brain lysates from 18- (n = 8) and 24-month-old (n = 8) 
Grn+/+ and Grn−/− mice. GPNMB levels were signifi-
cantly increased in both 18-month-old Grn−/− (2.0-
fold; p < 0.0001) and 24-month-old Grn−/− (3.1-fold; 
p < 0.0001) brain tissue compared to age-matched Grn+/+ 
brain tissue (Fig.  4b). Subsequently, we asked when 
GPNMB is first elevated in Grn−/− mouse tissue. To do 
this, we quantified GPNMB levels in Grn+/+ and Grn−/− 
mouse brain tissue at 3- (n = 16), 6- (n = 16), 9- (n = 16), 
and 12- (n = 16) months of age by ELISA (Fig. 4c). Based 
on this analysis, GPNMB levels are first significantly 
increased at 12-months of age in Grn−/− mouse brains. 
Then, we asked if an increase in GPNMB levels could 
be detected in the blood. Indeed, GPNMB levels were 
increased ~ 2-fold (p < 0.01) in 19-month-old Grn−/− 
mice plasma compared to Grn+/+ (Fig. 4d).

Next, we performed immunohistochemical staining 
for GPNMB on sagittal brain sections from 3-, 12-, and 
24-month-old Grn+/+, Grn+/−, and Grn−/− mice to deter-
mine where GPNMB expression is most upregulated in 
the brain (Fig.  4e). We noted elevated GPNMB staining 
in the thalamus of Grn−/− mice at 12 and 24 months of 
age compared to both Grn+/+ and Grn+/− brains, in 
agreement with our ELISA results. Further, there was 
no appreciable difference in GPNMB staining between 
Grn+/+ and Grn+/− mice at any age. Finally, we completed 
a more extensive survey of GPNMB staining on coronal 
brain sections of 19-month old Grn+/+ and Grn−/− mice. 
We observed strong increases in GPNMB immunoreac-
tivity in the corpus callosum and the thalamus and lower 
levels of increase in the hippocampus, cortex, and stria-
tum (Fig. 4f ).

Next, we repeated the same analyses for galectin-3. 
Based on quantitative immunoblotting, galectin-3 lev-
els were 21-fold higher (p < 0.0001) in 18-month-old 
Grn−/− mouse brain lysate compared to age-matched 
Grn+/+ samples (Fig.  5a, b). In order to quantify galec-
tin-3 protein levels more accurately, RIPA lysates of 
18- and 24-month old mouse brain were analyzed using 
ELISAs. Galectin-3 levels were significantly increased 

(See figure on next page.)
Fig. 3  The lysosomal proteins, cathepsin D (Cat D) and Cathepsin Z (Cat Z), are elevated in Grn−/− mouse brains. a Images of immunoblots of 
lysates of Grn+/+ and Grn−/− mouse brains at 3- (n = 4) and 18- (n = 4) months of age probed for Cat (33 kDa), pro Cat D (~ 48 kDa) and the mature 
heavy chain of Cat D (~ 33 kDa). Alpha-tubulin used as a loading control. b–d Fold change of signal intensity determined by comparing the 
3-month-old Grn+/+ group mean signal intensity measurement value of Cat Z and Cat D bands from (a) and normalized to total protein signal of 
blot. f Immunohistochemistry staining of Cat D in 19-month-old Grn+/+ and Grn−/− mouse brains. Region specific Cat D expression in the cortex 
(I, VII), hippocampus (II, VIII), corpus callosum (III, IX), striatum (IV, X), thalamus (V, XI) and hypothalamus (VI, XII). g Region specific Cat Z expression 
in the cortex (I, VI), corpus callosum (II, VII), striatum (III, VIII), thalamus (VI, IX), and hypothalamus (V, X) of 19-month-old Grn+/+ and Grn−/− 
mouse brains. Scale bars (1 nm to 100 µm) are labeled in images and quantitative data shown as mean ± SEM, p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001
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Fig. 4  GPNMB levels increase in the brain and plasma of Grn−/− mice with age. a Representative immunoblots of immature and mature 
(glycosylated) GPNMB in mouse brain lysates of Grn+/+ and Grn−/− mice at 3- and 18-months of age. Beta-actin used as loading control. b Levels 
of GPNMB (ng/mg protein) in mouse brain lysates measured by ELISA. Tissue from Grn+/+ (white) and Grn−/− (red) mice at 18-months (n = 4 per 
group) and 24-months (n = 4 per group), respectively. Data analyzed by two-way ANOVA. c ELISA quantification of mouse brain GPNMB levels (ng/
mg of brain protein) in Grn+/+ (white) and Grn−/− (red) mice at 3-, 6-, 9- and 12-month ages (n = 8 per group). Values analyzed by two-way ANOVA. 
d Levels of GPNMB in 19-month old Grn+/+ (white) and Grn−/− (red) mouse plasma measured by ELISA. Data (n = 6 for Grn+/+ and 13 for Grn−/−) 
analyzed using an unpaired student t-test. e Representative sections of Grn+/+, Grn+/−, and Grn−/− mouse thalamus at 3-, 12-, and 24-months of 
age immunostained for GPNMB. f 19-month-old Grn+/+ and age-matched Grn−/− mouse brain coronal sections were stained with anti-GPNMB 
antibody. GPNMB staining shown for multiple brain regions (cortex (I, VII), hippocampus (II, VIII), corpus callosum (III, IX), striatum (IV, X), thalamus (V, 
XI) and hypothalamus (VI, XII)). Scale bars (1 nm to 100 µm) are labeled in images and quantitative data shown as mean ± SEM, p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001
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Fig. 5  Galectin-3 levels are robustly increased with age in Grn−/− mouse brain. a, b Representative immunoblot (left) and quantification (right) 
of galectin-3 levels in the brain lysates of 3- and 18-month-old Grn+/+ mice and age-matched Grn−/− mice (n = 4 mice each group). Band values 
were normalized by total protein values and analyzed by two-way ANOVA. c Levels of mouse brain galectin-3 (ng/mg of protein) in lysates were 
quantified by ELISA. Galectin-3 levels were normalized to total protein added to assay and results analyzed by two-way ANOVA. d Galectin-3 protein 
measured in 19-month-old Grn+/+ and Grn−/− mice plasma samples by ELISA. Data analyzed using unpaired t-test. e Brain sections from Grn+/+, 
Grn+/−, Grn−/− mice at 3-, 12- and 24-months of age were immunostained with galectin-3 antibody. Representative images of thalamus from each 
genotype are shown. f 19-month-old Grn+/+ and age-matched Grn−/− mice brain coronal sections were stained with anti-GPNMB antibody and 
images from multiple regions (cortex (I, VII), hippocampus (II, VIII), corpus callosum (III, IX), striatum (IV, X), thalamus (V, XI) and hypothalamus (VI, 
XII)) are shown. Scale bars (1 nm to 100 µm) are labeled in images and quantitative data shown as mean ± SEM, p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001
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in Grn−/− mouse brains in both ages compared to age-
matched Grn+/+ mice (Fig. 5a, b). At 18-months, galec-
tin-3 levels were 2.12 ± 0.64  ng/mg protein in Grn+/+ 
mice and 10.53 ± 1.25 ng/mg protein in Grn−/− mice. At 
24-months, galectin-3 levels increased to 4.85 ± 1.78 ng/
mg protein in Grn+/+ mice and 30.99 ± 8.55 ng/mg pro-
tein in Grn−/− mice (Fig. 5a, b). Subsequently, we asked 
what age is galectin-3 first elevated in Grn−/− mouse 
tissue. We quantified galectin-3 levels in Grn+/+ and 
Grn−/− mouse brain tissue at 3- (n = 16), 6- (n = 16), 
9- (n = 16), and 12- (n = 16) months of age by ELISA 
(Fig.  5d). Based on this analysis, galectin-3 levels are 
first significantly elevated at 6  months of age in Grn−/− 
mouse brains (p < 0.01) and continue to increase with age 
(Fig. 5d). Interestingly, unlike GPNMB, we did not detect 
a significant change in galectin-3 levels in Grn−/− plasma 
compared to Grn+/+ plasma (Fig. 5e).

Next, we asked where galectin-3 expression is most 
upregulated in the brain. First, we performed immuno-
histochemical staining for galectin-3 on sagittal brain 
sections from 3-, 12-, and 24-month-old Grn+/+, Grn+/−, 
and Grn−/− mice. We noted elevated galectin-3 staining 
in the thalamus of Grn−/− mice as early as 3 months of 
age compared to both Grn+/+ and Grn+/− brains (Fig. 5f ). 
This is an earlier time point than our ELISA results, 
which used whole brain lysates, which may mask subtle 
changes in focal regions of the brain. Further, there was 
no appreciable difference in galectin-3 staining between 
Grn+/+ and Grn+/ mice at any age. Finally, we completed 
a more extensive survey of galectin-3 staining on coronal 
brain sections of 19-month old Grn+/+ and Grn−/− mice 
(Fig.  5g). We observed very strong galectin-3 immu-
noreactivity throughout the myelin tracts of the corpus 
callosum, the striatum, and the thalamus. Galectin-3 
immunoreactivity was also increased in the cortex, hip-
pocampus, and hypothalamus, although the staining was 
less widespread and more punctate. Overall, these results 
confirm our initial proteomics data that GPNMB and 
galectin-3 levels are specifically increased in the brains of 
Grn−/− mice.

Cellular localization of GPNMB and galectin‑3 in Grn−/− 
mice
Next, we aimed to determine which cells express GPNMB 
and galectin-3 in 19-month-old Grn−/− mice brains. 
We performed double immunofluorescent staining for 
GPNMB or galectin-3 with antibody markers for micro-
glia (Iba-1), astrocytes (GFAP), and neurons (NeuN) 
(Fig. 6a, b). We detected strong co-localization between 
GPNMB, galectin-3, and Iba-1, indicating microglia 
express both proteins in aged Grn−/− mouse brain. This 
further supports our network-based proteomic analy-
sis that detected a strong overlap between module M7, 

which contains GPNMB, galectin-3, and microglia cell 
markers (Fig. 1f ). In contrast, we did not detect co-local-
ization between GFAP-positive astrocytes and GPNMB 
or galectin-3. Similarly, we did not detect robust co-local-
ization of GPNMB or galectin-3 signal in NeuN-positive 
neurons. On occasion, we observed GPNMB co-staining 
in some cells that were weakly positive for NeuN. In sum-
mary, double immunofluorescent suggests that microglia 
are the major source of GPNMB and galectin-3 expres-
sion in Grn−/− mouse brains.

GPNMB and Galectin‑3 are increased in FTD‑GRN brain 
tissue
Finally, we asked if the pathologic changes we observed 
in aged Grn−/− mice also occur in the brains of FTD-
GRN patients. We generated detergent lysates of the 
frontal lobe from 21 FTD-GRN samples and 23 cogni-
tively normal controls. Initial immunoblotting of a subset 
of these cases suggested an increase in both GPNMB and 
galectin-3 in FTD-GRN brain homogenate compared to 
controls. Next, in order to more accurately quantify all 
samples, we measured human GPNMB and galectin-3 
using sandwich ELISAs. Levels of GPNMB (p < 0.0001) 
and galectin-3 (p < 0.001) were both significantly 
increased in FTD-GRN brain homogenates compared to 
controls (Fig. 7a, b).

Subsequently, we examined the distribution of GPNMB 
in more detail in FTD-GRN brains. First, we examined 
GPNMB expression in the frontal lobe of five FTD-GRN 
cases compared to age-matched, cognitively normal 
controls. Specificity of the anti-GPNMB antibody for 
immunohistochemistry was validated using recombinant 
GPNMB protein to block staining (Additional file 3: Fig. 
S6, online resource). Interestingly, the strongest signal for 
GPNMB was detected in the white matter of the frontal 
lobe in FTD-GRN brains (Fig. 7e, f ). Intensity of GPNMB 
immunoreactivity was 6.5-fold higher (p < 0.01) in the 
frontal lobes of FTD-GRN brains compared to matched 
regions from the brains of cognitively normal controls 
(Fig.  7e, f, Fig. S7a–d). Adjacent sections of FTD-GRN 
brains, but not controls, were immunopositive for phos-
phorylated TDP-43, confirming the presence of FTLD 
pathology in these cases [54, 81] (Fig. 7g, h, Fig. S7e–h). 
Then, to address cell-type specificity, we performed dou-
ble immunofluorescent staining of GPNMB and antibody 
markers for microglia (Iba-1), astrocytes (GFAP), and 
neurons (NeuN) (Fig. 7j–u). We detected strong co-local-
ization between GPNMB and Iba-1 in human FTD-GRN 
brains. No co-localization between GPNMB and GFAP 
or NeuN signal was detected. These data suggest micro-
glia are the predominant source of GPNMB expression in 
human FTD-GRN brains.
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Fig. 6  GPNMB and galectin-3 co-localize with Iba-1 positive microglia cells in Grn−/− mouse brain. a Representative immunofluorescent co-staining 
for different cell markers (Iba-1, microglia; GFAP, astrocytes; NeuN, neurons) are shown in green, GPNMB (red), and nuclei (DAPI; blue) in brains of 
19-month-old Grn−/− mice. b Representative immunofluorescent co-staining for different cell markers (Iba-1, microglia; GFAP, astrocytes; NeuN, 
neurons) are shown in green, galectin-3 (red), and nuclei (DAPI; blue) in brains of 19-month-old Grn−/− mice. Scale bars (20 µm) labeled in images



Page 17 of 25Huang et al. acta neuropathol commun           (2020) 8:163 	

Next, we asked if GPNMB levels were increased in 
FTD bio-fluids. We obtained CSF from patients with 
pathogenic genetic FTD mutations collected from the 
Advancing Research and Treatment for Frontotemporal 
Lobar Degeneration (ARTFL) and Longitudinal Evalu-
ation of Familial Frontotemporal Dementia Subjects 
(LEFFTDS) studies that were stored in the National Cen-
tralized Repository for Alzheimer’s Disease and Related 
Dementias (NCRAD) [95, 97]. GPNMB protein levels 
were quantified with sandwich ELISAs in CSF samples 
from individuals that were cognitively normal (controls; 
n = 14) and individuals with known mutations that cause 
FTD (FTD-GRN n = 13, FTD-C9orf72 n = 13, or FTD-
MAPT n = 12). GPNMB levels were significantly up regu-
lated (p < 0.05) in the FTD-GRN group (3.07 ± 0.35  ng/
mL CSF) compared to controls (1.92 ± 0.31 ng/mL CSF) 
(Fig. 7d). In contrast, there was no significant difference 
in GPNMB levels between controls and FTD-C9orf72 or 
FTD-MAPT CSF samples.

Discussion
Although PGRN haploinsufficiency is a well-established 
cause of FTD, the function of PGRN and the pathogenic 
cascade caused by PGRN deficiency that ultimately leads 
to neurodegeneration is still unclear [22, 86]. In this 
study, we performed deep proteomic analysis of whole 
brains from Grn−/− mice, which recapitulate many fea-
tures of FTD, including behavioral impairments and neu-
roinflammation [5, 10, 60, 82].

The first major finding is that the levels of lysosomal 
proteins are altered in young 3-month old c mouse 
brains. Our proteomics data is the first to find lysoso-
mal dysregulation at such an early time point. This is 
likely due to the sensitivity of TMT-based proteomics 
and the known discrepancy between RNA transcript 
levels and protein expression [102]. In particular, we 
detected significant increases in well-established pro-
teins that localize to the lumen or membrane of the 
lysosome including glucosamine (N-Acetyl)-6-Sulfatase 

(GNS), prosaposin (Psap), lysosomal integral mem-
brane protein-2 (Limp-2/Scarb2), cathepsin A (CtsA), 
and hexosaminidases A and B (Hexa; Hexb). Impor-
tantly, the genes encoding all of these proteins harbor 
pathogenic mutations that cause lysosome storage dis-
orders [91]. Furthermore, expression of these and other 
lysosomal genes are under control of the transcription 
factors TFEB and TFE3 and are up-regulated under 
conditions of lysosomal stress or dysfunction [93, 98, 
101]. Thus, early lysosome dysfunction in Grn−/− mice 
may manifest by increased expression of many lyso-
somal proteins. In agreement with our findings, the 
mRNA transcripts of many of the lysosomal genes we 
have identified have been reported to be increased in 
older Grn−/− mice [42, 135]. Taken together, our data 
indicate that lysosomal dysfunction occurs early in 
Grn−/− brains and likely initiates pathogenesis and 
eventual neurodegeneration.

Our findings also provide insight into the function of 
PGRN. Recently, a potential role of PGRN in lysosome 
homeostasis has emerged based on the discovery that 
multiple cases of homozygous GRN mutation carriers 
develop neuronal ceroid lipofuscinosis-11 (CNL11), 
a lysosomal storage disease [4, 18, 50, 105]. We, and 
other labs, have found that PGRN is trafficked to the 
lysosome and processed by cathepsins into granulins, 
which may be bioactive [47, 68, 133]. However, the 
function of PGRN and granulins within the lumen of 
the lysosome is still unclear. Because PGRN deficiency 
causes impairment of lysosomal protease activity and 
accumulation of lipofuscin [125], one possibility is that 
loss of PGRN/granulins directly or indirectly decrease 
the levels and/or activity of a lysosomal hydrolase.

With this idea in mind, our observation that a sub-
set of the most significantly downregulated proteins 
(Acly, Apoc3, Asah1, Gpld1, Ppt1, Naaa) in the 3 month 
Grn−/− brain proteome are involved in lysosomal lipid 
catabolic process is important. Of these proteins two, 
ATP-citrate lyase (Acly) and apolipoprotein (apo) C-III 

(See figure on next page.)
Fig. 7  GPNMB and galectin-3 levels are elevated in FTD-GRN brains. a, b GPNMB and galectin-3 levels (ng/mg protein) were measured in frontal 
lobe tissue lysates generated from cognitively normal controls (CTL; n = 27) and FTD-GRN patients (n = 25). Data analyzed using unpaired t-test. c 
Representative immunoblots for GPNMB and galectin-3 in frontal lobe lysates from cognitively normal controls (n = 8) and FTD-GRN (n = 8) patients. 
d GPNMB levels (ng/mL) in CSF samples form cognitively normal controls (n = 14), FTD-GRN (n = 9), FTD-C9orf72 (n = 12) and FTD-MAPT (n = 12) 
samples quantified by ELISA. Data analyzed using one-way ANOVA. e, f GPNMB immunostaining was performed on frontal lobe tissue sections 
from cognitively normal controls (n = 5) (e) and FTD-GRN (n = 5) (f) patients. g, h Immunostaining for p-TDP 43 was stained on adjacent sections 
from identical samples in e, f as marker of FTLD pathology. i GPNMB staining intensity in human brain sections (e, f) were measured and presented 
as fold change. Representative immunofluorescence staining for cell markers (green) (j, n, r), GPNMB (red) (k, o, s), DAPI (blue) (i, p, t) in paraffin 
sections of brains from FTD-GRN cases. Iba-1, GFAP, NeuN used for markers of human microglia, astrocytes, and neurons respectively. GPNMB and 
Iba-1 signals overlap (arrow) (m) whereas, no overlapping signal was observed in co-staining with GFAP or NeuN (q, u). Scale bars were labeled 
in the images. Data analyzed by unpaired t-test. Scale bars (20 µm) labeled in images and quantitative data are shown as mean ± SEM, *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001



Page 18 of 25Huang et al. acta neuropathol commun           (2020) 8:163 



Page 19 of 25Huang et al. acta neuropathol commun           (2020) 8:163 	

(Apoc3), are involved in lipogenesis and lipid homeo-
stasis [30, 94]. Intriguingly, the remaining proteins are 
all involved in lipid degradation pathways. N-acylsphin-
gosine amidohydrolase 1 (Asah1) hydrolyzes sphin-
golipid ceramides into sphingosine and free fatty acids 
in the lysosome [87]. N-Acylethanolamine Acid Ami-
dase (Naaa) degrades bioactive fatty acid amides, such 
as N-palmitoylethanolamine [114]. Palmitoyl-protein 
thioesterase 1 (Ppt1) removes thioester-linked fatty acyl 
groups like palmitate from modified cysteine residues 
during lysosomal degradation of proteins [59]. Finally, 
glycosylphosphatidylinositol specific phospholipase 
D1 (Gpld1) hydrolyzes the inositol phosphate linkage 
in proteins anchored by phosphatidylinositol glycans 
(GPI-anchor) to release proteins from the membrane 
and has recently been linked to the cognitive benefits 
of exercise for the aged brain [49]. Of note, earlier work 
found that loss of PGRN leads to an accumulation of 
polyunsaturated triacylglycerides and reduced diacylg-
lycerides and phosphatidylserines in Grn−/− fibroblasts 
and mouse brains [29]. Our data provide additional evi-
dence that PGRN deficiency leads to impaired degra-
dation and recycling of lipids in the lysosome. Further 
work is necessary to determine if PGRN or granulins 
have a direct or indirect role in lysosomal lipid metabo-
lism and homeostasis.

Our analysis of differentially expressed proteins in 
19-month-old Grn−/− brains uncovered an even greater 
number of lysosomal proteins that are increased includ-
ing Hexa, Hexb, Tpp1, and Fuca2. Intriguingly, pro-
teins involved in inflammation and immune response 
(i.e. complement genes C1qa, C1qb, and C1qc) are sig-
nificantly increased. Our data agrees with earlier work 
demonstrating that multiple Grn−/− mouse models have 
age-dependent microgliosis and astrogliosis through-
out the brain including the cortex, hippocampus, and 
thalamus [1, 37, 82, 127, 132]. The upregulation of C1qa, 
C1qb, and C1qc we observe is consistent with previous 
transcriptomic data from Grn−/− mice, which reported 
upregulation in C1qa, C1qb, and C1qc before the onset 
of neurodegenerative features [29, 70]. Further, microglia 
isolated from 5.5-month old Grn−/− mice are activated 
and upregulate expression of genes associated with a 
microglial neurodegenerative phenotype (MGnD) [41]. 
Thus, gliosis and a robust inflammatory response is a 
consistent observation in multiple Grn−/− mouse mod-
els that increases with age, suggesting this is may be a 
downstream consequence initially triggered by lysosome 
dysfunction.

We also identified novel proteins that increase with 
age in the brains of Grn−/− mice. In particular, two of 
the most strongly up-regulated proteins were GPNMB 
(also known as osteoactivin) and galectin-3, suggesting 

they may play an important role in disease progression. 
Our co-localization studies demonstrate that GPNMB 
and galectin-3 are strongly expressed by microglia in 
aged Grn−/− mouse brain. GPNMB is a widely expressed 
transmembrane type I protein that has been implicated 
in many cellular functions including cell adhesion, cell 
migration, cell proliferation, and cell differentiation [113]. 
Intriguingly, variants in GPNMB are associated with Par-
kinson’s disease, highlighting the potential importance of 
GPNMB broadly in neurodegenerative diseases [52, 89]. 
Galectin-3 is a member of the lectin family, contains a 
carbohydrate-recognition-binding domain that mediates 
binding of β-galactosides, and plays an important role 
modulating inflammation [28]. Galectin-3 has also been 
implicated in brain innate immunity associated with neu-
rodegeneration [16]. High levels of both GPNMB and 
galectin-3 levels have been found in the brain of 5xFAD 
mice [51] as well also the brains of PD and AD patients 
[11, 61, 75, 100]. Additionally, levels of GPNMB were 
elevated in grey and white matter of spinal cord of ALS 
patients [79].

We observed the strongest increases in GPNMB and 
galectin-3 expression in the thalamus of Grn−/− mouse, 
providing additional evidence that this region of the 
brain is particular vulnerable to loss of PGRN [70]. We 
also found high levels of GPNMB and galectin-3 in the 
corpus callosum, which is highly myelinated. Abundant 
galectin-3 staining was found along white matter tracts 
in the cortex and striatum, suggesting that the expression 
and upregulation of GPNMB and galectin-3 in microglia 
is related to myelin and white matter.

Importantly, myelin basic protein (MBP), a major com-
ponent of white matter, is decreased in Grn−/− mouse 
brain. Furthermore, modules enriched for oligodendro-
cyte proteins (M19, p = 0.033) and neuronal and synaptic 
proteins (M5, p = 0.002) are not significantly decreased 
until 19-months of age in Grn−/− mouse brain, indicat-
ing that synaptic and neuronal loss and demyelination 
are a late-stage consequence of Grn deficiency. Our prot-
eomics data is supported by a previous report that found 
defective myelination in the cerebral cortex of Grn−/− 
mice [108]. Our discovery that GPNMB and galectin-3 
are elevated in the white matter of frontal lobe of FTD-
GRN cases provides additional clinical relevance sug-
gesting alterations of these proteins may contribute to 
neurodegeneration.

Intriguingly, demyelination that is observed as white 
matter hyperintensities (WMH) on MRI brain scans is 
a frequent and specific occurrence in FTD cases caused 
by GRN mutations [20, 107, 128]. Our data provide 
additional support to the idea that FTD-GRN cases are 
especially vulnerable to demyelination and loss of white 
matter, although the exact mechanism is unclear. One 
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possibility is that aberrant microglial activation due to 
PGRN deficiency, caused by lysosome dysfunction and 
protein aggregation, leads to phagocytosis, synaptic 
pruning, and de-myelination that eventually manifests 
as white matter damage and WMH. Intriguingly, micro-
glia expressing either GPNMB or galectin-3 have been 
implicated in the process of myelin phagocytosis and 
demyelination [46, 69, 109]. Taken together, we find that 
increases in microglial GPNMB and galectin-3 levels are 
correlated with demyelination. Currently it is unclear if 
GPNMB and galectin-3 upregulation is a cause or conse-
quence of this process.

Lack of specific and sensitive biomarkers are another 
roadblock in the development of therapies for FTD [40]. 
Importantly, appropriate biomarkers are useful for mon-
itoring disease progression as well as assessing the effi-
cacy of potential drugs. Elevated levels of neurofilament 
light chain (Nfl) in CSF and plasma are one promising 
biomarker for symptomatic FTD patients that harbor 
mutations in GRN, C9orf72, or MAPT [118]. However, 
Nfl is not specific to FTD-GRN and is increased in sev-
eral other neurodegenerative diseases [124]. In this study, 
we report our finding of elevated levels of GPNMB in 
aged Grn−/− mouse plasma as well as CSF from human 
FTD patients with GRN mutations. Previous reports 
found that GPNMB was elevated in the serum of type I 
Gaucher disease [138], but not significantly different in 
AD patients [51], compared to healthy controls. Because 
GPNMB levels were only increased in CSF from GRN 
mutation carriers, but not C9 or MAPT cases, GPNMB 
levels could serve as a biomarker to differentiate between 
FTD caused by GRN mutantions or other FTD genes.

It is currently unlcear why GPNMB is elevated in the 
microglia of Grn−/− mice and human FTD-GRN patients. 
One intriguing possibility is that upregulation of GPNMB 
expression is driven by lysosome dysfunction. This idea 
is supported by previous reports that lysosomal stress, 
induced by chemical inhibition of lysosome acidifica-
tion or function, causes upregulation of GPNMB in 
macrophages [34, 111]. GPNMB is also elevated in the 
substantia nigra of patients with Parkinson’s disease [75], 
a neurodegenerative disease increasingly linked to lyso-
some dysfcuntion [56, 83, 123]. Moreover, chemical [75] 
or genetic inhibition [61] of β-glucocerebrosidase (GBA; 
GCase) activity leading to the accumulation of glucosyl-
ceramides also causes increased expression of GPNMB. 
Progranulin deficiency reduces glucocerebrosidase activ-
ity [116, 134] suggesting that the accumulation of gluco-
sylceramide or other sphingolipids could be a proximal 
cause of GPNMB upregulation in the Grn−/− mouse 
brain, an idea that needs further investigation. Although 
the precise mechanism that causes GPNMB upregulation 
in progranulin deficiency is unclear, our data suggest that 

measurement of GPNMB levels in the CSF could be used 
to monitor changes in microglial activation and response 
to therapies in FTD-GRN patients, similar to substrate 
reduction therapy in lysosome storage disorders [71, 78, 
119]. One limitation of our data is a small sample size and 
lack of longitundal testing. Thus, further studies are nec-
essary to investigate the utility, specificity, and sensitivity 
of GPNMB as a biomaker in FTD and related neurode-
generative diseases. Moreover, it will be important to 
determine if GPNMB and galectin-3 expression in micro-
glia is deleterious, which would open a new therapeutic 
target for FTD and other diseases with PGRN deficiency.

Conclusion
Our results demonstrate the utility of a systems biology 
approach in understanding a complex disease like FTD. 
We were able to relate changes in the Grn−/− mouse 
brain proteome to known phenotypic signatures of FTD. 
Further analysis of these proteomic changes across age 
also provided insight on the mechanism(s) in which neu-
rodegeneration occurs as result of PGRN deficiency. We 
identified novel proteins in the Grn−/− mouse proteome 
that are decreased at 3-months, which suggest an impair-
ment of lysosomal metabolism of lipids, including sphin-
golipids, which are particularly important for neuronal 
survival [2, 14]. Lysosomal dysregulation is exacerbated 
with age in the Grn−/− mouse brain leading to neuroin-
flammation, synaptic loss, and decreased markers of oli-
godendrocytes, myelin, and neurons. For the first time, 
we identified increased levels of two proteins, galectin-3 
and GPNMB, which have not been linked to FTD or 
PGRN deficiency previously and may serve as novel bio-
markers or drug targets. Previous data demonstrate that 
upregulation of GPNMB and galectin-3 in microglia can 
be beneficial or harmful depending on the context, tim-
ing, and disease [12, 15, 16, 62, 109]. Further studies are 
necessary to understand the contribution of GPNMB and 
galectin-3 to FTD and related neurodegenerative disease. 
In summary, our findings support the idea that insuf-
ficiency of PGRN and granulins in humans cause FTD 
through lysosomal dysfunction and neuroinflammation 
and suggest novel therapeutic approaches.
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diagnosis, age, sex, and other characterizes of human post-mortem sam-
ples used for immunostaining and ELISA.

Additional file 3. Compilation of multiple supplementary figures (S1–S7). 
Fig. S1 is a two-color heatmap showing the relationship between WGCNA 
modules and the bicor correlation of age. Fig. S2 contains multiple Box 
plots of WGCNA modules (M1, M2, M4, M8, M9, M10, M11, M12, M13, M14, 
M15, M17, M18, M20, M21, M22, M23, M24, M25, and M26). Fig. S3 displays 
Igraphs of modules (M3, M5, M6, M7, M16, and M19) that are associated 
with knockout (Grn−/−) status and corresponding gene symbols as nodes. 
Fig. S4 displays Igraphs of modules (M1, M2, M4, M8, M9, M10, M11, M12, 
M13, M14, M15, M17, M18, M20, M21, M22, M23, M24, M25, and M26 
modules) associated with knockout (Grn−/−) status and corresponding 
gene symbols as nodes. Fig. S5 summarizes the gene ontology (GO) 
enrichment analysis of proteins in M1, M2, M4, M8, M9, M10, M11, M12, 
M13, M14, M15, M17, M18, M20, M21, M22, M23, M24, M25, and M26 
modules. Light-green bars: biological process, light-blue bars: molecular 
function, brown-bars: cellular component. Fig. S6 is an immunoadsorption 
validation experiment demonstrating an anti-human GPNMB antibody 
binds antigen specifically on human brain sections. Fig. S7 GPNMB 
immunostaining was performed on frontal lobe tissue sections from four 
FTD-GRN patients.
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