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Abstract

Alpha-synucleinopathies are a group of progressive neurodegenerative disorders, characterized by intracellular
deposits of aggregated a-synuclein (aS). The clinical heterogeneity of these diseases is thought to be attributed to
conformers (or strains) of aS but the contribution of inclusions in various cell types is unclear. The aim of the
present work was to study aS conformers among different transgenic (TG) mouse models of a-synucleinopathies.
To this end, four different TG mouse models were studied (Prnp-h[A53T]aS; Thy1-h[A53T]aS; Thy1-h[A30P]aS; Thy1-
masS) that overexpress human or murine a$S and differed in their age-of-symptom onset and subsequent disease
progression. Postmortem analysis of end-stage brains revealed robust neuronal aS pathology as evidenced by
accumulation of aS serine 129 (p-aS) phosphorylation in the brainstem of all four TG mouse lines. Overall
appearance of the pathology was similar and only modest differences were observed among additionally affected
brain regions. To study aS conformers in these mice, we used pentameric formyl thiophene acetic acid (pFTAA), a
fluorescent dye with amyloid conformation-dependent spectral properties. Unexpectedly, besides the neuronal aS
pathology, we also found abundant pFTAA-positive inclusions in microglia of all four TG mouse lines. These
microglial inclusions were also positive for Thioflavin S and showed immunoreactivity with antibodies recognizing
the N-terminus of aS, but were largely p-aS-negative. In all four lines, spectral pFTAA analysis revealed
conformational differences between microglia and neuronal inclusions but not among the different mouse models.
Concomitant with neuronal lesions, microglial inclusions were already present at presymptomatic stages and could
also be induced by seeded aS aggregation. Although nature and significance of microglial inclusions for human a-
synucleinopathies remain to be clarified, the previously overlooked abundance of microglial inclusions in TG mouse
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models of a-synucleinopathy bears importance for mechanistic and preclinical-translational studies.
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Introduction

Accumulation of a-synuclein (aS) aggregates is a patho-
logical hallmark of a group of neurodegenerative diseases
called o-synucleinopathies. aS is the major component of
Lewy bodies and Lewy neurites, which are intracellular inclu-
sions found in neurons of patients with Parkinson’s disease
(PD) and dementia with Lewy bodies (DLB). Apart from the
neuronal Lewy pathology, filamentous aS also accumulates
in oligodendrocytes to form glial cytoplasmic inclusions
(GClIs or Papp-Lantos bodies) found primarily in multiple
system atrophy (MSA) [1]. Furthermore, aS-positive cyto-
plasmic aggregates have been reported in astroglial cells of
PD and DLB as well as MSA [2]. Indirect evidence has sug-
gested that the diverse nature of a-synucleinopathies may be
characterized by distinct conformers (or strains) of aS aggre-
gates [3-9]. What is more, structural analysis has revealed
the presence of different filament structures of aS aggregates
derived from MSA and DLB brains [10]. A majority of aggre-
gated oS is phosphorylated at serine 129 (p-aS) [11], there-
fore antibodies directed against p-aS are commonly used as
a surrogate marker of oS pathology.

aS is a 140 amino acid protein and is primarily expressed
in neurons where it is enriched at the presynaptic terminal
[1, 12]. Several missense mutations in the SNCA gene encod-
ing oS have been linked to rare familial forms of PD and
DLB. The amino acid substitutions alanine-to-threonine at
codon 53 (A53T) and alanine-to-proline at codon 30 (A30P)
both give rise to early-onset PD [13, 14]. Morphological dif-
ferences between A53T- and A30P-mutated oS fibrils have
been demonstrated in vitro [15-18], although their relevance
for human disease pathogenesis remains uncertain. Subse-
quently, numerous transgenic (TG) mouse models overex-
pressing human A53T or A30P aS under various promoters
have been generated that develop neuronal Lewy-like path-
ology and motor symptoms that resemble PD [19-21].

Here, we compare disease progression, as well as
cellular and structural features of oS lesions in four TG
lines: Prnp-h[A53T]aS (in the literature also referred to
as ‘M83’) [22], Thyl-h[A53T]aS [23], Thyl-h[A30P]aS
[24, 25], and Thyl-maS TG mice [26]. While disease on-
set and progression differed among the TG lines, mor-
phological appearance and regional distribution of aS
lesions did not reveal robust differences. Intriguingly,
however, in addition to the neuronal aS lesions, we
found abundant aS-immunoreactive inclusions in micro-
glia and this in all four TG mouse lines. Microglial in-
clusions differed from neuronal inclusions in
morphological and conformational features.

Materials & methods

Mice

The following TG mouse lines were used: Prnp-
h[A53T]aS [22], Thyl-h[A53T]aS [23], Thyl-h[A30P]aS
[24], and Thyl-maS [26]. The Prnp-h[A53T]aS line
expresses human (h) oS with the A53T mutation under
the control of the mouse prion protein promoter (Prnp)
generated on the C57BL/6 x C3H background. Hemizy-
gous Prnp-h[A53T]aS mice were purchased from The
Jackson Laboratory (Bar Harbor, ME, USA) and bred to
generate homozygous offspring for the study. The Thyl-
h[A30P]aS line expresses human aS with the A30P mu-
tation under the control of the neuron-specific murine
Thy-1 promoter generated on the C57BL/6] back-
ground. These mice are routinely maintained in our
mouse facility and homozygous mice were produced by
breeding homozygous pairs. The Thyl-h[A53T]aS line
expresses the human oS transgene harboring the A53T
mutation under the control of the murine Thy-1 pro-
moter and the Thyl-maS line is transgenic for an over-
expression of the mouse (m) wildtype aS driven by the
murine Thy-1 promoter, each of those lines was gener-
ated on the C57BL/6] background. Both lines were ob-
tained from Novartis (Basel) and transferred to our
facility. All Thyl-h[A53T]aS and Thyl-maS mice used
in the studies were hemizygous and produced by breed-
ing hemizygous males with C57BL/6] females. Care was
taken that both male and female mice were used at an
equal proportion for all the experiments but their use
was subjected to availability. All mice were kept under
specific pathogen-free conditions and maintained on a
12 h light/dark cycle with food and water ad libitum.
The experimental procedures were undertaken in
compliance with the veterinary office regulations of
Baden-Wiirttemberg (Germany) and approved by the
local Animal Care and Use Committees.

Determination of symptom onset, disease duration, and
humane endpoint

A score sheet with a grading scale was used to evaluate
and record the occurrence of motor signs in these mice.
Rapid changes in body weight were used as clinical pa-
rameters to define the humane endpoints (i.e. loss of >
20% of the initial weight). For that purpose, mice were
weighed weekly and checked for the onset of motor
symptoms by using established criteria for neurodegen-
erative phenotypes in mice [27]. The behavioral assess-
ment of mice was done first in open cages where the
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general activity and movements were observed. Mice
were then placed on a grid to check for motor impair-
ment and to assess putative signs of ill health. The
symptomatic phase typically comprised several stages of
severity. Initially, the mice showed a disturbance in bal-
ance and gait, culminating in ataxia. As the movements
became slower, tremor and rigidity were often seen. At
the end-stage of the illness, partial paralysis of hind
limbs occurred, at which the mice were sacrificed. With
the appearance of the first symptoms, mice were pro-
vided with wet food pellets in the cage. Disease duration
was determined as the days between the occurrence of
the first symptoms and above defined the-end-stage of
the illness.

Tissue processing

Brains were removed after the animals were deeply anes-
thetized and transcardially perfused with ice-cold PBS
(0.1 M). For immunohistochemistry, one brain hemisphere
was immersion-fixed for 48h in 4% paraformaldehyde
with PBS, then cryoprotected in 30% sucrose in PBS for
an additional 2 days. After freezing, 25 pm-thick sagittal
sections were serially cut through the entire hemisphere
using a freezing-sliding microtome (Leica Microsystems).
The sections were stored at —20°C in cryoprotection
solution (35% ethylene glycol, 25% glycerol in PBS). For
biochemical analysis, the other hemisphere was immedi-
ately snap frozen on dry ice and stored at — 80 °C.

Brain extracts

Extracts were prepared as described previously [28].
The A30P extract was derived from spontaneously ill
Thyl-h[A30P]aS females (16—20 months). After removal
of the forebrain and cerebellum, the brainstem was im-
mediately fresh-frozen on dry ice and stored at —80°C
until use. Tissue was then homogenized (Precellys®24,
Bertin Technologies, France) at 10% (w/v) in sterile,
phosphate-buffered saline (PBS, Lonza, Switzerland),
vortexed and centrifuged at 3000 x g for 5min. The
supernatant was aliquoted and immediately frozen. For
all following experiments, the 10% (w/v) extract was
used. The wildtype extract was derived from aged
C57BL/6 ] mice (24—26 months old).

Stereotactic injection of brain extracts

aS host mice were anaesthetized with a mixture of keta-
mine (100 mg/kg body weight) and xylazine (10 mg/kg
body weight) in saline and administered carprofen (5
mg/kg body weight) prior to surgery. Stereotactic injec-
tions were performed manually with a Hamilton syringe
bilateral (2.5 ul of brain extract per side) into the hippo-
campus / dentate gyrus (AP — 2.5 mm, ML +2.0 mm, DV
- 1.8 mm) of Thyl-h[A30P]aS mice. Injection speed was
1.25 pl/minute. The needle was kept in place for an
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additional 2 min before it was slowly withdrawn. The
surgical area was cleaned with sterile saline, the incision
was sutured, and the mice were monitored until recov-
ery from anesthesia. Injections were performed at the
age between 2 and 4 months.

Histology and immunohistochemistry

In preparation of immunolabeling, the brain sections were
washed with Tris-buffered saline (TBS, 0.1 M, pH 7.4) and
mounted onto microscopic glass slides (SuperFrost Plus,
Langenbrinck, Germany). After treating the sections with 3%
H,0, (Applichem, Darmstadt, Germany) in TBS for 30 min
to block the endogenous peroxidase, antigenicity was en-
hanced by boiling the sections in 10 mM citrate buffer (1.8
mM citric acid, 82 mM trisodium citrate, pH 6.0) at 90 °C
for 35 min. Unspecific binding sites were blocked by using
5% normal goat serum in 0.3% Triton-X100 (Sigma-Aldrich,
Steinheim, Germany) in TBS for 30 min at RT. To detect ac-
cumulating oS phosphorylated at serine 129 (p-aS), primary
antibody rabbit monoclonal anti-p-aS (EP1536Y, Epitomics,
Burlingame, CA, USA) was used at 1:750 dilution and incu-
bated overnight at 4 °C. The following day, biotinylated sec-
ondary antibody (goat anti-rabbit biotinylated IgG, Vector
laboratories, Burlingame, CA, USA) was added at 1:400 onto
the sections and incubated for 45 min at RT. Antibody bind-
ing was detected after sections were incubated in avidin-
biotin solution for 45 min (Vector Laboratories). To develop
the staining, SG Blue kit (Vector laboratories, Burlingame,
CA, USA) was used as the chromogenic substrate for horse-
radish peroxidase. After immunolabeling, sections were
counterstained with nuclear fast red (Sigma-Aldrich, Stein-
heim, Germany). Coverslipping was done with Pertex
mounting medium (Pertex, Medite, Burgdorf, Germany) on
dehydrated sections using an ascending ethanol series (50 to
100%) and xylene. Bright-field imaging was done using a
Zeiss Axioplan 2 microscope (Carl Zeiss, Microlmaging
GmbH, Jena, Germany).

Pathology grading of p-aS-positive inclusions

Brain pathology was quantified in a set of every 12th ser-
ial, sagittal sections of one hemisphere by assessing both
perikaryal and neuritic p-aS-labeling. The brain regions
of each section were analyzed and the rater determined
a mean pathological severity. A semi-quantitative sever-
ity score was used in a four-graded scale: Absent (-),
mild (+), moderate (++), and severe (+++) p-aS-positive
pathology. The person who performed the analysis was
blinded towards the mouse genotypes.

Immunofluorescence, Thioflavin S and pFTAA staining

Brain sections were washed with PBS (3 x 10 min) and
mounted on super frost slides. Sections were allowed to
air dry for 2 h at room temperature (RT). Mounted and
air-dried brain sections were subjected to antigen
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retrieval by boiling in 10 mM citrate buffer (1.8 mM
citric acid, 8.2 mM trisodium citrate, pH 6.0) at 90 °C for
35 min for p-aS, or 80% formic acid for 1 min at RT for
epitope specific a-synuclein antibodies, and treated with
5% normal goat or donkey serum in 0.3% Triton-X100
in TBS for 1h at RT to block unspecific binding. Sec-
tions were incubated with primary antibodies (p-aS 1:
750, Abcam EP1536Y, Cambridge, United Kingdom;
Ibal 1:500, ThermoFisherScientific, Waltham, MA, USA;
NeuN 1:500, Millipore, Darmstadt, Germany; aS 34—45
1:200, aS 80-96 1:100, aS 117-122 1:100, BioLegend,
San Diego, CA, USA) overnight at 4°C. The following
day, Alexa Fluor 488, 568, or 633 conjugated secondary
antibodies (Invitrogen, Waltham, MA, USA, 1:250) were
added and incubated for 2 h at RT. Subsequently, label-
ing with pentamer formyl thiophene acetic acid (pFTAA;
stock solution of 1.5 mM in de-ionized water, diluted to
a final concentration of 3 uM in PBS) was performed as
previously described [29]. Sections were treated for auto-
fluorescence with TrueBlack Lipofuscin Autofluores-
cence Quencher (Biotium, Fremont, CA, USA) for 30s
at RT. For Thioflavin S (ThioS, Sigma-Aldrich, Steinheim,
Germany) staining, sections were incubated for 8 min with
1% w/v ThioS in ddH,O. ThioS-stained sections were
washed 2 x in 70% EtOH for 3 min and rinsed with ddH,O.
After air-drying, the sections were coverslipped with Dako
Fluorescence mounting medium (Biozol Diagnostika, Cat#
$3023). Images were captured on a Zeiss LSM 880 (Zeiss,
Oberkochen, Germany) confocal microscope equipped with
a spectral scanner.

Spectral analysis of pFTAA staining

Emission spectra were acquired from 470 to 695 nm and
normalized to their respective maxima [30, 31]. Spectra
were collected from selected neuronal or microglial
cytoplasmic pFTAA-positive inclusions within the brain-
stem. The ratio of the intensity of emitted light at the
red-shifted (584 nm) versus the green-shifted (513 nm)
portion was used as a parameter for spectral distinction
of different inclusions. These two wavelengths were
selected because differences in pFTAA emission were
most pronounced for different aS aggregates. Both for
neuronal and microglial inclusions, at least three differ-
ent ROIs per image were calculated. For each mouse, all
ROIs from three images were averaged and the mean
was taken for statistical analysis (» = number of mice; 5—
8 mice were analyzed per TG mouse line).

Immunoassay for aS measurements in brain
homogenates

Concentrations of total (human and mouse) aS were
determined by a colorimetric HRP-linked immunoassay
using the SensoLyte™ Anti-Alpha-Synuclein Quantitative
ELISA Kit (AnaSpec, 55550, Fremont, CA, USA).
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Measurement was conducted according to the manufac-
turer’s instructions. In brief, formic acid-soluble half-
brains were used at 1:2000 (for non-tg mice) or 1:10000
(for tg mice) in dilution buffer (Component C, Ana-
Spec), added to 96-well plates and co-incubated with
detection antibody (1 pg/ml) overnight at 4°C. After
washing, tetramethylbenzidine substrate solution was
added and incubated at room temperature until the
color was clearly observable. Stop solution was added to
block the reaction and absorbance was read promptly on
a Mithras LB 940 plate reader (Berthold Technologies,
Bad Wildbad, Germany).

Statistics and image analysis

Statistical analysis was performed using GraphPad Prism
6.0 (GraphPad Software, San Diego, CA, USA). Statistical
significance was assessed using ANOVA followed by Bon-
ferroni’s post-hoc test. Data were expressed as indicated in
the figure legends. For survival analysis, log-rank test was
used. Multiple comparisons of Kaplan-Meier curves were
performed with Bonferroni correction. Survival curves were
expressed as median incubation times (days). There was no
difference between males and females in all the statistical
analysis carried out, thus males and females were com-
bined. The grading of p-aS pathology was performed using
a semi-quantitative scale ranging from absent (=), mild (+),
moderate (++), to severe (+++) by analysis of various brain
regions of spontaneously ill TG mice (# = 3-5). Percentage
of pFTAA-positive inclusions was quantified using in-
house written Image] macro. Three randomly selected ani-
mals from each line were used for the analysis. Three im-
ages were analyzed per animal. For spectra and ratios, data
were collected from randomly selected n =8 for Prnp-
h[A53T]aS, n =8 for Thyl-h[A53T]aS, n =8 for Thyl-
h[A30P]aS, and n =5 for Thyl-maS) mice. Statistical
significance was assessed using two-way ANOVA.

Results

Symptom onset, life span, and lesions among aS TG
mouse lines

Disease characteristics (i.e., life span and disease duration)
were recorded in Prnp-h[A53T]aS, Thyl-h[A53T]asS,
Thy1-h[A30P]aS and Thyl-maS mice. To this end, 15 an-
imals per mouse line were aged and sacrificed when they
displayed the characteristic end-stage neurological signs,
i.e. progressive gait instability and/or partial paralysis of
the hind limbs (see methods). Results revealed that the
Thyl-h[A30P]aS mice are the most long-lived with a
median life span of 580 days, followed by Prnp-h[A53T]aS
mice (447 days) (Fig. 1la). By contrast, Thyl-h[A53T]aS
and Thyl-maS mice all showed symptoms at an earlier
age (221 and 242 days, respectively) (Fig. 1a). The time
interval between occurrence of first disease symptoms
(slight disturbance in balance, jerky movements) and
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Fig. 1 Life span, disease duration, and end-stage aS lesions of different aS TG mouse lines. (a) Kaplan-Meier curves for the appearance of clinical
end-stage motor signs in Prnp-h[A53T]aS (red curve, median 447 days, n = 15), Thy1-h[A53T]aS (black curve, median 221 days, n = 15), Thy1-
h[A30P]aS (blue curve, median 580 days, n = 15), and Thy1-maS (orange curve, median 242 days, n = 15). When survival times of TG lines were
compared to each other pair-wise, statistically significant differences were found (Log-rank test, p < 0.0001) except for Thy1-h[A53T]aS vs. Thy1-
mas. (b) Disease duration starting from onset of motor signs until end-stage phenotype in Prnp-h[A53T]aS (red, median 7 days), Thy1-h[A53T]aS
(black, median 18 days), Thy1-h[A30P]aS (blue, median 33 days), and Thy1-maS (orange, median 21 days). When disease durations of TG lines were
compared to each other pair-wise, only Prnp-h[A53T]aS and Thy1-h[30P]aS lines had a statistical difference in their disease duration (One-way
ANOVA, Bonferroni's multiple comparison test, p < 0.0001). (c) Immunostaining of inclusions labeled with the p-aS antibody, which recognizes
phosphorylated oS at serine 129, in Prnp-h[A53T]asS, Thy1-h[A53T]aS, Thy1-h[A30P]aS, and Thy1-maS mice. Nuclear fast red was used as
counterstain. Representative sagittal sections of the midbrain from 12-, 7.3-, 20.8-, and 8.3-month-old mice, respectively, are shown. Scale bars,

50 pm and 20 um (insert). (d) Representative images of pFTAA-positive inclusions in the brainstem of terminally ill Prnp-h[A53T]aS, Thy1-
h[A53T]aS, Thy1-h[A30P]aS, and Thy1-maS mice. Scale bars, 50 um and 20 um (insert). (e) Fluorescence double-staining for p-aS (red) and ThioS
(green) of brainstem pathology in Thy1-h[A30P]aS. Examples of p-aS-positive inclusion (arrowhead outlines) and ThioS-positive aggregate (white
arrowheads) are shown in high magnification (inserts). (f) Fluorescence double-staining for p-aS (red) and pFTAA (green) of brainstem pathology
in Thy1-h[A30P]aS. Note that many of the pFTAA-positive inclusions are not co-labeled with the p-aS antibody. Examples of a p-aS/pFTAA-
double-positive inclusion (arrowhead outline) and a pFTAA-positive deposit in absence of p-aS signal (white arrowhead) are in high magnification
(inserts). (g) Percentage of pFTAA-positive inclusions that are lacking p-aS signal. A similar proportion of non-overlapping pFTAA signal among
the lines was found (n =3 mice per mouse line). Results are expressed as mean + SEM
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symptom-related time of sacrifice was defined as the dis-
ease duration (Fig. 1b). Of note, the shortest symptomatic
phase was observed in Prnp-h[A53T]aS mice and lasted
only 7 days.

Brain pathology of the four aS TG mouse lines was
examined after the mice were sacrificed. All four lines re-
vealed neuronal p-aS-positive inclusions in both cell soma
and neurites. The lesions were most prominent in the
brainstem (Fig. 1c). Other regions, including zona incerta,
deep cerebellar nuclei showed moderate amounts of aS
inclusions, while only sparse aS inclusions were found in
the frontal cortex (Supplementary Fig. 1, Supplementary
Table 1). Of note, the hippocampus was devoid of any aS
pathology in all four lines (Supplementary Fig. 1, Supple-
mentary Table 1). Overall, end-stage oS lesions did not re-
veal major differences in morphological appearance and
regional distribution between the mouse lines (despite
some differences in aS levels, Supplementary Fig. 2).

Luminescent conjugated oligothiophenes (LCOs) are
dyes that bind to cross-B-sheet structures. These dyes
have a flexible backbone that allows changes in their
spectral properties depending on the amyloid conform-
ation [32-34]. Recently, pFTAA has been used to detect
aggregated aS species in vitro and in vivo [35-37].
pFTAA-staining was performed in all four TG lines and
pFTAA-positive inclusions were found most robustly in
the brainstem, as was the case for p-aS staining (Fig. 1d)
but also in all other brain regions with p-aS-positive in-
clusions. However, double-staining for p-aS and pFTAA
was only partially overlapping, and in absence of the p-
aS signal pFTAA-positive inclusions appeared much
brighter than inclusions that were also p-aS-positive
(Fig. 1f). Similar results were observed when stained for p-aS
and ThioS (Fig. 1e). Moreover, pFTAA-positive/p-aS-negative
inclusions appeared as a compact “ball of threads” and are
henceforward referred to as “wool-like inclusions” (Fig. 1f, in-
serts). In all four lines between 70 and 75% of pFTAA-positive
inclusions were p-aS negative (Fig. 1g). No pFTAA-positive
staining was found in aged C57BL/6] wild type (WT) mice
(Supplementary Fig. 3).

pFTAA-positive inclusions are found in microglia and are
distinct from neuronal aS aggregates

To study the cellular association of the pFTAA-positive in-
clusions, co-staining for pFTAA and for either the neuronal
marker NeuN, the microglia marker Ibal (Fig. 2), or the
astrocytic marker GFAP (data not shown) was performed.
As expected, pFTAA-signal that co-localized with NeuN-
positive cells appeared morphologically similar to the p-aS
staining (Fig. 2a). The pFTAA-positive inclusions that co-
localized with Ibal again had a bright wool-like appearance
(Fig. 2b). Some pFTAA-positive structures were observed in
astrocytes however by far less abundant than in neurons or
microglia (data not shown). Quantification revealed that
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approximately 25% of total microglia contained pFTAA-
positive inclusions and this was similar for all four TG lines
(Fig. 2¢).

To study conformational differences of inclusions
between cell types, spectral analysis (pFTAA/NeuN vs
pFTAA/Ibal) was performed (Fig. 2d, e). Spectra were ob-
tained from perikaryal neuronal or microglial inclusions.
For all TG mouse lines, there were robust spectral differ-
ences between the aggregates in microglia and neurons.
However, there was no difference in the spectral signature
of the neuronal or microglial inclusions between the
lines. These results indicate that microglial inclusions
are part of the pathophysiology observed in TG mice
and that they are conformationally distinct from neur-
onal aggregates.

Microglial inclusions comprise C-terminally truncated aS
To assess whether the pFTAA-positive inclusions found
in microglia contain aS, double-labeling of the microglial
marker Ibal together with a panel of commercially avail-
able anti-aS antibodies specific for both termini and the
non-amyloid component (NAC) domain was performed
(Fig. 3). Antibodies specific for the N-terminus (epitope be-
tween amino acids 34—45) and the NAC region (amino acids
80-96) abundantly co-localized with Ibal-positive microglia,
whereas antibodies specific for the C-terminus (amino acids
117-122) and p-aS did not co-localize (Fig. 3). These obser-
vations suggest that microglial inclusions contain C-
terminally truncated aS. Notably, on some occasions, oS C-
terminal-positive structures were found to be associated with
Ibal-positive microglia. However, in these instances, these
inclusions had a different appearance that was reminiscent of
microglial engulfment of oS inclusion-positive structures
(Fig. 3d and e, enlarged images).

Microglial inclusions are already present in
presymptomatic TG mice

To investigate whether aS inclusions in microglia are a
feature of end-stage pathology or if they develop along-
side neuronal aS lesions before the first motor signs
occur, mice were analysed at presymptomatic stage
(Fig. 4a, b). Due to its extended survival time, the Thyl-
h[A30P]aS mouse line was initially chosen for this
analysis (Fig. 1a). Intriguingly, at the time of the first p-
aS-positive neuronal inclusions of around 15 months of
age there were also scarce pFTAA-positive microglial
inclusions present (Fig. 4a, b). Presymptomatic Thyl-
h[A53T]aS also showed similar co-occurrence (Supple-
mentary Fig. 4). This indicates that neuronal and
microglial inclusions may develop around the same time,
which further highlights a potential role of microglia in
pathology.
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Fig. 2 Distinct pFTAA-positive inclusions in neurons and microglia of symptomatic aS TG mice. (a) Fluorescence double-staining for pFTAA
(green) and NeuN (red) of brainstem pathology in Thy1-h[A30P]aS. Examples of neuronal pFTAA-positive inclusions around the nuclei are shown
(arrowhead outlines). Scale bars, 50 um and 20 um (inserts). (b) Fluorescence double-staining for pFTAA (green) and Ibal (red) of brainstem
pathology in Thy1-h[A30P]aS. Examples of microglial pFTAA-positive inclusions are shown (arrowheads). Scale bars, 50 um and 20 um (inserts). (c)
The percentage of microglia containing pFTAA-positive inclusions for all mouse lines. The proportion of pFTAA-/Ibal-double-positive cells was
not significantly different between the lines (n =3 mice per line). Results are expressed as mean + SEM. (d, e) Spectral analysis of pFTAA-positive
inclusions in neurons and microglia. (d) Mean emission spectra of NeuN-positive (dotted lines) and Iba1-positive (solid lines) deposits in Prnp-

triangles) inclusions in Prnp-h[A53T]aS (red, n = 8), Thy1

h[A53T]aS (red, n =8), Thy1-h[A53T]aS (black, n = 8), Thy1-h[A30P]aS (blue, n =8), and Thy1-masS (orange, n =5).
represent the first peak and the shoulder of pFTAA spectra at wavelengths of 513 and 584 nm, respectively. (e) The ratio of emission intensity at
wavelengths 513 and 584 nm calculated to show the spectral shift of pFTAA upon binding to neuronal (empty triangles) and microglial (solid
-h[A53T]asS (black, n =8), Thy1-h[A30P]a$S (blue, n =8), and Thy1-maS (orange, n =5).
Two-way ANOVA (cell type x mouse line) revealed a significant effect for cell type [F(1,50) =
2.156, P =0.1049] or interaction between cell type and mouse line [F(3,50) = 1.842, P =0.1516]. The results are expressed as mean + SEM

Vertical black dotted lines

218, ****p < 0.,0001], but not for mouse line [F(3,50) =

Seeded induction of neuronal aS inclusions is also
accompanied by microglial inclusions

To further study the link between neuronal and microglial
aS inclusions, neuronal aS pathology was induced in young,
presymptomatic Thyl-h[A30P]aS mice by seeding [28]. To
this end, brainstem extract from end-stage Thyl-h[A30P]aS
TG mice or brain extract from WT mice were injected into
the hippocampus of 2—4-month-old Thyl-h[A30P]aS mice
(Fig. 4c-e). As expected, 30 days post-injection, mice inocu-
lated with TG brainstem homogenate revealed p-aS-
positive neuronal inclusions around the injection site (Fig.
4c). In addition, pFTAA-positive microglial inclusions were
also present in vicinity of the injection site (Fig. 4e). In
contrast, mice injected with control WT brain homogenate
did not develop any neuronal or microglial lesions (Fig. 4d).

Discussion
The initial aim of the present work was to study disease
progression and features of oS lesions among TG mouse

models of a-synucleinopathies and their correlation with
aS conformers. The mouse lines revealed major differ-
ences in age-of-symptom onset and disease progression.
Postmortem analysis though revealed an overall very simi-
lar appearance and distribution of the aS lesions in all the
lines. However, strikingly, in addition to neuronal lesions,
we found aS-positive inclusions in microglia in all four
lines. Although it had not been reported with such an
abundance before, previous studies made note of apparent
aS aggregates in microglia in viral vector-based and TG
aS-overexpressing mouse models after seeding [38—41].
This unexpected finding of robust inclusions in micro-
glia in aS TG mice was initially made through the ana-
lysis with the amyloid-binding dye pFTAA and was
subsequently confirmed through ThioS-positive labeling.
LCOs have previously been reported to bind and discrim-
inate structural variants of PrP [32], AP [33, 42], and tau
aggregates [29, 43]. More recently, studies also showed
that aS aggregates can be detected in solution and in an
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Fig. 3 Characterization of microglial aS inclusions in symptomatic aS TG mice. (@) Schematic of aS showing the N-terminal region (light green)
with PD-linked mutations A30P (blue) and A53T (red), NAC domain (light orange) and C-terminus (light blue) with four phosphorylation sites
(purple). Black lines indicate the epitopes of antibodies specific for the N-terminus (34-45), NAC domain (80-96), C-terminus (177-122), and p-aS
(phosphorylated aS at serine 129) that were used for immunofluorescence staining. (b-e) Co-immunofluorescence staining for Iba1 (red) and
epitope-specific aS antibodies (green) in the brainstem of terminally ill Thy1-h[A30P]aS. (b) Section of Ibal-positive microglia with 34-45-positive
aS aggregates. Note that most Ibal-positive cells are also labeled with anti-aS antibody. Complete overlapping signal of Ibal and anti-aS 34-45
antibodies in the enlarged images. (c) Section of Ibal-positive microglia with 80-96-positive aS inclusions. Note that most Ibal-positive cells are
co-localized with anti-aS antibody. Complete overlapping signal of Iba1 and anti-aS 80-96 antibodies in the enlarged images. (d) Section of Iba1-
positive microglia and 117-122 anti-aS antibody. Note that most Ibal-positive cells are devoid of 117-122 anti-aS antibody staining. A rare
occasion with partial overlap of Ibal and 117-122 anti-aS signal is demonstrated in the enlarged images suggesting microglia phagocytosing aS-
positive structure. (e) Section of Ibal-positive cells labeled with p-aS antibody. Note that most of the Ibal-positive cells are p-aS-negative. Similar

to (d), a rare occasion with partial overlap of Ibal and anti-p-aS signal is demonstrated in the enlarged images suggesting microglia
phagocytosing aS-positive structure. Scale bars, 50 um and 20 um (enlarged images)

in vitro seeding assay using pFTAA [35, 37] and in disease
samples using other LCOs [7, 8, 44]. Although we did not
succeed to distinguish A53T from A30P oS aggregates
readily with pFTAA, we found that spectral analysis using
pFTAA could clearly distinguish the neuronal from the
microglial inclusions suggesting conformational differ-
ences of the inclusions between these cell types.
Differences in structural features between neuronal and
microglial inclusions are also in line with stainings using dif-
ferent aS antibodies. While N-terminal- and NAC domain-
specific oS antibodies also labeled microglial inclusions, the
C-terminal-specific antibody did not detect microglial inclu-
sions (including p-aS at serine 129). Therefore, microglial

inclusions are easily overlooked when using p-aS antibodies.
Notably, in rare cases, we also observed microglia-associated
inclusions that were p-aS-positive. However, in most such
instances, inclusions appeared to be part of a neuronal elem-
ent that appeared to be engulfed actively by a microglial cell
[39]. This observation is reminiscent of microglial phagocyt-
osis of neurons filled with tau filaments [45].

Our data suggest that there is a link between the neur-
onal and microglial inclusions in aS TG mice, since they
always co-occur and we never observed only neuronal or
only microglial oS inclusions. Also, at early presymptom-
atic stages or upon seeded induction of aS inclusions,
neuronal inclusions were always accompanied by
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Fig. 4 pFTAA-positive microglia in presymptomatic aS TG mice and seeded aS induction model. (a, b) Representative brainstem sections of a 15-
month-old presymptomatic Thy1-h[A30P]aS mouse, presumed 4-6 weeks before the first symptoms occur. (@) Immunostaining of p-aS-positive
aggregates (black). Perikaryal (arrowhead outlines) and neuritic (arrows) inclusions are highlighted. Section was counterstained using nuclear fast
red. Scale bars, 50 pm and 20 um (insert). (b) Fluorescence double staining of IbaTl-positive microglia (red) and pFTAA-positive inclusions (green),
showing neuritic pFTAA-positive inclusions (arrows) and pFTAA-positive aggregates in Ibal-positive cells (arrowheads). Example of a pFTAA-
positive microglia is shown in high magnification (inserts). Scale bars, 50 um and 20 um (inserts). (c) Schematic illustration of the intracerebral
injection paradigm (left) and sagittal sections of dentate gyrus (DG, site of injection) stained with p-aS antibody (blue) from Thy1-h[A30P]aS mice
that have been injected 30 days prior with either brainstem extract from end-stage TG mice (TG extract) or brain extract from WT mice (VT
extract). In TG extract-injected mice, abundant p-aS-positive aggregates were detected. In contrast, WT extract did not induce any inclusion.
Sections were counterstained using nuclear fast red. Scale bar, 100 um. (d, e) Representative sagittal sections from either WT extract- (d) or TG
extract-injected (e) Thy1-h[A30P]aS mice stained with pFTAA (green) and Ibal (red). (d) No pFTAA-positive inclusions can be found in microglia
of WT extract-injected mice. Scale bars, 50 um and 20 um (enlarged images). (e) In contrast, pFTAA-positive inclusions are found in IbaT-positive
microglia in DG from Thy1-h[A30P]aS mice. Examples of neuritic pFTAA-positive inclusions (arrows) and pFTAA-positive deposits in microglia
(arrowheads) are highlighted. Scale bars, 50 um and 20 um (enlarged images)
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microglial inclusions in close vicinity of the neuronal in-
clusions. It is possible that microglial inclusions are the
results of phagocytosed neuronal elements or uptake of
neuron-released oS [39, 41] with subsequent removal of
the C-terminus, which leads to structural rearrangement
and changes in pFTAA emission spectra. It is also con-
ceivable that microglia take up neuronally-secreted soluble
oligomeric aS species [46], which then assemble within
the microglia to filamentous oS aggregates. It is known
that different cellular environments influence the compos-
ition and conformation of proteopathic seeds [47],

exemplified by aS aggregates in oligodendrocytes that are
more compact and reveal higher seeding potency than
their neuronal counterparts [6]. Finally, aS is expressed at
low levels in microglia under homeostatic conditions [48].
It is therefore plausible that activated microglia upregulate
aS expression and that microglial inclusions are partly
formed by aggregation of microglia-generated aS.

An abundance of microglial aS inclusions described
here has not been reported in humans [1], albeit very
recently, microglia aS inclusions in the human olfactory
bulb of PD patients have been described [49].
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Furthermore, seeding-prone aS species were detected in
human microglial exosomes isolated from CSF of spor-
adic PD and MSA patients [50] and microglia are
involved in the spreading of aS lesions [51, 52]. These
studies raise the possibility that aS aggregates in micro-
glia in a-synucleinopathies are more common than pre-
viously thought and that they may also contribute to
disease progression. If, however, abundant microglial aS
inclusions turn out to be restricted to aS overexpressing
TG mouse models, this knowledge is important when aS
TG models are utilized in preclinical-translation studies.
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