
LETTER TO THE EDITOR Open Access

The pediatric supratentorial MYCN-
amplified high-grade gliomas methylation
class presents the same radiological,
histopathological and molecular features as
their pontine counterparts
A. Tauziède-Espariat1*, M-A Debily2,3, D. Castel2,4, J. Grill2,4, S. Puget5, A. Roux6, R. Saffroy7, M. Pagès1,8,9,10,
A. Gareton1, F. Chrétien1, E. Lechapt1, V. Dangouloff-Ros11, N. Boddaert11 and P. Varlet1

Recent genomic and epigenomic analyses have pointed out
the heterogeneity of tumors from a same histopathological
group and have identified key oncogenic alterations that en-
abled the description of novel tumor entities. Thus, pediatric
high-grade gliomas (HGG) comprise a heterogeneous group
of tumors, including H3 K27M-mutant, H3 G34-mutant,
IDH-mutant and H3/IDH-wildtype HGG. Furthermore, the
H3/IDH-wildtype HGG group has recently been divided into
three molecular entities based on their DNA methylation
profile: Receptor tyrosine kinase type I (RTK I) and II (RTKI
I), andMYCN-amplified, the latter representing the most fre-
quent subgroup (41% of cases, 36/87) [4]. However, the
current 2016 WHO classification does not discriminate be-
tween them. In addition, data on these entities came from
large series collectively deciphering molecular landscape of
HGG. Therefore, the HGG-MYCN subgroup remains poorly
characterized and clinical, imaging and pathological data are
scarce (Supplementary Table S1).
We investigated data from five pediatric supratentorial

HGG-MYCN diagnosed by DNA methylation profiling at
our institution (one case included in [7]) and we pooled
them with methylation class pediatric HGG-MYCN of the
literature (n = 59) [4, 5, 7]. Therefore, we analyzed clinical,
histopathological and molecular data of pediatric supra-
tentorial HGG-MYCN and compared them to their

pontine counterparts [9] and did a systematic review of
four groups of supratentorial pediatric HGG (including 62
H3 K27M-mutant gliomas, 31 H3-G34 mutant gliomas,
44 HGG-RTKI and 16 HGG-RTKII) [1–8, 10].
Clinical data of our cases are summarized in Table S2. The

median age of pediatric HGG-MYCN (published cases and
our own) was 9.0 years (range from 2 to 18) which was lower
than H3 K27M (11.0 years) and H3 G34-mutant (13.0 years),
RTKI (10.0 years) and RTKII subgroups (10.0 years) [1–8,
10]. This difference was only significant between HGG-
MYCN and H3-G34 mutant gliomas (p < 0.001) [4, 5, 7, 8].
The sex ratio male/female for HGG-MYCN was 1.3 and 3.4,
0.6, 1.2 and 1.3 respectively for H3 G34-mutant gliomas, H3
K27M-mutant gliomas, HGG-RTKI and RTK2 (but without
significant difference) [1–8, 10]. HGG-MYCN were mostly
located in the hemispheres (31/37 cases with available data,
83.8%), but 5 (13.5%) were thalamic and one arose from the
sellar area [4, 5, 7]. There was a slight predilection for tem-
poral lobes (16/37 cases, 43.2%), which was significantly
higher than in other subgroups (p < 0.001).
By imaging, no calcifications were observed and only

one tumor was hemorrhagic (Case 5). They were well-
circumscribed with meningeal attachment (except for
thalamic tumors). They appeared as solid hypercellular
masses with a restricted apparent diffusion coefficient
(ADC) in the main part of the tumors. They displayed
slight peri-lesional edema and homogeneous enhance-
ment after contrast injection (Fig. 1). These imaging
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Fig. 1 Radiological features of two supratentorial HGG-MYCN. First line: Case 3. (a) T1-weighted images after contrast media injection, (b) T2-
weighted images, and (c) diffusion-weighted images: a solid lesion with peri-lesional edema, homogeneous enhancement and hypercellularity
(apparent diffusion coefficient (ADC) on diffusion weighted images is restricted in the main part of the tumor). Second line: Case 1. (d) T1-
weighted images after contrast media injection, (e) FLAIR-weighted images and (f) cerebral blood flow map using arterial spin labeling: a solid
and infiltrative lesion with homogeneous enhancement and high cerebral blood flow

Fig. 2 Results of the systematic review of supratentorial molecular subgroups of pediatric HGG. a There was no significant difference in terms of
progression-free survival (PFS) between HGG-MYCN, HGG-RTKI, supratentorial H3 K27M-mutant HGG and H3 G34-mutant HGG in univariate
analysis (p = 0.421). b There was no significant difference in terms of progression-free survival (PFS) between HGG-MYCN, HGG-RTKI, supratentorial
H3 K27M-mutant HGG and H3 G34-mutant HGG in univariate analysis (p = 0.109). c There was a significant difference in terms of overall survival
(OS) between supratentorial HGG-MYCN and pontine HGG-MYCN in univariate analysis (p < 0.001)
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characteristics were quite similar to their pontine
counterparts [9].
The mean/median progression-free survival was 9.3/9.0

months for HGG-MYCN, 8.8/9.0months for HGG-RTKI,
8.7/6.3months for supratentorial H3 K27M-mutant HGG
and 10.5/10.0months for H3 G34-mutant HGG without sig-
nificant differences in univariate analysis (p= 0.421) (Fig. 2)
[1–3, 5–8, 10]. The mean/median overall survival (OS) was
16.4/16.5months for HGG-MYCN, 12.0/11.5months for
HGG-RTKI, 13.9/12.0months for supratentorial HGG-

K27M and 17.6/15.0months for HGG-G34 without signifi-
cant differences in univariate analysis (p= 0.109) (Fig. 2) [1–
3, 5–8, 10]. This median OS was significantly longer (p <
0.001) than pontine HGG-MYCN (median OS of 1.5
months, likely due to tumor location) [7, 9].
Histopathological features of all our HGG-MYCN were

similar to those described in pontine HGG-MYCN [9].
These undifferentiated neoplasms presented circumscribed
nodules and isolated tumoral cells infiltrating the brain
(corresponding to the radiological peri-lesional edema).

Fig. 3 Histomolecular features of HGG-MYCN. a Diffuse and solid proliferation with several nodules infiltrating the brain parenchyma (arrowheads) and
the leptomeninge with large vessels (asterisk) (Case 2, HPS, × 100 magnification). b Dense proliferation of tumour cells organized in nodules following
Virchow-Robin spaces around capillaries (Case 2, HPS, × 250 magnification). c Highly cellular and undifferenciated proliferation composed of alternating
fascicles and nodules (Case 2, HPS, × 250 magnification). d Highly malignant tumor with microvascular proliferation (arrowhead) and necrosis (Case 2,
HPS, × 400 magnification). e Embryonal proliferation composed of hyperchromatic cells presenting anisocaryotic nuclei with numerous apoptotic
bodies (Case 3, HPS, × 400 magnification). f Elevated proliferation index (Case 2, MIB, × 400 magnification). g Diffuse expression of Olig2 (Case 2, × 400
magnification). h Focal expression of GFAP by tumor cells (Case 2, × 400 magnification). i Expression of neurofilament in numerous tumor cells (Case 3,
× 400 magnification). j Nuclear accumulation of p53 (Case 2, × 400 magnification). k PTEN loss of expression in tumor cells (endothelial cells as positive
internal controls). l High-level of MYCN amplification by FISH analysis with MYCN locus in green signals and control centromeric in red signals (Case 4).
Black scale bars represent 1mm (a), 100 μm (b) and 50 μm (C to K)
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Leptomeningeal extension was common, (Fig. 3a and b).
The proliferations were highly cellular, composed of alter-
nating spindle and epithelioid cells with prominent nucleoli
(Fig. 3c-e). In all five cases, malignancy was obvious with
high mitotic count and proliferation index (mean MIB1
index 66%), necrosis, and microvascular proliferation
(Fig. 3d-f). Immunohistochemical findings are summarized
in supplementary Table S3. There was no expression of
H3K27M, IDH1R132H, Lin28A and a preserved expression
of H3K27me3, INI1 and ATRX in all tumors. Tumor cells
co-expressed at least one glial and one neuronal marker
(Fig. 3g-i). All these results were in line with the literature
(20/25 reported cases were initially diagnosed as primary
neuroepithelial tumors –PNET) [7]. Contrarily to pontine
tumors, no pluriphenotypic pattern was observed in the
supratentorial location [9]. In all 5 cases, tumor cells exhib-
ited a strong nuclear and diffuse accumulation of p53
(Fig. 3j) and TP53 mutations were found by next-
generation sequencing analyses (as in 56.2% of reported
cases) [5, 7]. Interestingly, loss of PTEN expression was
constantly observed in all 5 supratentorial HGG-MYCN
(Fig. 3k), contrarily to their pontine counterparts [9].
Tumor cells presented a preserved expression of ATRX in
all 5 cases which was consistent with the reported data (25/
26) [4]. No hTERT promoter mutation was observed in the
5 tumors diagnosed at our institution (possibly due to the
small size of our series), contrary to 18.7% (6/32) of re-
ported cases [4, 5].
HGG-MYCN is a DNA methylation defined tumor en-

tity based on clustering analyses, and tumors constitut-
ing this methylation cluster often exhibit MYCN
amplification (52.3% of reported cases, 34/65) [4, 7].
MYCN amplification is easily detectable by FISH analysis
and was observed in the 5 tumors diagnosed at our insti-
tution (Fig. 3l). ID2 amplification is frequently observed
in this DNA methylation cluster (72.2%, 26/36 reported
HGG-MYCN, including the 5 tumors from our institu-
tion), and was reported in one tumor lacking MYCN
amplification (1/63 cases, 1.6%) [4, 7] suggesting that
ID2 amplification is characteristic of this methylation
class and might help diagnose this entity.
Here, we extend the knowledge of pediatric supraten-

torial HGG-MYCN and present their clinico-radiological
and morpho-immunophenotypes. We recommend sys-
tematically adding MYCN and ID2 analyses to the diag-
nostic molecular panel for pediatric H3/IDH-wildtype
malignant supratentorial tumors with glioneuronal
phenotype. Nevertheless, considering the relatively high
proportion of tumors belonging to this cluster lacking
MYCN amplification, this diagnosis can only be made
with certainty by DNA methylation profiling and further
investigations are needed to better characterize this en-
tity and identify alternative oncogenic drivers to MYCN
amplification.
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