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Abstract

Adamantinomatous craniopharyngioma (ACP) is a biologically benign but clinically aggressive lesion that has a
significant impact on quality of life. The incidence of the disease has a bimodal distribution, with peaks occurring in
children and older adults. Our group previously published the results of a transcriptome analysis of pediatric ACPs
that identified several genes that were consistently overexpressed relative to other pediatric brain tumors and
normal tissue. We now present the results of a transcriptome analysis comparing pediatric to adult ACP to identify
biological differences between these groups that may provide novel therapeutic insights or support the assertion
that potential therapies identified through the study of pediatric ACP may also have a role in adult ACP. Using our
compiled transcriptome dataset of 27 pediatric and 9 adult ACPs, obtained through the Advancing Treatment for
Pediatric Craniopharyngioma Consortium, we interrogated potential age-related transcriptional differences using
several rigorous mathematical analyses. These included: canonical differential expression analysis; divisive,
agglomerative, and probabilistic based hierarchical clustering; information theory based characterizations; and the
deep learning approach, HD Spot. Our work indicates that there is no therapeutically relevant difference in ACP
gene expression based on age. As such, potential therapeutic targets identified in pediatric ACP are also likely to
have relvance for adult patients.
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Introduction
Adamantinomatous craniopharyngioma (ACP) is a histo-
logically benign brain tumor that arises in the sellar/
suprasellar region. Despite being a WHO grade I lesion,
ACP often follows a clinically aggressive course and has
been associated with the worst quality of life outcomes
of any pediatric brain tumor [1]. Unlike its histological
counterpart, Papillary Craniopharyngioma (PCP), ACP is
characterized by bimodal incidence, with spikes during
childhood and adulthood [2, 3]. Also unlike PCP, for
which promising therapies targeting the BRAFv600e mu-
tation are in clinical trials, ACP is known to harbor only
a mutation in the CTNNB1 gene, leading to a failure of
normal β-Catenin degradation, with resultant cytoplas-
mic and nuclear accumulation in a subset of cells, where
it can act as a transcription factor that may promote
ACP pathogenesis. Unfortunately, this understanding
has not yet led to the introduction of effective targeted
therapies against ACP. As such, current therapies consist
primarily of surgery, radiation and intracystic treatments.
While downstream effects of the CTNNB1 mutation ap-
pear to be the most likely driver mutation in ACP, it is
likely that tumorigenesis is multifactorial. Recent studies
of the human ACP transcriptome, using both microarray
[4] and RNA sequencing [5], have identified potential
novel therapeutic targets. However, this work has fo-
cused exclusively on pediatric tumors, leaving open the
question of whether these potential therapies could be
relevant in adult patients, who represent approximately
69% of all patients with ACP [2, 3].
This work sought to investigate, using bulk RNA se-

quencing of adult and pediatric ACP, whether there is
evidence that patients with ACP from different age co-
horts could be expected to respond to the same targeted
therapeutic strategies. In order to identify even subtle
differences in the transcriptome profile of the 2 tissue
populations, we conducted a highly rigorous mathemat-
ical analysis that considered the potential for both linear
and non-linear age group-related dependencies within
the data.

Materials and methods
Tumor samples
A total of 36 craniopharyngioma tumor samples, as diag-
nosed by surgical pathology, were included in this study
(Table S1). Twenty-seven were acquired during surgery
for pediatric patients (age at surgery < 18 years; mean =
8.4 years, median = 8.0 years), and 9 from adults (age at
surgery ≥18 years; mean = 47.9 years, median = 44.0
years). The pediatric specimens were obtained from pa-
tients who underwent surgery at member institutions of
the Advancing Treatment for Pediatric Craniopharyn-
gioma (ATPC) consortium. Adult specimens were ob-
tained from University of Colorado Hospital and from

the University of Alabama, Birmingham. Tumor samples
were snap-frozen in liquid nitrogen in the operating
room and subsequently stored in freezers at − 80 °C. For
transport between institutions, samples were packaged
on dry ice, shipped via overnight courier, and immedi-
ately placed in a freezer at − 80 °C.

RNA extraction and sequencing
RNA was extracted from snap-frozen samples using the
Allprep DNA/RNA Kit (QIAGEN®, Maryland, USA).
The quality of the isolated mRNA was determined via
DNA analysis ScreenTape (Aligent Technologies). Sam-
ples that passed quality control were used to generate
cDNA libraries using the Illumina TruSeq Stranded
mRNA Sample Prep Kit. RNA sequencing was carried
out using the Illumina HiSeq4000 platform with paired-
end reads (2 × 151). On average, 40 million reads were
collected for each sample and outputted to FASTQ files.
Sequencing reads were subjected to adapter-trimming
and quality control using the Trimmomatic package [6].
Files were mapped to the GRCh38 genome (v33) and
subsequently sorted to yield BAM files using the stand-
ard STAR pipeline [7]. BAM files were converted to fea-
ture counts using the R Bioconductor package RSubread
[8]. Normal pituitary RNA sequencing data was obtained
from the GTEx portal (www.gtexportal.org).

Analysis methodology
Due to the possibility that adult and pediatric transcrip-
tion patterns would be distinguished by only subtle ex-
pression differences, we chose a multimodal bioinformatic
approach. This was designed to assess for both linear and
non-linear relationships, but also to insulate the statistical
analysis from potentially false assumptions.

Canonical differential expression analysis
Feature counts for transcriptomes of adult and pediatric
ACP samples were analytically processed using a standard
DESeq2 protocol [9]. As the experiment intended to rule
out differences in gene expression between the 2 age
groups, an Independent Hypothesis Weighted (IHW) p-
value threshold of 0.1 was utilized to filter transcripts
identified as differentially expressed. Results were visual-
ized using a Mass Action (MA) plot and a Euclidean
Distance Matrix was employed to serve as a qualitative
foundation from which to make statistical methodology
arguments downstream.
Divisive, agglomerative, and probabilistic clustering

was performed using the DIANA, AGNES, and FANNY
functions in the cluster R package [10], respectively. AG-
NES was implemented with the complete-linkage
method. Complete-linkage clustering groups variables by
their most dissimilar members and also avoids combin-
ing clusters with highly similar elements (as opposed to
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single-linkage). As shown below in Fig. 1b, we expect no
linear dissimilarity between transcriptomes relative to
age group, making complete-linkage an appropriate clus-
tering strategy. As subtle differences in the gene

expression patterns could be expected, complete-linkage
was employed due to its superiority over a single-linkage
approach in handling data groups that closely neighbor
one another. DIANA and AGNES calculate metrics for

Fig. 1 (See legend on next page.)
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cluster organization known as the Divisive Coefficient
(DC) and Agglomerative Coefficient (AC), respectively.
These coefficients range between 0 and 1, and indicate
the precision with which the dendrogram describes the
data, with 1 being the most ideal structure and 0 being
the worst. As FANNY is not a hierarchical algorithm,
and is visualized in principal component space, the per-
cent of variance explained serves as a surrogate value for
AC and DC (i.e., a larger percent variance explained
value indicates how well a datasets information is repre-
sented in the decomposed space).
Although cluster analysis is a primarily descriptive

mathematical technique, we calculated the silhouette
width as a means to make a quantitative comparison of
the differential expression data. Silhouette widths range
between − 1 and 1. A value of 1 indicates that the cluster
members are closely related to the other members of the
cluster, and not to members outside the cluster. A value
of − 1 suggests the cluster member is an outlier within
the cluster and is actually more representative of other
clusters. The mean Silhouette Value was calculated for a
range of cluster numbers for the DIANA, AGNES, and
FANNY algorithms (Fig. 1f, g, h, respectively).

Information theory analysis
In order to extend the analysis beyond the linear meth-
odology utilized in the canonical analysis, we calculated
the Kullback-Leibler (KL) divergence (DKL) and Maximal
Information Coefficient (MIC). This was necessary be-
cause non-linear transcriptional relationships (i.e., dy-
namic networks of transcripts) between age groups
could exist and are likely abundant, as seen by the devel-
opment of numerous pathway-based analytical tools
(e.g., GSEA, GO-terms, Reactome, etc.). While these
types of modules are interesting they often require pre-
defined lists. However, utilizing information theory al-
lows us to inspect potential networks in the absence of
prior known networks, and also reduces analytical bias.
DKL is a mathematical approach to identify differences

between data distributions through non-linear integra-
tion. While this is most commonly used to compare

machine learning outputs to ground truth distributions,
we employed it by treating one distribution (e.g.,
pediatric) as the predicted distribution and the other dis-
tribution (e.g., adult) as the target distribution (e.g.
“ground truth”). This scenario effectively asks the follow-
ing question: given the expression distribution of the
adult cohort, how well can the distribution of the
pediatric cohort be predicted. To calculate DKL, raw fea-
ture counts generated by RSubread were first class-
balanced using the Synthetic Minority Oversampling
Technique (SMOTE) [11] via the python imblearn pack-
age [12]. DKL values were then calculated for the syn-
thetically balanced dataset using the python scipy stats
module.
MIC is used to measure the strength of any linear

and/or non-linear relationship between two variables.
This is accomplished by binning continuous variables
and iteratively calculating mutual information (i.e., the
dependence between variables) to identify the maxima.
By plotting MIC against Pearson’s R the magnitude of
the relationship between the variables can be visualized
(MIC = 0 indicates no relationship; MIC = 1 indicates
highly related), as can the nature of the relationship (lin-
ear vs. non-linear). MIC was calculated using the python
minepy module [13].

HD spot analysis
Raw feature counts derived from RSubread were submit-
ted to the HD Spot algorithm [14]. Due to the substan-
tial imbalance of data classes, the HD Spot algorithm
was optimized with respect to maximizing the area
under the precision-recall (AUPR) curve. HD Spot devel-
oped a classifier that achieved an average AUPR value of
1.00 over 5-fold cross-validation and subsequently deter-
mined the mean absolute Shapley value for each tran-
script. Shapley values can conceptually be understood as
importance scores. In this context, a higher Shapley
value means a transcript is more important in determin-
ing the age group from which the sample was taken.
The top 50 transcripts ranked by Shapley value and the
list of 20 previously identified therapeutic targets were

(See figure on previous page.)
Fig. 1 Global Transcriptional Profiling of Adult and Pediatric ACP Samples. a MA-plot visualizing transcripts indicating significant (Independent
Hypothesis Weighting (IHW) adjusted p-value < 0.1; red) and insignificant genes (black) as determined in differential expression analysis;
transcripts enriched relative to pediatric patients are log fold change (LFC) up (> 0) and transcripts enriched relative to adult patients are LFC
down (< 0). b Euclidean sample distance matrix without clustering demonstrated the relative heterogeneity across all sample groups from a
global transcriptional expression perspective. c-e Clustering paradigms utilized in dataset exploration. c Dendrogram yielded from the DIvisive
ANAlysis (DIANA) hierarchical clustering algorithm. d Dendrogram produced by the AGlomerative NESting (AGNES) hierarchical clustering
algorithm using complete linkage. e Clustering partitions and group ellipsoids generated by the fuzzy analysis (FANNY) probabilistic k-centroid
technique. f-h Silhouette plots depicting mean silhouette width across a range of numbers of clusters. Possible silhouette values are within [− 1,1]
where a value of 1 indicates the cluster member is most-closely related to the members within that cluster and dissimilar to those outside of the
cluster. As values approach − 1, the opposite is true which indicates the cluster member is an outlier within the cluster. f Silhouette plot
generated from the DIANA clustering presented in 1c. g Silhouette plot produced by the AGNES algorithm output presented in 1d. h Silhouette
plot yielded by the FANNY algorithm results visualized in 1e
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then submitted for Metascape [15] express analysis to
explore potential ontologic connections between gene
sets using GO terms.

Results
Canonical differential expression analysis reveals no
therapeutically relevant distinction between adult and
pediatric ACP specimens
Overall, 87.3% of the transcripts interrogated were insig-
nificant (IHW p-value > 0.1) and slightly more transcripts
enriched within the pediatric population versus the adult
population (6.8% versus 5.9%, respectively, Fig. 1a). Con-
siderable heterogeneity between all samples (irrespective
of age group) was identified with the Euclidean distance
matrix (Fig. 1b). Both the agglomerative and divisive clus-
tering algorithms demonstrated reliable data organization
(Fig. 1c-d; Divisive Coefficient [DC] = 0.66, Agglomerative
Coefficient [AC] = 0.59) as well as the absence of distinct
clusters between the adult and pediatric ACP samples.
Congruently, probabilistic analysis in 2D principal compo-
nent space, using FANNY, depicted nearly 70 % of the
data variance (69.93%, Fig. 1e) and failed to partition the
data into groups based on age cohort. Further analyses of
these clustering approaches, using silhouette plots to
quantify clustering integrity, demonstrated that k = 2
yields the optimal clustering (Fig. 1f-h). However, all sil-
houette widths are close to 0 (maximum ≈ 0.30), indicat-
ing that clusters are not unique from one another and
cluster memberships could easily be randomized another
way. When examined as a whole, agglomerative, divisive,
and probabilistic clustering algorithms yield consistent
and well-organized results, indicating that the transcrip-
tomes of ACP specimens do not cluster based on the age
of the patient from which they were obtained.
Our group previously identified a group of twenty po-

tentially targetable transcripts within pediatric ACP [4].
The primary clinical question underlying this research is
to determine whether initial treatment strategies against
ACP should be differentiated based on age at diagnosis.
Accordingly, we validated these targets in the current
dataset compared to normal pituitary (Figure S1) and
created a subset of the transcriptome data focusing on
these twenty targets to assess differential expression sta-
tus (Fig. 2a and b). Of the previously identified potential
targets, three genes were significant (IHW p-value < 0.1):
SHH, MAPK14, and AREG. Next, this data subset was
subjected to the same divisive, agglomerative, and prob-
abilistic clustering protocols (Fig. 2c-e) as the total data-
set above. There was slight improvement in data
organization (i.e., an increase in clustering coefficients;
DC = 0.78, and AC = 0.77, relative to 0.66 and 0.59 when
analyzing the full transcriptome). Additionally, k = 2
remained the superior cluster count but higher k values
improved relative to the clustering performance of the

full transcriptome (Fig. 2f-h). Although four genes were
significantly differentially expressed, the data subset
remained linearly undifferentiable based on age. In other
words, these results indicate that there is no direct linear
relationship between transcriptional profiles and age
group at diagnosis.

Information theory and machine learning techniques
identify a cohort of transcripts relevant to differentiating
adult and pediatric patients
In the present context, Kullback-Leibler divergence
(DKL) represents the difference between transcript ex-
pression profiles of the two age groups (Fig. 3a). DKL is
asymmetric, so we visualize both directions of the rela-
tionship (i.e., Pediatrics to Adults, and Adults to
Pediatrics; Fig. 3b). These results demonstrate that quali-
tatively the global transcriptomes of both age groups are
informationally similar. Of the four differentially
expressed therapeutic targets, SHH and AREG demon-
strate the greatest informational difference (DKL ≈ 3) al-
though still less than 50 % of maximum (DKL ≈ 6)
informational differences (i.e., they are not among the
top contributors for informational difference between
age groups).
We analytically assed both linear and non-linear relation-

ships by comparing the MIC versus Pearson’s R (Fig. 3c).
From this we determined that of the 41,914 transcripts in-
terrogated only 0.03% (N = 13) genes maintain expression
levels that differ based on age group (Fig. 3d). The encoded
genes include a long intergenic non-protein coding gene,
innate immune system related genes, a chromosomal open
reading frame, and a keratin metabolism related gene.
When cross-checked with canonical differential analysis
methods, four genes (FBXL16, COG8, CHST2, and
TMCC2) were statistically significant as determined
by p-value. However, Log Fold Change (LFC) magnitudes
were less than 1 for all but FBXL16 (LFC = 1.38). Of the
seven genes identified, none are currently of therapeutic
interest.

Ontology assessment of deep learning identified age
group-differentiable transcripts
Following classification using the HD Spot algorithm,
the 50 (0.20%) transcripts with the highest Shapley
values (Fig. 4a) and the 20 previously identified potential
therapeutic targets were examined using a Metascape
analysis (Fig. 4b). HD Spot identified primarily pseudo-
genes, novel transcripts, and non-coding transcripts as
most differentiable between age groups. Only one ontol-
ogy group (GO:0051222) is enriched in HD spot analysis
and it is also enriched (though more significantly) with
respect to the therapeutic targets. The lack of enrich-
ment returned from Metascape analysis reinforces that
the differential genes identified are not well studied and
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Fig. 2 (See legend on next page.)

Prince et al. Acta Neuropathologica Communications            (2020) 8:68 Page 6 of 10



(See figure on previous page.)
Fig. 2 Transcriptional Profiling of Previously Identified Therapeutic Targets. a Previously identified therapeutic targets with transcriptions fold-
change metrics for adult versus pediatric samples. A positive fold-change indicates enrichment in pediatric patients, and conversely a negative
value indicates enrichment in adult patients. b Volcano plot for all transcripts with previously identified targets indicated by red arrows. The solid
black horizontal line at y = 1 indicates the threshold for p-value significance (p < 0.1; y = −log(0.1) = 1). c-e Clustering paradigms utilized in dataset
exploration. c Dendrogram yielded from the DIvisive ANAlysis (DIANA) hierarchical clustering algorithm with respect to only the twenty previously
identified targets. d Dendrogram produced by the AGlomerative NESting (AGNES) hierarchical clustering algorithm using complete linkage with
respect to only the twenty previously identified targets. e Clustering partitions and group ellipsoids generated by the fuzzy analysis (FANNY)
probabilistic k-centroid technique with respect to only the twenty previously identified targets. f-h Silhouette plots depicting mean silhouette
width across a range of numbers of clusters. f Silhouette plot generated from the DIANA clustering presented in 2c. g Silhouette plot produced
by the AGNES algorithm output presented in 2d. h Silhouette plot yielded by the FANNY algorithm results visualized in 2e

Fig. 3 Information Theory-Based Analysis Suggests Majority of Genes Have Minimal Linear and Non-linear Relationships with Age Groups. a
Kullback-Leibler (KL) divergence representation of SHH (top) and IL6R (bottom) distributions for adult and pediatric samples. b KL-divergence
versus Log Fold Change plot, with previously identified therapeutic targets overlaid and all points colored by IHW-adjusted p-value,
demonstrating relationship between calculated LFC and informational differences. Higher KL-Divergence values indicate that a gene has
informational difference between age groups. As KL-Divergence is an asymmetric method, the scenario of having a pediatric prior (left) and an
adult prior (right) are both shown. c Pearson Correlation Coefficient (PCC) vs Maximal Information Criterion (MIC) plot with previously identified
targets overlaid. MIC scores the strength of a relationship from 0 (no relationship) to 1 (noise-free relationship) for genes between the age
groups. Points A and B on the graph represent where genes should fall if they have a strong direct or inverse linear relationship with age groups.
Values that have low PCC and high MIC scores indicate genes with non-linear (i.e. dynamic; one-vs-many) relationships. d Summary statistics of
where genes lie on the PCC vs MIC plot along with their respective differential expression values as visualized in (b)
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are currently not of therapeutic interest. Importantly,
HD Spot achieved a mean 5-fold cross-validation area
under precision-recall curve value of 0.97, indicating that
the derived classifier was well optimized. In total, these
findings indicate that while there may be underlying
transcriptional difference for ACP pathogensis relative
to pediatric and adult patients, current therapeutic tar-
gets do not maintain age-dependent linear or non-linear
expression signatures.

Discussion
Using a thorough comparative bioinformatic analysis
following bulk tissue RNA sequencing of pediatric
and adult ACP tissue, we identified no gene expres-
sion differences that have implications regarding po-
tential therapies. This implies that potential therapies
identified or initially tested in either the adult or
pediatric population will have relevance in the other
age group. To our knowledge this work consists of

Fig. 4 Deep Learning Approach HD Spot Identifies Genes Related to Adult and Pediatric Cohort Differences From Raw Feature Counts. a
Summary plot of the top 50 genes identified by HD Spot as being the most important in separating adult and pediatric ACP transcriptomes. b
Heatmap of GO terms found to be enriched in Metascape analysis comparing HD Spot-identified and the 20 previously identified therapeutic
targets. Heatmap color represents ontology term enrichment
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the largest analysed cohort of ACP transcriptome data
to date.
Canonical differential expression techniques demon-

strated no clear differences between age groups. At the
global level, only 12 and 13% of transcripts yielded a Log
Fold Change (LFC) with an IHW-adjusted p-value < 0.1.
Using divisive, agglomerative, and probabilistic hierarch-
ical clustering approaches, we observed that while clus-
tering was at a relative optimum with k = 2 clusters,
cluster memberships were arbitrary (mean silhouette
widths < 0.35) and contained a mixture of age groups in
each branch. In the context of the twenty previously
identified potential therapeutic targets, we found that
only SHH, AREG, and MAPK14 were differentially
expressed with adjusted p-value < 0.1. Analysis of these
20 transcripts demonstrated the same clustering perform-
ance results that were observed with analysis of the entire
transcriptome. Specifically, adult and pediatric patients
did not cluster uniquely and inter-cluster members could
arbitrarily be replaced by intra-cluster members.
The findings from the canonical techniques were con-

firmed through further analysis using information theory
principles. This demonstrated that 99.97% of the tran-
scriptome has no expression level relationship with the
age group of the patient. The remaining 0.03% was com-
posed of a mixed collection of transcripts that have not
been implicated in tumor pathogenesis or therapy, and
LFCs were modest.
Next, we sought to qualitatively examine non-linear

transcriptional relationships to age group by utilizing KL-
divergence. This again demonstrated that the global tran-
scriptome profile for pediatric ACP differs very little from
that of adult ACP. Quantitative assessment of linear and
non-linear relationships using MIC vs. Pearson’s R plots
revealed that over 99% of transcripts do not possess strong
relationships of any type to age group. Importantly, the re-
quired synthetic expansion of the dataset (see Methods) in
order to calculate DKL and MIC would be expected to arti-
ficially magnify any data relationships. Therefore, the lack
of any clear relationship between transcript expression
and age group in this context further supports the asser-
tion that the adult and pediatric transcriptomes lack
therapeutically relevant differeces.
The threshold selected to distinguish adult from pediatric

ACP (age 18 years) may be considered arbitrary. However,
the bimodal age distribution of ACP incidence includes a
nadir between age 20 and age 39. This implies that there
may be a distinction, on some level, between the tumors
that present before and after this window. The age threshold
of 18 years has further clinical significance because it relates
to the clinical environment (pediatric vs. adult) in which a
patient may receive care. Furthermore, by leveraging the
deep learning technique HD Spot, we identified genes, in a
manner free of human-interpreter bias, that have age group

dependent expression profiles. HD Spot accurately discrimi-
nated between pediatric and adult transcriptomes. The top
50 genes contributing to this classification were primarily
comprised of genomic features that are currently poorly
understood (e.g., pseudogenes, novel transcripts, etc.).
Through utilizing classical genomic analysis protocols, infor-
mation theoretic models, and deep learning this work rigor-
ously interrogated linear and non-linear relationships to
demonstrate that, at the transcript level, there is no evidence
to differentiate therapy between adult and pediatric ACP pa-
tients strictly based on age at diagnosis.

Limitations
Despite the rigorous characterization of the transcrip-
tional relationship between pediatric and adult ACP
tumor tissue, our findings are limited by the fact that
only RNA expression profiles were considered. This pro-
vides a specific window into the genomic landscape. It
does not provide thorough insight into potential differ-
ences in the epigenetic environment or extracellular mi-
lieu between pediatric and adult ACP. Furthermore, the
transcriptome data analyzed was generated through bulk
RNA sequencing. Given heterogeneous nature of ACP
tissue, bulk sequencing is likely to lose some informa-
tion, which may be explored in more detail with tech-
niques such as single cell RNAseq, RNA mutation
analysis or protein-level quantification. Lastly, there is
also still potential that an even larger dataset contrasting
these age groups (which to our knowledge does not
exist) may still reveal more therapeutically important dif-
ferences. Such studies may identify biological distinc-
tions that could guide therapeutic intervention, even if
this is at the level of second or third line therapy.

Conclusions
Analysis using multiple bioinformatic techniques, in-
cluding the Deep Learning method, HD Spot, indicates
that there is no therapeutically relevant distinction
between ACP tissuein adult and pediatric patient. This
implies that the identification of biologically-guided
therapeutic targets, and the potential clinical translation
of such targets in either group of patients may also be
relevant in the other. As such, recent and future findings
regarding ACP may be applied for the benefit of a larger
group of patients. Future work including more in depth
study of RNA features, protein expression and extracel-
lular characteristics of these tumors will be necessary.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40478-020-00939-0.

Additional file 1: Figure S1. Log fold change versus p-value for
therapeutic targets across ACP age groups compared to GTEx normal
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pituitary dataset. Table S1. Dataset Demographics and CTNNB1 Mutation
Status. Hyphen values indicate data not available. WT: Wild Type; Age at
Dx: Age at Diagnosis.
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