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Abstract

Semi-quantitative scoring schemes like the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) are
the most commonly used method in Alzheimer's disease (AD) neuropathology practice. Computational approaches
based on machine learning have recently generated quantitative scores for whole slide images (WSIs) that are
highly correlated with human derived semi-quantitative scores, such as those of CERAD, for Alzheimer's disease
pathology. However, the robustness of such models have yet to be tested in different cohorts. To validate
previously published machine learning algorithms using convolutional neural networks (CNNs) and determine if
pathological heterogeneity may alter algorithm derived measures, 40 cases from the Goizueta Emory Alzheimer's
Disease Center brain bank displaying an array of pathological diagnoses (including AD with and without Lewy body
disease (LBD), and / or TDP-43-positive inclusions) and levels of AR pathologies were evaluated. Furthermore, to
provide deeper phenotyping, amyloid burden in gray matter vs whole tissue were compared, and quantitative CNN
scores for both correlated significantly to CERAD-like scores. Quantitative scores also show clear stratification based
on AD pathologies with or without additional diagnoses (including LBD and TDP-43 inclusions) vs cases with no
significant neurodegeneration (control cases) as well as NIA Reagan scoring criteria. Specifically, the concomitant
diagnosis group of AD + TDP-43 showed significantly greater CNN-score for cored plaques than the AD group.
Finally, we report that whole tissue computational scores correlate better with CERAD-like categories than focusing
on computational scores from a field of view with densest pathology, which is the standard of practice in
neuropathological assessment per CERAD guidelines. Together these findings validate and expand CNN models to
be robust to cohort variations and provide additional proof-of-concept for future studies to incorporate machine
learning algorithms into neuropathological practice.
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Introduction

The aging population around the world is increasing; a
2017 study reported the population of people aged 60 or
older was over 962 million and expected to double by
2050 [1]. Given the risk for developing a neurodegenera-
tive disease increases with age, there is a critical need to
better understand the underlying pathobiology of such
disorders [2]. Neurodegenerative diseases are a heteroge-
neous group of conditions that manifest clinically in
various functional deficits, specifically movement and
cognitive deficits. Examples include: Alzheimer’s Disease
(AD), dementia with Lewy bodies (DLB), and frontotem-
poral degeneration which manifest neuropathologically
as beta-amyloid plaques and tau-immunoreactive neuro-
fibrillary tangles (AD), alpha-synuclein-positive Lewy bod-
ies (DLB, pathologically Lewy body disease - LBD), and
inclusions positive for TDP-43, tau, or other entities (fron-
totemporal lobar degeneration of various subtypes) [3].

The “gold” standard diagnosis for neurodegenerative
diseases, such as AD, is provided upon visual inspection of
carefully prepared autopsied brain tissue on glass slides.
Tissue regions are carefully selected and typically immu-
nohistochemically stained for known pathological hall-
marks of neurodegenerative diseases. In AD, the main
hallmarks are amyloid plaques and tau neurofibrillary tan-
gles [4, 5]. Semi-quantitative scoring strategies are used to
determine if there is sufficient pathological burden to
diagnose AD [6]. The Consortium to Establish a Registry
for Alzheimer’s Disease (CERAD) assesses neuritic pla-
ques (often on silver stains) in the highest density region
of the neocortex [7, 8] while Thal amyloid phasing instead
focuses on the distribution of f-amyloid-immunoreactive
deposits across the brain for disease staging [9].

Whole-slide imaging (WSI) is an increasingly popular
imaging modality used in pathology research that allows
users the ability to pan and zoom around tissue directly
from their computer [10]. WSI opens up opportunities
to use computational approaches to quantify pathology
in tissue slides for scoring purposes, which could reduce
the time-consuming workflow common in most histo-
logical studies. Inter- and intra-rater variability between
observers for these semi-quantitative measures can be
often quite high, further calling into question the validity
of a gold-standard [11]. Studies have shown this variabil-
ity arises from a combination of factors that include a
lack of stringent tissue preparation standards used across
labs and simple human subjectivity [12]. Any proposed
computational approach implemented to tackle these
challenges would need to be robust, impartial, consist-
ent, and scalable in order to be successful.

The use of machine learning in the field of histopath-
ology [13-16] has shown great promise, and may in part
help standardize quantitative assessment in neurodegen-
erative disorders. Convolutional neural networks (CNN),
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a class of machine learning models, are excellent for
working with imaging data and have recently been
shown to be capable of quantifying AD pathology com-
parable to an expert neuropathologist [17]. In other
work, CNNs identified a diverse group of tau morpholo-
gies in WSI with good comparison to expert annotations
[18]. While these examples are promising for the field,
they are not yet part of the standard practice in scoring
tissue slides. One of the biggest remaining challenges is
the robustness of these methods across larger and more
diverse cohorts. Most current and previous works using
machine learning in histopathology focus on well-
defined imaging cohorts from one source (ie. institu-
tion). For machine learning approaches to gain traction,
they need to display success across sources with minimal
cohort adjustment. In histopathology, this is of critical
concern as variations in cohorts can arise from selection
bias in addition to various non-biological factors: tech-
niques used throughout the staining process, skill of the
scientist, post-mortem interval, variations in tissue pro-
cessing, etc. [12, 19]. Since CNN’s require well-defined
training data, it is not uncommon for a “well trained”
model to perform poorly when applied to new datasets.
In this work, we evaluated how a model trained exclu-
sively on images from a single University [17] would per-
form on a completely independent cohort. We further
add depth to this pipeline to improve our understanding
of its potential benefits for neurological disease research.

The pipeline in question is from the work published in
Tang et al. 2019 [17]. This pipeline uses a multiclass
CNN model to classify images for three AD pathologies
(cored plaques, diffuse plaques, and cerebral amyloid
angiopathy (CAA)). The output of the pipeline generates
confidence heatmaps of the entire WSI for each of the
three pathologies. Each of these heatmaps are converted
to a quantitative score representing the percentage of
each amyloid pathology present in the WSI (three CNN
scores per WSI), which are subsequently compared to
semi-quantitative scores of the pathologies. The pub-
lished pipeline showed good comparison results between
the CNN-scores and CERAD-like scores (we utilize the
term CERAD-like, to distinguish from the original
CERAD criteria which was utilized for neuritic plaques
and we adapted this for AP-immunostained sections
using a similar semi-quantitative scale [7]) for each path-
ology on a 30 WSI dataset. We show in this work that
this pipeline is robust and performs well on a separate
institutional cohort (40 WSI dataset) without any re-
training (i.e. “as is”). Modifications to the pipeline to fur-
ther investigate various aspects and measure its potential
utility in practice were also evaluated.

The current study aimed to accomplish the following: 1)
determine the robustness of the CNN pipeline on a new co-
hort, 2) determine the effects of pathologic heterogeneity
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on CNN scores, 3) determine the effects of anatomic area
segmentations (gray matter vs whole tissue) analysis on
CNN scores and 4) compare CNN-scores at the whole slide
level vs highest density regions. The reasoning for point 1 is
explained above. Point 2 is of interest in investigating the
predictive power of CNN scores as it pertains to other
categorization criteria. Neurodegenerative pathological
presentation is heterogeneous which often makes it difficult
to cleanly categorize cases. AD for example can be seen
alongside other pathologies, such as alpha synuclein de-
posits (Lewy bodies) and / or TDP-43 inclusions [6, 20—23].
Of interest is whether scores based solely on A burden are
affected by presentation of secondary conditions, and
whether these cases are still clearly differentiable from
control or healthy brains. Comparing CNN scores to
the NIA-Reagan criteria, which rank the probability that
clinical dementia is due to AD, will provide further infor-
mation regarding the utility of this CNN score [24, 25].
Point 3 is of interest because the method applied in Tang
et al. focused on the entire tissue section while many path-
ologies are most prominent in the gray matter. By limiting
our analysis to the gray matter we (a) hypothesized that re-
duction in noise may arise from an imbalance of white /
gray matter ratio between images and (b) assessed whether
amyloid deposits obtained outside the gray matter hold sig-
nificant importance in comparison with pathological diag-
nosis [5, 26, 27]. Lastly, we investigate point 4 to address
the concern of introducing a single score, based on the en-
tire region of interest (tissue / gray matter) as opposed to
the CERAD approach of looking at the highest density
region.

Materials and methods

Data

Data used in Tang et al. is available at https://doi.org/10.
5281/zenodo.1470797. The data comprises 63 subjects,
with one temporal gyri WSI for each subject. The sub-
jects were selected to contain a wide breadth of patho-
logical burden for each of the three AD pathologies of
interest: cored and diffuse plaques, in addition to cere-
bral amyloid angiopathy (CAA). The WSIs were all
immunohistochemically stained using an amyloid Beta
(AP) antibody (4G8 from Biolegend, San Diego, CA)
with diaminobenzidine for color development, and coun-
terstained with hematoxylin for nuclei visualization. The
dataset contains cases spanning the spectrum of AD
pathology burden, including cases lacking cognitive im-
pairment as well as cases lacking AD pathology. Also
provided are the 70,000 previous images (tiles of size of
256 x 256 pixels) that were selected and labeled for
plaque type content, that can be used to train a new
model (Additional file 2: Figure S1). This image dataset
was extracted from a 29 WSI training dataset (61,370
images) and a 4 WSI validation dataset (8630 images).
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Another 10,873 labeled images were provided to test the
trained model, obtained from the 10 WSI testing dataset.
The remaining 20 WSI are provided for generating the
confidence heatmaps. The Emory dataset comprises 40
WSI selected by an expert neuropathologist (MG) con-
taining a range of pathology burden for each of the AD
pathologies of interest (Table 1). The Emory cases con-
tained 5 cases with no significant neuropathological
changes and no cognitive impairment (healthy/control
brain), 27 with a primary neuropathological diagnosis of
AD, 4 with a primary neuropathological diagnosis of
Lewy body disease (of the LBD cases, 2 had a secondary
diagnosis of AD or probable AD). Of cases with a primary
diagnosis of AD, 8 also had TDP-43-positive inclusions, 5
had limbic or neocortical LBD, and 6 had amygdala-
predominant Lewy bodies; among these there was some
overlap with 1 case having TDP-43-positive inclusions and
LBD, and 3 cases having TDP-positive inclusions and
amygdala-predominant Lewy bodies (Additional file 1).
Two cases had a clinical diagnosis of control (also listed as
the primary neuropathologic diagnosis) and a (secondary)
neuropathologic diagnosis of possible AD. These are cases
who showed normal cognition clinically but were found to
have AD pathology at autopsy. All whole slide images con-
sisted of glass slides of 8 um formalin fixed paraffin embed-
ded sections of the temporal gyri immunohistochemically
labeled with an antibody to AP (4G8; Biolegend, San Diego,
CA), utilizing 3,3’-diaminobenzidine (DAB) for color devel-
opment with hematoxylin counterstain, similar to the previ-
ous cohort. Glass slides with tissue were cleaned with 70%
ethanol solution prior to scanning with an Aperio AT2 DX
system at 20x magnification. All WSI were uploaded to a
local server and accessed for viewing using a local instance
of the Digital Slide Archive platform [28]. Figure 1 shows a
visual representation of the breakdown of datasets used in
this project.

Table 1 Number of cases for each category of CERAD-like score
for each AR pathology assessed in the Emory dataset

Cored Plaques Diffuse Plaques CAA
None 10 6 19
Sparse 13 3 5
Moderate 14 3 6
Frequent 3 28 10

Each WSI / case was given three CERAD-like scores (for cored plaque, diffuse
plaque, and CAA). The CERAD-like scores are semi-quantitative with four
possible categories: none, sparse, moderate and frequent. We utilized the term
CERAD-like to not confuse these data with CERAD scores - CERAD was initially
meant for semi-quantitative analysis of neuritic plaques in multiple brain
regions, and data analyzed here is for A deposits only within the temporal
cortex |. All scores were provided by a single neuropathologist (BD) viewing
the slides using the Digital Slide Archive platform. This table provides
information about the number of cases in each CERAD-like category for each
AB morphology / score. Further detail of all cases are given in Additional file 1
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Fig. 1 The Tang dataset was broken down into four unique datasets. The Train (29 WSI) and Val (4 WSI) datasets were used for training a CNN
model. The Test (10 WSI) was used to test the performance of the trained model (i.e. generated ROC and PRC curves). These three datasets went
through the process of tiling, which extracts small images (256 by 256 color images) and labels them for their inclusions of amyloid deposits. The
Test dataset with the addition of the Tang Hold-out (20 WSI) dataset where used to generate confidence heatmaps and CNN scores for each of

probabilities (one for each amyloid pathology)

the three amyloid morphologies (for each WSI). The Emory dataset (40 WSI) was used to also generate confidence heatmaps and CNN scores.
The CNN model architecture is shown on the right. The architecture includes six convolutional layers with max pooling layers and with two
dense layers (512 and 100 nodes respectively) at end. The CNN model inputs are red-green-blue 256 by 256 images and it outputs three class

Model training recreation

CNN model weights were provided by Tang et al. and were
used to load the pre-trained model and generate confi-
dence heatmaps. A new model was also trained from the
Tang et al. labeled image dataset by using the provided
code (https://github.com/keiserlab/plaquebox-paper) and
training data (https://doi.org/10.5281/zenodo.1470797).
The new model performance was assessed with receiver
operating curves and precision recall curves, which showed
good performance on both the validation and testing set
(Additional file 2: Figure S1). All CNN code is imple-
mented using Python’s open source PyTorch package [29].
A Docker container was used to run all the code to allow
easy replication of our results using the same OS & Python
environment [30]. For a detailed description on how the
training, validation, and testing dataset was obtained from
the WSI, see [17]. Figure 1 shows a representation of the
CNN model architecture for reference.

WSI preprocessing
Reinhard color normalization was applied to all images
prior to analysis, using the same reference image for all

images [31]. The PyVips library was used to apply the
color normalization and subsequently tile the WSI into
small images in a structured format. This tiling was later
used to create the confidence heatmaps using the trained
model.

Confidence Heatmap & CNN scores

The detailed methods for CNN and heatmap generation
have been previously reported [17]. Briefly, the trained
CNN model was used in a sliding window approach to
create WSI confidence heatmaps [32]. A stride of 16
pixels was used to generate the confidence heatmaps.
For each WSI, a confidence heatmap was generated for
each pathology (cored plaques, diffuse plaques, CAA),
with high probabilities signaling the intensity of the
pathology present. The sliding window approach results
in confidence heatmaps at a fraction of the resolution of
the original WSI. The smaller size makes it possible to
run the computational analysis on modern standard
computers equipped with GPU(s) for easy reproducibil-
ity without excessive loss of information.
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Confidence heatmaps were used to generate CNN scores
by a process of thresholding, binary operations, and object
labeling. For each WSI three CNN scores were generated
for the percentage of cored plaques, diffuse plaques, and
CAA present in the WSI. The OpenCV Python package
was used to perform the cleaning and blob labeling [33].
Using specific thresholds for each plaque type, confidence
heatmaps are converted to binary masks. Probabilities
below the threshold are zeroed and considered noise. Bin-
ary operations, opening and closing, follow to clean up the
image and a blob labeling approach is used to group nearby
pixels together. The foreground tissue area is segmented by
application of lightness-chroma-hue (LCH) color space
thresholding. Minimal LCH parameter tuning is required
for each image to segment the foreground accurately to ac-
count for slide staining variations. The CNN score provided
is then calculated as the number of unique blob labels di-
vided by pixels in tissue area.

CNN score comparisons

Emulating traditional CERAD style scoring, an expert
neuropathologist (BD) scored each WSI on a semi-
quantitative scale (none, sparse, moderate, and frequent)
for each AD pathology (cored, diffuse and CAA). Unlike
CERAD, the scores were assessed on a single slide (tem-
poral region only rather than multiple regions of neocor-
tex) immunohistochemically labeled with anti-Ap (rather
than histochemically stained with silver or thioflavin
stains) and given by the overall density (rather than the
region with densest pathology as is common practice by
the CERAD criteria) [7, 8, 34]. These so-called CERAD-
like scores are used as our ground-truth comparison for
the CNN scores, to get an interpretable measure of how
well the model and heatmap pipeline can detect specific
AB morphologies and how well it performs in compari-
son with human semi-quantitative scoring. For statistical
analysis, we grouped the WSI into their respective
CERAD-like groups and performed an ANOVA with
post-hoc analysis using Tukey’s test between each group
to test significant differences between the groups. All
statistics were implemented using Python’s open-source
libraries: statsmodels and scipy. This was repeated for
each of the three pathologies of interest. ANOVA F-
statistic and p-value is reported as well as the Tukey’s
test p-values between adjacent groups (none vs sparse,
sparse vs moderate, moderate vs frequent) with values
less than 0.05 considered statistically significant. This
process was run on the Emory dataset (n=40), Tang
et al’s dataset (test + hold-out # = 30), and the combined
dataset (n = 70).

CNN score comparisons were also analyzed for the
Emory data exclusively in two alternative ways. 1) The
pathological diagnosis for the Emory dataset was used to
group the cases: control (no significant pathology) vs
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pure AD (only AD diagnosis), control vs all cases with
AD pathology, and pure AD vs cases with AD and TDP-
43 inclusions or LBD pathology. For our analysis, diag-
noses of probable AD and possible AD were considered
as AD diagnoses. The two cases that showed AD path-
ology during autopsy but no cognitive impairment clinic-
ally, were excluded from this analysis (Additional file 1,
cases 5 & 8) but the analysis with their inclusion can be
found in Additional file 2. Furthermore, cases with
amygdala-predominant Lewy body disease were not in-
cluded in the LBD group. The pathological diagnoses are
reported as primary, secondary, and tertiary, and for the
purposes of analysis, only presence or absence was consid-
ered for grouping (Additional file 1). 2) CNN scores were
grouped by NIA-Reagan scores for each case (provided by
MG) that indicate the likelihood of a diagnosis of AD as
no, low, intermediate, or high likelihood [24, 35].

Gray matter annotations

The HistomicsTK package, part of the Digital Slide Archive,
was used to manually annotate and segment the gray mat-
ter regions of the WSI for the Emory dataset [28]. Corre-
sponding Bielschowsky silver stain images were scanned
from the same brain region to facilitate visual recognition
of gray matter / white matter regions. Only areas that were
clearly gray matter were annotated and artifacts and tissue
abnormalities (tears etc.) were purposely avoided / excluded
in the annotations. The manual annotation process was
verified by an expert neuropathologist for correctness
(MQ@). The confidence heatmap analysis was modified by
the addition of a masking step prior to blob detection. We
applied the binary mask of the gray matter on the confi-
dence heatmap to remove amyloid deposits outside this re-
gion. New CNN scores were generated taking the subset of
plaques occurring exclusively in the gray matter regions
and the pixel area of the gray matter only. All comparisons
with CERAD-like scores, pathological diagnosis, and NIA-
Reagan scores were repeated using these new CNN scores.

CERAD-like CNN score comparisons

CNN scores were calculated for small regions in the
heatmaps of area approximately equal to 4 mm? (251 by
251 pixels) on the original WSI. This area is similar to
the 10x magnification field of view used when scoring
slides based on CERAD criteria [7]. A field-of-view CNN
score was provided for each of these small regions with
a stride of 16 pixels between regions to identify the
field-of-view with the highest CNN-score. Correlation
between the n-highest field-of-views and the whole tis-
sue CNN scores were provided to identify the number of
field-of-views needed for convergence. The highest field-
of-view CNN score was also compared in the same way
that the whole tissue CNN-score was.
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Results

CNN scores grouped by CERAD-like categories

The model trained in this work shows similar results to
those published with the trained model in Tang et al.
(Additional file 2: Figure S1). For all following compari-
sons, the trained model in Tang et al. was used to gener-
ate confidence heatmaps for the Emory data. CNN
scores grouped by their CERAD-like categories for the
Emory data are shown in Fig. 2. Cored plaques show an
increasing trend in CNN score with increasing severity
of CERAD-like score (none, sparse, moderate, and fre-
quent) (F-statistic: 14.1, p-value: 3E-6). Post-hoc analysis
using Tukey’s test show statistical significance between
none and sparse groups and between moderate and fre-
quent groups. Sparse and moderate groups were not sig-
nificantly different, but there was a trend of increasing
CNN score. Diffuse plaques show no statistical signifi-
cance between adjacent groups (none, vs sparse, sparse
vs moderate, moderate vs frequent) but are significantly
different in non-adjacent groups (F-statistic: 17.4, p-
value: 3E-7). CAA scores show very small values for all
groups with multiple high score outliers in the none and
one on the moderate and frequent groups each (F-statis-
tic: 4.8, p-value: 0.007). All statistical significance is pro-
vided by an ANOVA with post-hoc analysis using
Tukey’s test with an alpha value of 0.05. A Krusal-Wallis
one-way analysis of variance was also performed for
CAA due to various outliers and also showed signifi-
cance (p-value: 0.00016).

We also compared CNN scores grouped by CERAD-like
categories for the Emory dataset vs. the Tang 30 WSI dataset,
showing similar scores in each category (Additional file 2:
Figure S2). Combining the datasets and performing the same
comparison as above showed more pronounced differences
among the groups (Additional file 2: Figure S3). Cored
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plaques displayed more pronounced differences across all
CERAD-like groups, likely due to the increased sample size
(F-value: 29.8, p-value: 2E-12). Diffuse plaques showed sig-
nificance between sparse and moderate groups and moderate
and frequent groups, which were not previously observed in
the original smaller cohort (F-value: 29.2, p-value: 3E-12).
CAA plaques still showed very little variation between the
groups, with a few cases in the “moderate” and “frequent”
groups containing high levels of CAA (F-value: 13.6, p-value:
5E-7).

CNN scores grouped by Diagnosis & Reagan Criteria

The pathological diagnoses for each case can be found
in Additional file 1. Of interest is whether CNN scores
clearly differentiate cases with a clinicopathological diag-
nosis of AD (as a primary or secondary diagnosis) from
those without, otherwise referred to as control cases (no
significant AD present). Three groups were identified:
control group (healthy brain, 7 =5), pure AD (no sec-
ondary diagnosis, # =14), and all AD (pure AD cases
plus cases with AD and secondary diagnosis of LBD
and/or TDP-43 inclusions, n =30). The AD groups can
be further broken down into pure AD group (n =14),
AD+LBD group (n=7), and the AD+TDP group (n = 8).
The two cases with clinically cognitive normal diagnosis
but with AD pathology were excluded from this analysis
(the analysis was also run with these cases included as
pure AD cases and shown in Additional File 2: Figure
S4, but no significant difference was observed).

Out of the 40 Emory cases, 14 cases contained pure AD
and 5 were cases with no significant clinicopathological
defined neurodegenerative pathology (control). Compari-
son between those two groups for cored and diffuse CNN
scores are shown in Fig. 3. Significance was seen between
the pure AD and control group and the all AD group and
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Fig. 2 CNN scores for the Emory data generated from confidence heatmaps grouped by CERAD-like categories. Left boxplot shows comparison
for cored, middle for diffuse, and right for CAA pathologies. An ANOVA with post-hoc analysis using Tukey's test was used to assess significance
with an alpha value of 0.05, significance is shown between groups with * for p-value less than 0.05. Whiskers show the interquartile range of +/—
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than 0.05, ** less than 0.01, *** less than 0.001, and **** less than 0.0001. Whiskers show the interquartile range of +/— 1.5*IQR. Outliers are shown
as red + and medians are shown as horizontal red lines in the boxplots. Control group (n=5), pure AD (n=14), all AD (n=30), AD+TDP (n=28),
and AD+LBD (n=7)

control, assessed with a two-sided student’s t-test. For the
comparison among the pure AD, AD+TDP, and AD+LBD
an ANOVA showed significance among groups for cored
plaques (F-statistic: 4.8, p-value: 0.016) but not for diffuse
plaques. Post-hoc analysis using Tukey’s test for multiple
comparisons showed statistical significance between pure
AD and AD+TDP groups, with AD+TDP having a higher
CNN score for cored plaques than pure AD. CAA CNN
scores showed no significance in any of these comparisons
(Additional file 2: Figure S5).

An alternative approach is to group AD cases using
the NIA Reagan criteria, which provide four levels of
likelihood of Alzheimer’s disease presence: no (n=7),
low (n=4), intermediate (n=10), and high (n=19)
groups. For comparison of CNN scores, we grouped to-
gether the no and low groups due to the low number of
samples in these groups. Significance was seen in cored
plaque CNN scores (F-statistic: 19.5, p-value: 2E-6) and
diffuse plaque CNN scores (F-statistic: 23.8, p-value: 2E-
7) but not in CAA CNN scores (F-statistic: 3.0, p-value:

0.06). Tukey’s post-hoc test showed significance between
the intermediate and high groups but not between the
no/low and intermediate group for cored CNN scores.
Diffuse plaques CNN scores showed significance be-
tween the no/low and intermediate group but not be-
tween the intermediate and high groups (Fig. 4).

Gray matter analysis

The Digital Slide Archive web application was used to
manually annotate gray matter of the Emory dataset
using web-based image markup tools for drawing. In
cases where the gray matter was not easily discernible in
the AP WSI, a corresponding Bielschowsky silver stain
WSI was used to guide the annotation (Fig. 5). Annota-
tions, converted to binary masks, are applied to confi-
dence heatmaps prior to blob detection and new CNN
scores are calculated. As expected the cored and diffuse
CNN scores increased for most of the comparisons, due
to most of the pathologies being observed in the gray
matter (Fig. 6). CAA CNN scores in contrast showed a
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percentage decrease as more CAA occurred in both gray
and white matter. All previous CNN score comparisons
were recreated using these new scores (Additional file 2:
Figure S6-S8). In all but one comparison, the results
were similar when using whole tissue CNN scores as op-
posed to gray matter only CNN scores, with no new sig-
nificant differences being observed. Additional file 2:
Figures S8 showed new statistical significance using gray
matter scores between the no/low and intermediate
groups for cored CNN scores. Spearman’s rank-order
correlations are shown in Table 2 and show similar re-
sults when using whole tissue vs gray matter only CNN
scores.

CERAD-style CNN scores

Emory cohort confidence heatmaps were analyzed using
a field-of-view (FOV) approach to match the standard
practice used by pathologists, which score the slides by
the densest pathology region on the tissue (Fig. 7). Fol-
lowing the original paper for CERAD analysis we used

an area FOV of 4.0 mm?® corresponding to a traditional
10x objective lens used [7]. CNN scores were calculated
for all FOV that had at least one pathology present. We
identified the highest score FOV and correlated it to the
whole tissue score and found it to be highly correlated
for all pathologies (Spearman correlation coefficient for
cored plaques (0.937), diffuse plaques (0.780), and CAA
(0.922)) (Additional file 2: Figure S9).

Grouping the FOV CNN-scores for the single densest
region (analogous to traditional CERAD) by their CERAD-
like score showed similar differences between the groups as
seen when using whole tissue scores (Additional file 2:
Figure S9). Spearman correlation coefficients between the
CERAD-like categories and the whole tissue CNN scores
were good for the Emory data (cored: 0.769, diffuse: 0.735,
caa: 0.684). In contrast, using just the highest density FOV
for each image resulted in a weaker correlation for cored
plaques (0.70) and CAA (0.628), but similar for diffuse pla-
ques (0.746). Cored plaque correlation improved when
averaging the top 15 non-overlapping FOV but never quite

HistomicsTK & & Annotated im @openimage.. | ¢ | > =

(a)

Fig. 5 a The Digital Slide Archive application grants access to the HistomicsTK graphical user interface for annotation of WSI, red is the annotated
region on the sample AB stained slide. b Gray matter regions can be difficult to delineate using immunohistochemical stains, in such cases we
can use adjacent sliced tissue stained for Bielschowsky silver to guide the annotation. The annotations are saved in SVG format as metadata to
the item containing the WSI in the Digital Slide Archive datastore
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reached the performance of whole tissue CNN scores. CAA
CNN scores saw a decrease in correlation with increasing
FOV regions in comparison when using the single highest
scoring region (Table 3). Similar results were seen, but with
less effect, when comparing to the Reagan NIA criteria
scores using the highest FOV vs whole tissue (Table 4).

Discussion

The use of semi-quantitative approaches has been the
standard of practice in neuropathology for decades. The
introduction of methods such as CERAD, almost 30
years ago, provided a much needed consensus criteria
when assessing pathological samples for diagnosis [7, 8,
34]. Since then, the limitations and downsides of these
methods have been widely discussed in the literature
and many have pursued more robust methods to en-
hance and improve the current standard [11, 12, 36].
The advent of digital slide scanning technologies and ad-
vances in computer vision, driven by improvements in
machine learning, can potentially help to overcome the
limitations of current scoring systems.

Computational approaches based on machine learning
are powerful due to their ability to provide highly accur-
ate results on complicated imaging tasks; the availability
of large, well-annotated imaging data sets has been es-
sential to this work. However, the application of these
technologies in the medical imaging domain is ham-
pered by the small pool of people qualified to provide
expert labels for training data. Unlike famous imaging
datasets such as ImageNet [37], which incorporate clas-
ses of images such as cats and dogs, the generation of
large pathologically-annotated datasets can limit our use
of machine learning in the field. The work of Tang et al.

was notable because of their creation of a large anno-
tated dataset to classify pathologies at high resolution in
WSI.

A well-trained neuropathologist can automatically ad-
just for differences in brain region, staining intensity, the
presence of artifacts (tears, shearing), and aging or fad-
ing of slides during their evaluation process. While it is
theoretically possible to “teach” a machine learning
model to adjust for such variation, if such variation is
not present in the training data used for model gener-
ation, such factors can cause machine learning models
to produce erroneous results. These variations are exac-
erbated when comparing images across institutions that
might not use identical protocols for tissue preparation
and staining. The rise of online databanks containing
WSIs is still in its infancy but will alleviate some of the
variation seen in pathology imaging data, as slides can
be digitized proximal to staining and thus artifacts oc-
curring due to slide age will be minimized [10, 28, 38].
Other variations amongst cohorts will remain a chal-
lenge, such as stain color variations, cohort inclusion /
exclusion criteria, as well as disease heterogeneity. If the
aim is to develop computational pipelines to replace or
support current methods, they must be clearly shown to
be robust to these variations.

In this work we validated a previously published CNN
pipeline and were able to not only reproduce the original
results on the original data set, but also directly apply
the model to a new cohort [17]; and without retraining
the model, produce quantitative scores in the Emory
data set that strongly correlated with independent
CERAD-like scores. Even though the two cohorts
showed differences upon high level visual inspection

Table 2 Whole Tissue vs Gray Matter CNN Score Correlation Comparisons

CNN Scores CERAD-like (Cored) Reagan (Cored) CERAD-like (Diffuse) Reagan (Diffuse) CERAD-like (CAA) Reagan (CAA)
Whole Tissue 0.77 0.81 0.74 0.63 0.68 043
Gray Matter 0.75 0.83 0.74 0.65 0.66 0.38

Spearman rank-order correlation coefficients between CNN scores and CERAD-like categories and Reagan scores for each AB pathology. Correlation coefficients
are shown for comparison between whole tissue CNN scores and gray matter CNN scores
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A

Fig. 7 CNN scores analyzed in field-of-view (FOV) style. This example image highlights the three highest FOV CNN scores for cored plaques
(numbered boxes with 1 being the highest FOV region). Inserts show the full resolution view of the FOV boxes shown. The size of the boxes
represent a similar FOV (10x magnification) used by pathologists in practice when evaluating samples. The FOV boxes were chosen as the three

(Additional file 2: Figure S10-S14), the pipeline tested in
this work retained its previously published performance
when applied to the new cohort. Indeed, performance
between the two cohorts was comparable for all three
pathologies of interest (Fig. 2). Surprisingly this was true
even though the model used to generate the quantitative
scores had been solely trained on annotated data from
another institution. We noticed that Emory cohort slides
showed considerable fading as they had been stained
years before. Considering machine learning models per-
form poorly when the training data poorly represent the
population data, it is evident this model is robust enough
to account for common pathology slide variations [39].
Of interest in future work would be to train a new
model independently on newly stained and annotated
Emory cohort images and compare its performance to

Table 3 FOV Spearman Rank-order Correlation for CERAD-like
categories vs CNN scores

the original model, as well as extend this work to other
cohorts at different institutions, other anatomic areas,
and have images annotated by multiple experts.

We were also interested in dissecting this pipeline be-
yond the original investigation using an Emory cohort
selected to contain additional variance. When selecting
the Emory cohort we focused on two factors: (1) cases
showing a wide range of the three AP pathologies of
cored and diffuse plaques, and CAA; and (2) cases dis-
playing varied pathological diagnoses (that including
concomitant diagnoses). Various neuropathologies often
occur together and it is still poorly understood how
some of these markers of pathology may interact, and
whether there is a clear cause and effect between them
[2, 22, 40]. Most of these neuropathological diagnoses
have clear criteria, at least within the same institutions,

Table 4 FOV Spearman Rank-order Correlation for Reagan NIA
categories vs CNN scores

num FOV regions 1 3 5 7 9 11 1315 WT num FOV regions 1 3 5 7 9 11 13 15 WT
Cored 070 072 073 074 074 075 075 075 077  Cored 078 079 080 080 080 081 081 081 081
Diffuse 075 074 074 075 075 075 075 075 074  Diffuse 051 050 055 058 059 059 060 060 063
CAA 063 059 058 060 060 061 060 062 068  CAA 038 037 036 037 036 036 035 036 043

Spearman rank-order correlation coefficients between CNN scores and CERAD-
like categories with increasing number of field-of-view regions. WT Whole
tissue scores

Spearman rank-order correlation coefficients between CNN scores and Regan
NIA categories with increasing number of field-of-view regions. WT Whole
tissue scores
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and are often defined by pathologies within select neuro-
anatomic locations. For example, AD is clearly identified
by AP and tau pathologies present in the immuno-stained
tissue, TDP-43 inclusions are identified on TDP-43 im-
munohistochemistry and may be localized to limbic areas
and / or cortical regions, and Lewy body disease is charac-
terized by the presence and distribution of Lewy bodies
identified on alpha-synuclein immunostained tissues and
can be located in brainstem, limbic, and/or cortical re-
gions [3, 6, 9, 20, 21, 41, 42]. Our new cohort contained
cases that included various categories of concomitant
diagnosis (AD + TDP-43, AD + LBD, AD + LBD+ TDP-
43) but also cases that showed only AD pathologies and
normal control subjects. We want to reiterate that we only
evaluated temporal lobe staining for AB. LBD and TDP-43
pathology are defined by the presence of different patholo-
gies (Lewy bodies and TDP inclusions); while these inclu-
sions may be present in the temporal lobe in some cases,
they are best assessed using staining protocols other than
AB immunohistochemistry. When we grouped AD with
concomitant pathologies separately to assess differences
between concomitant groups and the control group, these
were clearly distinguishable from each other (Fig. 3).
Surprisingly the concomitant diagnosis group of AD +
TDP-43 showed significantly greater CNN-score for cored
plaques than the AD group. Recent studies have demon-
strated associations with AD pathologies and TDP-43 de-
position and more research is needed to further determine
this significance [43].

Another aspect we investigated in this work was com-
paring pathologies within gray matter compared to the
entire tissue section. Most A deposits are located in the
neuronal rich gray matter with little seen in the white
matter [26]. This notion was borne out in the confidence
heatmaps in Tang et al. [17]. Because of this distribution,
one might anticipate that variations in white matter-to-
gray matter ratio between the images would introduce
inherent noise on the CNN scores. Upon restriction of
the analysis to gray matter regions, CNN scores remained
correlated with CERAD-like categories, Reagan scores, and
pathological diagnosis and did not alter statistical compari-
son amongst disease groups (Table 2 and Additional file 2:
Figure S6-S8). Cored and diffuse plaque CNN scores
increased when focusing on the gray matter only, with aver-
age percent change seen at 23% for cored and 29.3% for dif-
fuse. CAA pathology showed an average decrease in CNN
scores in contrast, seen as an average 22.9% decrease in
score. We hypothesize this is mostly due to similar ratios of
white-to-gray matter in the imaging cohorts, but also to the
low amount of pathologies that do occur in the white
matter.

In human scoring schemes the use of a small field of
views, usually the highest density region for the CERAD
criteria, can improve human consistency and reliability
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[7, 44]. Computationally, we could also take a similar ap-
proach and only score the images by their highest dens-
ity regions. However, we find using a larger area to
calculate the scores results in better comparisons with
human semi-quantitative scores. This is promising as a
benefit of using computational approaches is the ability
to reliably analyze large regions of images that are sim-
ply not scalable for humans. The real potential strength
of this capability, however, is not displayed by this sim-
ple analysis, as ultimately it must still correlate to cat-
egories defined by only one observer. Additional works
with multiple annotators are warranted. Analysis focus-
ing strictly on whole-tissue distributions of pathologies,
not just a single score per image, might shed new light
into pathologically unique groups.

Together the work presented here shows strong evi-
dence of a neuropathology imaging machine learning
pipeline robust to cohort variations, however, some limita-
tions exist. Although the model displayed great perform-
ance on the new cohort, significant variations were seen in
select variables. Specifically for diffuse plaques, the most
abundant pathology, we saw large standard deviations be-
tween the cohorts and even within cohorts (Fig. 2). Upon
close inspection, the CNN algorithm was grouping very
dense regions of pathologies together and counting them
as one. This is the inherent nature of diffuse plaques. This
was unexpected since we used the same trained model as
the previous published work. Further investigation re-
vealed color preprocessing had created variations between
our re-creation and the original published work due to dif-
fering computer package versions, including Python lan-
guage and operating system versioning. Since the pipeline
involves some user-defined parameters, variations in pre-
processing can result in unforeseen differences. For bet-
ter reproducibility, we developed and have made
available a Docker container that bundles the specific
versions of Python and system packages used in this
work  (https://hub.docker.com/repository/docker/jviz
car/ab_plaque_box). Future work leveraging this con-
tained environment could expand on the methods used
in this pipeline. Of interest would be individual models
that can focus on different pathologies of interest, such
as TDP43 and LBD. This would allow a deeper pheno-
typing for cases by analyzing multiple stains (as only
4G8 was used) and uniquely stratifying concomitant
pathologies. As stated previously additional studies
examining other brain regions, staining modalities, and
having datasets from multiple experts are warranted.

Another route to improving the CNN scoring might be
by switching the analysis to a segmentation problem,
which would result in a tighter delineation of the patholo-
gies. The biggest hurdle for this would be in generating
sufficient training data to achieve high accuracy in a seg-
mentation machine learning model. However, the benefits
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of this would be vast as it would allow an even deeper
phenotyping of pathology from simple burden scores to
distribution populations and morphology subtypes within
the pathologies. Ultimately, it would allow machine learn-
ing models such as the one used in this work to provide
not just re-creation of neuropathology assessment but also
a means to investigate complex patterns not feasible in
purely human-based analysis. We encourage the use of
this pipeline and all the provided tools (Docker container,
Emory cohort, and code used in this project is made fully
available, see Data Availability) to further investigate the
benefits that it could have in common neuropathology
practice. Furthermore, we hope this work inspires other
research groups to establish collaborations with other in-
stitutions to validate machine learning models in path-
ology in diverse and larger cohorts.

Conclusions

We demonstrate a previously published machine learning
model used to generate quantitative scores for Alzheimer’s
disease AP burden performs well on a new and varied co-
hort. We show minimal modifications are required to
achieve similar results and the model is more robust than
previously explored, as it also stratifies clearly between
NIA Reagan criteria scores and pathological diagnosis.
Further investigation showed gray matter segmentation
was not needed to achieve equivalent results and single
FOV scores did not perform as well as using whole tissue.
This work supports the idea that machine learning can be
successful in multi-institutional pathological datasets and
is a critical step to show that machine learning can be
used to support pathological practice.
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