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Diffuse intrinsic pontine glioma-like tumor
with EZHIP expression and molecular
features of PFA ependymoma
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Diffuse brainstem gliomas, historically termed diffuse
intrinsic pontine glioma (DIPG), account for approxi-
mately 75% of pediatric brainstem tumors and have a
particularly poor prognosis with a median survival of
only 10 months [8, 10]. Until recently, the diagnosis of
DIPG was principally made by imaging, with biopsy rele-
gated to an ancillary role owing to the delicate anatomic
location [1]. However, with improved surgical tech-
niques [4, 14] and the discovery of canonical histone H3
lysine-27-methionine (H3K27M) driver mutations, direct
examination of these lesions to distinguish DIPG from
radiologic mimics has reemerged as an important
component of the diagnostic process [17, 19].
H3K27M mutations in DIPG result in global loss of the

repressive H3K27 trimethylation (H3K27me3) through
multiple mechanisms including inhibition of PRC2 meth-
yltransferase activity and spread of H3K27me3 [5, 9, 18].
Global reduction in H3K27me3 is also observed in a sub-
set of childhood posterior fossa (PF) ependymomas
termed PF-group A ependymomas (PFA) [2, 12]. PFAs
show overexpression of EZH inhibitory protein (EZHIP)
in most cases, or harbor mutations in EZHIP in ~ 10% of
tumors [11]. Additionally, three independent groups have
demonstrated that EZHIP mimics the H3K27M “oncohis-
tone” to cause global H3K27me3 reduction. EZHIP bears
a methionine residue, similar to the H3 lysine-to-

methionine (K27M) mutation, that is critical for mediating
global H3K27me3 reduction [6, 7, 13]. The genomic
distribution of H3K27me3 in H3K27M DIPGS and PFAs
show remarkable similarities suggesting that these two
tumors may be epigenetically related and share similar
pathogenic mechanisms [2, 7]. Indeed, in support of
this hypothesis, ~ 4% of PFAs demonstrate H3K27M
mutations that are mutually exclusive from EZHIP
mutations [11].
Here, we present an unusual case of a brainstem

tumor with diagnostic radiographic and characteristic
histopathologic features of DIPG, but demonstrating
methylation features of PFA ependymoma. A 5-year-old
boy presented to a local hospital with new-onset head-
ache. Exam revealed evidence of cranial nerve deficits
and cerebellar dysfunction (dysconjugate gaze and diffi-
culty with tandem walking). MRI disclosed an infil-
trating, expansile mass centered within the pons and
obstructive hydrocephalus (Fig. 1a). The mass encased
the basilar artery and contained a ventral exophytic
component within the prepontine and suprasellar cis-
terns (Fig. 1b). Imaging characteristics included hyper-
intensity on T2 and fluid attenuated inversion recovery
(FLAIR) sequences (Fig. 1c-d) and absence of enhance-
ment following gadolinium administration (Fig. 1e). The
mass did not involve the fourth ventricle or the cerebel-
lum. Cystic change was noted. Other atypical features
for DIPG, such as circumscription or dorsally exophytic
growth, were not seen. The findings met clinicoradio-
logic criteria for DIPG [6]. Biopsy of the mass was
deferred and radiation therapy was commenced.
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The patient was then evaluated at our institution for
clinical eligibility in a trial for DIPG that prompted a tis-
sue diagnosis. Biopsy revealed small fragments of densely
cellular tumor (Fig. 2a). Scattered entrapped neurons
hinted at its infiltrative nature (Supplemental Figure 1a-
b). Tumor cells were positive for GFAP and neurofila-
ment highlighted variable patterns of infiltration (Fig. 2b,
Supplemental Figure 1c), with involvement of seemingly
normal brain parenchyma by single tumor cells (Supple-
mental Figure 1e-f). No necrosis, microvascular prolifer-
ation, true ependymal or perivascular pseudorosettes
were noted. Staining for H3K27M mutant protein was
negative (Fig. 2c). Initial histologic and immunopheno-
typic findings suggested an H3-wildtype infiltrating
astrocytoma consistent with DIPG. At our institution,
pediatric CNS tumors frequently undergo integrative se-
quencing through the Michigan Oncology Sequencing
Project (MI-ONCOSEQ) [16]. Tumors are assayed using
whole exome and transcriptome-based techniques (see

[15] for a description of the project). Sequencing re-
vealed relatively few genomic alterations (Supplemental
Table 1), but was notable for 1q gain (Fig. 2e) and con-
firmation of its H3-wildtype (H3F3A, HIST1H3B/C,
HIST2H3A) status. RNA-seq showed overexpression of
EZHIP mRNA that was confirmed by immunohisto-
chemistry (Fig. 2f, Supplemental Figure 1d). Subsequent
immunohistochemistry for H3K27me3 and Olig2
showed complete loss of nuclear expression in tumor
cells (Fig. 2d, f). The relatively few genomic alterations
and EZHIP overexpression in conjunction with loss of
H3K27me3 in the absence of H3 mutations did not fit
with classic molecular features of a H3-wildtype DIPG
and prompted us to perform methylation analyses.
Array-based profiling of CpG methylation in brain

tumors has recently been shown to result in diagnostic
refinements that are highly robust and prognostically
meaningful [3]. We profiled our tumor using the
Infinium MethylationEPIC BeadChip (interrogating

Fig. 1 Representative MRI characteristics. T1-weighted sagittal image showed an infiltrative mass centered within and expanding the pons (a).
The exophytic portion of the tumor is seen encasing the basilar artery (b). The mass demonstrated classic MR characteristics of DIPG including
increased T2 (c) and FLAIR (d) signals, and lack of post contrast enhancement (e)
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Fig. 2 (See legend on next page.)
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~ 850,000 CpG sites) in conjunction with the DKFZ
Classifier tool recently implemented for CNS tumors
(http://www.molecularneuropathology.org) [3]. While the
methylation class most closely matched ‘ependymoma,
posterior fossa group A’, the calibrated Classifier score
was 0.62, below the proposed threshold of 0.9 (potential
reasons are discussed below). To further assess the
methylation profile of this tumor in relation to other CNS
entities, we performed unsupervised clustering on the
DKFZ cohort that comprises the 82 tumor methylation
classes used in the Classifier (v11b4). Reproduction of the
unsupervised clustering (t-SNE) demonstrated that the
tumor clusters with the group ‘EPN, PF A’ (Fig. 2g). We
next evaluated the tumor in relation to recently defined
nine subtypes of PFA ependymoma [11]. Hierarchical
clustering analysis revealed clustering within the PFA-1c
subtype (Fig. 2h) and this was concordant with the results
of t-SNE (Fig. 2i). While the overall Classifier score
was 0.62, this may be due to the composition of PFA
ependymomas in the current version of the Classifier
(v11b4). The ‘EPN, PF A’ tumor class contains tumors
arising solely within the fourth ventricle and/or cerebel-
lum. Thus, the low calibrated score we encountered may
reflect a potential subgroup of PFA ependymomas not
yet recognized in the current implementation of the
Classifier.
In summary, we present an unusual childhood brain

tumor arising within the pons that met all clinical cri-
teria for a DIPG but unexpectedly demonstrated
H3K27me3 global reduction in the absence of H3.3 or
H3.1 mutations, EZHIP overexpression, as well as
clustering with tumors in the DNA methylation class
‘EPN, PF A’. While overall prognostic outcome has yet
to be determined, a 7 month follow up MRI showed an
increase in tumor size, portending an aggressive out-
come. This case illustrates the significant contribution of
molecular pathology to routine surgical neuropathology
practice and highlights the increasingly important role of
tissue procurement for genetic and epigenetic profiling
of pediatric brain tumors in general. This case expands
our knowledge of the epigenetic similarities including

H3K27me3 global reduction between H3K27M DIPGs
and PFA ependymomas [2, 7], and have biologic implica-
tions from both a neurodevelopmental perspective and
in the design of targeted epigenetic therapies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40478-020-00905-w.

Additional file 1: Supplemental Table 1. Results of relevant
alterations detected through MI-ONCOSEQ integrative sequencing.

Additional file 2: Supplemental Figure 1. H&E images showing
entrapped neurons within the tumor mass (a-b). Neurofilament
immunohistochemistry showing infiltrative densely cellular regions
adjacent to more delineated areas (a). EZHIP (CXorf67)
immunohistochemistry showed increased nuclear expression in tumor
cells (d) and served to highlight individual tumor cells percolating
surrounding normal-appearing brain (e-f). Scale bars = 40 μm (a-b),
100 μm (c-f).
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Fig. 2 Histopathology and results of integrative sequencing and array-based methylation profiling. Routine H&E sections showed a high-grade
cellular tumor (a). Tumor cells were seen infiltrating axons (b). H3K27M stain was negative (with appropriate control staining) and H3K27me3
showed loss with expression in admixed non-neoplastic cells (c, d). Copy number profiling through MI-ONCOSEQ mainly showed whole-arm
changes including gains in 1q, 7p, 17p, and losses of 13q and partial 13p (e). Gene expression (RNA-seq) showed high expression of EZHIP
(CXorf67) (f, expression is presented as log-transformed fragments per kilobase of exon model per million reads mapped, or FPKM, and shown as
a percentile rank among the MI-ONCOSEQ compendium). Immunohistochemistry confirmed EZHIP protein overexpression and loss of Olig2 in
tumor cells (f). Reproduction of the unsupervised clustering analysis of reference and diagnostic cohorts by Capper et al. [3] using t-Distributed
Stochastic Neighbor Embedding (t-SNE), with incorporation of the presented case (g). Reproduction of the Consensus Clustering analysis by
Pajtler et al. [11] and incorporation of our case showing clustering with the PFA-1c subtype (h). Heatmap representation and clustering were
performed identically to the previously published methods [11]. Illustration of the previously defined [11] Consensus Clustering-based PFA major
subgroups and minor subtypes (n = 675) using t-SNE dimensionality reduction (i); arrowhead denotes placement of the current case.
Scale bars = 40 μm
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