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Abstract

Perioperative sleep disturbance is a risk factor for persistent pain after surgery. Clinical studies have shown that
patients with insufficient sleep before and after surgery experience more intense and long-lasting postoperative
pain. We hypothesize that sleep deprivation alters L-type calcium channels in the dorsal root ganglia (DRG), thus
delaying the recovery from post-surgical pain. To verify this hypothesis, and to identify new predictors and
therapeutic targets for persistent postoperative pain, we first established a model of postsurgical pain with
perioperative sleep deprivation (SD) by administering hind paw plantar incision to sleep deprivation rats. Then we
conducted behavioral tests, including tests with von Frey filaments and a laser heat test, to verify sensory pain,
measured the expression of L-type calcium channels using western blotting and immunofluorescence of dorsal
root ganglia (an important neural target for peripheral nociception), and examined the activity of L-type calcium
channels and neuron excitability using electrophysiological measurements. We validated the findings by performing
intraperitoneal injections of calcium channel blockers and microinjections of dorsal root ganglion cells with adeno-
associated virus. We found that short-term sleep deprivation before and after surgery increased expression and
activity of L-type calcium channels in the lumbar dorsal root ganglia, and delayed recovery from postsurgical pain.
Blocking these channels reduced impact of sleep deprivation. We conclude that the increased expression and
activity of L-type calcium channels is associated with the sleep deprivation-mediated prolongation of postoperative
pain. L-type calcium channels are thus a potential target for management of postoperative pain.
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Introduction

Surgical patients often report pre- and post-surgical sleep
disorders, and this is mainly due to anxiety, depression,
stress, and the use of opioids [12]. Perioperative sleep dis-
turbance is also a risk factor for persistent pain after surgery
[51]. Wright et al. examined presurgical sleep efficiency and
found that patients with poor sleep on the night before
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surgery reported greater pain 1 week after surgery [50]. An-
other study of postsurgical sleep examined 75 orthopedic
patients who underwent major surgery and reported similar
results. Most patients in this study (89.3%) experienced pain
at the surgical site, reported a Visual Analogue Scale (VAS)
pain score of “4” or “5” (range: 0 to 10), said the pain per-
sisted at least 3 days, and declared that this pain are usually
accompanied by extremely poor sleep quality [5]. These
and other studies thus indicate that pre- and post-surgical
sleep disturbance affects postsurgical pain.

Persistent postsurgical pain after healing of a surgical
incision, which has an incidence of about 10%, is a
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significant clinical problem. More than 320 million people
worldwide undergo surgery every year, and persistent
postsurgical pain is a significant public health issue [17].
This pain can be severe enough to cause serious func-
tional impairment or even disability resulting in decreased
quality of life [33]. As the population ages and the number
of surgeries continue to increase, persistent postsurgical
pain will become an increasingly serious problem. Long-
term pain after surgery can increase use of health re-
sources, and thereby greater disability and suffering [26].
Therefore, there is an urgent need to understand the
mechanism of persistent postsurgical pain and to find new
predictors and therapeutic targets to prevent and control
persistent postsurgical pain.

Previous studies have examined the mechanisms under-
lying the transition from acute pain to chronic pain in an
effort to prevent the development of persistent postsurgical
pain, but there has been little clinical progress. Previously,
clinicians believed that peripheral nerve injury during sur-
gery was the major cause of persistent postsurgical pain.
However, many surgical patients have symptoms of nerve
damage but report no pain. For example, after osteotomy
of the mandible, only about 10% of patients with severe
neurological injury (partial axonal trigeminal nerve lesion)
during surgery have clinically significant neuropathic pain,
and the others manifests as numbness and paresthesia.
Therefore, nerve injury alone cannot explain the extended
duration of acute pain after surgery [22].

The dorsal root ganglion (DRG) is the key to neurotrans-
mission between the peripheral and central nervous sys-
tems. Previous studies confirmed that neuropeptides and
ion channels, such as calcium channels, in DRG neurons
control sensory responses and pain [25, 44, 52]. Recent
large-scale and high-quality trials have demonstrated that
gabapentin and pregabalin can reduce postsurgical pain
and improve sleep quality [16]. These agents inhibit the
a8 subunit of voltage-gated calcium channels (VGCCs),
thus suggesting that these channels play an important role
in the development of persistent postsurgical pain. VGCCs
are essential for the physiological activities of excitable
cells, including neurons, and analysis of their biophysical
properties has led to their classification as low-voltage-
activated (LVA) channels and high-voltage-activated
(HVA) channels. Depending on the Ca,a; subunit, HVA
channels can be classified as N-, L-, R-, or P/Q-type chan-
nels. Changes in the expression and function of these
channels can affect the development and persistence of
several pain states [28]. However, little is known about the
role of HVA channels in the development and persistence
of postsurgical pain, or about the clinical effects of changes
in the expression and function of these channel proteins.

To mimic the effect of reduced sleep time in experi-
mental animals, previous researchers have used different
types of mild stimuli to keep these animals awake for a
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long time, such as rapid eye movement sleep deprivation
(REM-SD) [11, 43] and sleep restriction (SR) [45]. There
is evidence that long-term continuous or intermittent
REM-SD in naive experimental animals significantly
increases their hyperalgesia to heat and pressure stimu-
lation [39]. In contrast, short-term sleep deprivation
does not affect basal pain perception, but it does in-
crease the sensitivity to postsurgical painful stimuli [48].
However, the mechanism of short-term sleep deprivation
on postsurgical pain hypersensitivity is not fully under-
stood. We therefore examined the effect of a short-term
sleep deprivation on postsurgical pain by using a previ-
ously described sleep deprivation procedure [19, 37].

In the present study of male Sprague Dawley rats, we
sought to understand the role of HVA channels in the
delayed recovery from postsurgical pain and to find a
new therapeutic target for reducing prolonged postsurgi-
cal pain. Our basic approach was to implement a peri-
operative SD procedure and to study its effect on
postsurgical pain. We also studied the expression and
function of various subtypes of HVA channels in the
dorsal root ganglia (DRG) during the development of
postsurgical pain.

Materials and methods

Animal preparation

All protocols were approved by the Animal Care and
Use Committee of Renji Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China (Chair-
man: Dr. Huili Dai) on 20 August 2018 (Permit Number:
RJ 2018-0820). All procedures followed the guidelines
of the National Institutes of Health (NIH) Guide for the
Care and Use of Laboratory Animals (Department of
Health and Human Services, NIH Publication No. 86—
23, revised 1985) and the policies of the International
Association for the Study of Pain regarding the use of
laboratory animals. Efforts were made to minimize suf-
fering due to surgery and to reduce the overall number
of animals. All experiments were performed on male
Sprague Dawley rats (weight: 200 to 250¢g) that were
housed in an animal facility, and provided with ad libi-
tum water and standard laboratory food pellets. Rats
(m=162) were habituated to their environment (22 to
24.°C; 50 to 60% relative humidity; 12-h light/dark cycle)
for 3 days before the experiments.

DRG microinjection

To specifically knock-down the expression of L-type cal-
cium channels in the L4/5 DRG, which are responsible
for the transmission of nociceptive information and thus
conduct pain perception in the plantar incision model,
we performed direct DRG microinjection with the re-
combinant adeno-associated virus 2/5 (AAV2/5) with
Ca,1.2 (Cacnalc) shRNA. DRG microinjection was



Li et al. Acta Neuropathologica Communications (2019) 7:217

performed as described previously, with minor modifica-
tion [29, 56]. Briefly, a midline incision was made in the
lower back of the lumbar spine to reveal L4 and/or L5
articular processes, which were then removed with a
bone rongeur. After the DRG was exposed, a viral solu-
tion (1.62 x 10" Vector Genomes (V.G.)/mL, 2 uL) was
injected into two sites of L4 and L5 DRG using a glass
micropipette connected to a Hamilton syringe. The pip-
ette was removed 10min after injection. The surgical
field was rinsed with sterile saline and the skin incision
was closed with sutures. The injected rats displayed no
sign of paresis or other abnormalities, indicating that im-
mune responses to the viral injections were minimal.

The viral solution consisted of AAV2/5-H1-shRNA
(Cacnalc)-CAG-EGFP or AAV2/5-H1-NC_shRNA-CAG-
EGFP-WPRE-pA (Taitool Bioscience Co.Ltd., Shanghai,
China). The viral vector was pAAV2/5-H1-shRNA-CAG-
EGFP [53]. H1 was the promoter for shRNA, and CAG
was the promoter for EGFP. The supplemental materials
provide detailed viral vector mapping and sequencing
data. The sequence of Ca,1.2(Cacnalc) shRNA was: 5'-
TCCCCgCCATTTTCACCATTGAAATTTTCAAGAGA
AATTTCAATGGTGAAAATGGCTTTTT-3". AAV2/5-
H1-NC_shRNA-CAG-EGFP-WPRE-pA was used as a
negative control to eliminate the influence of other inter-
fering factors. Each recombinant AAV2/5 was locally
injected into L4 and L5 DRG 21 days before SD, because
AAV2/5 requires about 3 weeks before beginning gene ex-
pression after injection, and maintains relatively long-term
gene transcriptional expression ability as an episome [30].
To confirm the positive and control AAVs effectively in-
fected the DRG neurons, frozen sections of L4 and L5
microinjected DRG was observed to detect the presence
of abundant green fluorescence (EGFP). A non-injected
DRG was used to exclude non-specific emission and to
account for background fluorescence (Additional file 1:
Figure S4e). There were 5 to 10 rats per group.

Postsurgical pain model

The plantar incision (PI) surgery was performed as pre-
viously described [4]. Rats were anesthetized with 2%
isoflurane, with 0.8—-1.0 L/min oxygen delivered via a
nose cone. The surface of the left hind paw was prepared
under sterile conditions. Then a 1-cm longitudinal inci-
sion was made with a surfical blade through the skin
and fascia of the plantar aspect of the foot, starting 0.5
cm from the proximal edge of the heel and extending to-
ward the toes. The origins and insertions of muscles
remained intact, and the flexor muscle was elevated and
incised. After hemostasis with gentle pressure, the skin
was sutured with 5-0 nylon thread and the wound was
covered with bacitracin ointment. After surgery, the ani-
mals were allowed to recover in their cages. Typically,
the wounds healed well within 5 to 6days. In all
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experiments, the contralateral paw was used as a control.
Rats in a sham control group received anesthesia but no
surgery.

Sleep disturbance procedure

Rats were intermittently deprived of REM sleep using
the small-platform method, as described previously [19,
37]. In brief, a small platform (15cm high, 5cm diam-
eter) that was fixed to the center of a plastic water tank
cage (45 x 53 x 72 cm) was surrounded with water (5cm
deep). At the onset of sleep, the muscular atonia caused
the body to contact the water, thus awaking the animal.
Each rat was placed individually on a platform within a
plastic water tank cage, and was housed therein for 6 h
per day for 3 consecutive days during the daytime before
and after the surgery (6 days total), with food and water
supplied ad libitum. Control rats were placed in groups
in plastic cages in the same environment. For most ex-
periments, rats were divided into 4 groups (5 to 10 rats
per group): sham; sham+ SD; incision; and incision+SD.
Some experiments employed additional treatments with
nifedipine, (an L-type channel sensitive calcium channel
blocker) or viral injections, as indicated in the text.

Behavioral tests

von Frey filaments (mechanical stimulation)

The von Frey filament test was performed each day from
1day before surgery to 15days after surgery. Each rat
was habituated in a small (7.5 x 15 x 15 cm) plastic cage
with air vents at the top for at least 30 min before test-
ing. Mechanical sensitivity was determined with a series
of von Frey filaments (2.0 to 26 g) that were applied to
the plantar surface of the left and right hind paws. Each
filament was tested five times in increasing order from
the lowest force. Between individual measurements, von
Frey filaments were applied at least 3 s after the rats had
returned to their initial resting state. The minimal force
that led to either a rapid paw withdrawal and/or an
escape attempt in at least 3 of the 5 stimulations was de-
termined as the threshold of the mechanical response.

Laser heat pain (thermal stimulation)

Each rat was habituated for 30 min in a small plastic
cage (7.5x15x15cm) with air vents at the top on a
glass plate. Laser heat was applied by aiming a beam of
light through a hole in the light box, through the glass
plate, to the middle of the plantar surface of each hind
paw. When the animal lifted its foot, the light beam was
turned off. The time from stimulation to foot withdrawal
(latency) was measured. Each trial was repeated three
times at 10-min intervals for each hind paw, and a cut-
off time of 20 s was used to avoid tissue damage.
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Drug application

Nifedipine (N7634, Sigma), a small molecule L-type
channel-sensitive calcium channel blocker which is widely
used in clinical practice, was dissolved in a vehicle solution
of 95% sterile saline and 5% DMSO. Then, intraperitoneal
injections (15 mg/kg; a concentration that produces an
antinociceptive effect in rats [49]) were given 1h before
the behavioral tests. Nifedipine works within 10 min after
administration, has maximal effect in 1 to 2 h, and its ef-
fect lasts 4 to 6 h. Normal saline (NS) was injected into
control rats. Each injection was given in a volume less
than 1.0 mL on days 8 and 9 after incision surgery.

Western blotting

Western blot analysis was performed as previously de-
scribed, with minor modification [3, 56]. In brief, bilateral
L4-6 DRG were collected, rapidly frozen, and homoge-
nized in chilled SDS lysis buffer (P0013G, Beyotime). The
crude homogenate was centrifuged at 4°C for 15 min at
12,000g. The supernatant was collected and the pellet
(nuclei and debris) was discarded. Protein concentration
was measured, and the samples were then heated at
100 °C for 15 min and electrophoresed in SDS-PAGE. The
proteins were then transferred onto polyvinylidene fluor-
ide (PVDF) membranes (IPVH00010, Immobilon-P). The
membranes were blocked with 1% bovine serum albumin
(BSA) at 4°C overnight, and then incubated with rabbit
anti-Ca,1.2 antibody (L-type; 1:200, ACC-003, Alomone),
rabbit anti-Ca,2.1 antibody (P/Q-type; 1:200, ACC-001,
Alomone), rabbit anti-Ca,2.2 antibody (N-type; 1:200,
ACC-002, Alomone), rabbit anti-Ca,2.3 antibody (R-type;
1:200, ACC-006, Alomone), rabbit anti-Ca,3.2 antibody
(T-type; 1:200, ACC-001, Alomone), mouse anti-Egrl
antibody(1:200, sc-101,033, Santa Cruz), or rabbit beta
tubulin antibody (1:3000, AB0039, Abways) at 4 °C over-
night under gentle agitation. Beta tubulin was used as a
loading control. The membranes were washed and then
incubated with a horseradish peroxidase-conjugated goat
anti-rabbit secondary antibody (1:2000, A0208, Beyotime)
or a horseradish peroxidase-conjugated goat anti-mouse
secondary antibody (1:2000, A0216, Beyotime) for 1h at
room temperature. The blots were developed using the
ECL Plus detection system. Band density was measured
using Image ] software.

Immunofluorescence

Tissues were collected from a separate group of for im-
munofluorescence studies. Rats were subjected to perfusion
with 4% paraformaldehyde (PFA) in phosphate-buffered
saline (PBS), followed by 4% PFA in PBS post-fixation over-
night. The L4-6 DRG were cryo-protected in a 20%
sucrose solution overnight, and then in a 30% sucrose solu-
tion. The tissues were dissected and processed (section
thickness: 20 pm) for immunofluorescence staining as
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previously described [14, 31]. Sections were intensively
washed with PBS, and then treated with an immunostain
blocking buffer (P0102, Beyotime) for 1h at room
temperature before staining. The primary antibody was
rabbit anti-Ca,1.2 antibody (1:50, ACC-003, Alomone).
Double staining used the rabbit anti-Ca,1.2 antibody with
an antibody against FITC-conjugated isolectin B4 (marker
for small non-peptidergic neurons [32]; 10 pg/mL, 12895,
Sigma); an antibody against mouse anti-CGRP (marker for
small peptidergic neurons [32]; 1:100, ab81887, Abcam); an
antibody against mouse anti-neurofilament 200 (marker for
medium/large neurons [32]; 1:500, N0142, Sigma); and
mouse anti-Egrl antibody to detect whether Egr-1 and
Ca,1.2 are present in the same cell (1:200, sc-101,033sc-
101033, Santa Cruz). All sections were then incubated with
either anti-mouse IgG conjugated to Alexa Fluor® 488 (1:
1000, 4408, Cell Signaling) or anti-rabbit IgG conjugated to
Alexa Fluor® 594 (1:1000, 8889, Cell Signaling). Conjugated
antibodies were also used for nuclear staining with DAPL
Images were taken with a fluorescence microscope (Olym-
pus, DP80) and processed using Image | software. Three to
four slices per DRG per rat were counted to eliminate the
uneven distribution of large, medium and small neurons
due to the irregular shape of DRG [30]. There were 3 to 4
rats per treatment group.

Whole-cell patch clamp recording

DRG neuron culture

Acute dissociated L4-5 DRG neurons were prepared as
previously described [30]. Rats were divided into groups as
described above, and then euthanized with isoflurane. The
L4-5 DRG were collected in cold DMEM/F12 medium
(12634—-010, Gibco) with 10% fetal bovine serum (10099-
141, Gibco), 100 U/mL Penicillin, and 100 pg/mL Strepto-
mycin (15140-122, Gibco), and then treated with an en-
zyme solution (5 mg/mL dispase and 1 mg/mL collagenase
type I) in HBSS (14025-076, Gibco). Neurons were dissoci-
ated after trituration, resuspended in mixed DMEM/F12,
and then plated onto 5 mm diameter coverslips that were
coated with 50 pg/mL poly-D-lysine (P0296, Sigma). The
DRG neurons were incubated at 95% O, and 5% CO,, and
at 37 °C.

HVA calcium channel current recording

Whole-cell patch clamp recording was performed 3 to 8
h after plating. Coverslips were placed in the perfusion
chamber. The electrode resistances of the micropipettes
ranged from 4 to 6 MQ. Neurons were voltage-clamped
with an Axon 1550B amplifier using Clampex software
[30, 56]. The Cold Spring Harbor Protocol was followed
to separate HVA calcium current from L-type calcium
current [15]. The intracellular pipette solution (pH 7.3
with CsOH, 290 mOsm) contained 110 mM CsCl, 5 mM
MgCl,, 10mM EGTA, 10 mM HEPES, 4 mM Mg-ATP,
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and 0.l mM GTP. The extracellular solution (pH?7.3
with TEA-OH, 300 mOsm) contained 5 mM CaCl,, 130
mM tetraethylammonium chloride (TEA-CI), 0.3 mM
TTX, 10 mM HEPES, and 10 mM glucose. Series resist-
ance was compensated by 60 to 80%. After establishment
of a giga-Q) seal, the neuron membrane potential was
maintained at - 90 mV. An initial depolarizing step was
applied to change the holding potential to — 30 mV for 1
s to inactivate all LVA calcium channels. Then, a second
depolarizing step to 0 mV for 100 ms was applied so that
only HVA calcium channels were activated [15]. Online
P/4 leak subtraction was performed to eliminate this
effect. All data were stored and analyzed using Clampfit
software [30, 56]. To specifically verify the contribution
of L-type current to the total HVA current, 1 um nifedi-
pine was applied to the neurons via bath perfusion dur-
ing measurements.

Action potential recording

To record the action potential, the recording mode was
switched to the current clamp. The extracellular solution
(pH7.38 by NaOH) contained 140 mM NaCl, 4 mM
KCl, 2mM CaCl,, 2 mM MgCl,, 10 mM HEPES, and 5
mM glucose. The intracellular pipette solution (pH 7.38
with KOH, 300 mOsm) contained 135 mM KCl, 3 mM
Mg-ATP, 0.5 mM Na,ATP, 1.1 mM CaCl,, 2 mM EGTA,
and 5 mM glucose. The resting membrane potential was
recorded 3 min after a stable recording was first ob-
tained. Depolarizing currents of 100 to 1400 pA (200-ms
duration) were delivered in increments of 100 pA until
an action potential (AP) occurred. The injection current
threshold was defined as the minimum current needed
to evoke an AP. The membrane potential was main-
tained at the existing resting membrane potential during
the current injection. The AP threshold was defined as
the first point on the rapidly rising phase of the spike at
which the change in voltage exceeded 50 mV/ms, and
the AP amplitude was defined as the distance from the
peak to the baseline. The membrane input resistance of
each cell was obtained from the slope of a steady-state
I-V plot in response to a series of hyperpolarizing currents
(200-ms duration) that were applied in steps of 100 pA,
from 200 pA to —2000 pA. The after-hyperpolarization
amplitude was the distance from the maximum hyperpolar-
ization to the final plateau voltage, and the AP overshoot
was the distance from the AP peak to OmV. All experi-
ments were performed at room temperature and all data
were stored and analyzed using Clampfit software [30, 56].

Luciferase assay

To examine the effect of Egr-1 on the activity of the
Ca,1.2 promoter, a luciferase assay was performed. A
fragment from the Cacnalc gene promotor region and a
fragment from the Egr-1 gene were amplified by PCR
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from genomic DNA to construct Cacnalc gene reporter
plasmids and the Egr-1 gene over-expression plasmids,
respectively. The PCR products were ligated into the
GV238 vector (containing the firefly luciferase reporter
gene) and the GV141 vector (containing the renilla lucif-
erase reporter gene) using Kpnl and Xhol restriction
sites, respectively. DNA sequencing was performed for
verification. HEK-293 T (ATCC) cells were cultured for
1 day in DMEM/F12 (12634-010, Gibco) containing 10%
fetal bovine serum (10099-141, Gibco) at 37 °C in a humidi-
fied incubator with 5% CO,. Cells were then transferred to
a 24-well plate, transfected with the Cacnalc gene reporter
plasmids with an empty GV141 vector (control) or with
Egr-1 gene over-expression plasmids using X-tremegene
HP (Roche), according to the manufacturer’s instructions.
Two days after transfection, the cells were collected in a
passive lysis buffer. The supernatant was used to measure
luciferase activity using the Dual-Luciferase Reporter Assay
System (E1910, Promega). Independent transfection experi-
ments were repeated three times. The relative reporter
activity was calculated after normalization of firefly fluores-
cence to renilla fluorescence.

Statistical analysis

All results are presented as means + standard errors of the
mean (SEMs). Statistical analysis was performed using
Prism 7.0 software. A two-tailed, unpaired Student’s ¢-test
and one-way or two-way ANOVA were used as appropri-
ate in multiple-comparisons tests. A P value below 0.05
was considered significant.

Results

SD prolongs recovery from postsurgical pain

We first examined whether short-term SD during the
perioperative period affects the recovery from postsurgi-
cal pain in rats. Thus, we applied 3 consecutive days of
SD, performed unilateral hind paw plantar incision, and
then applied SD again for 3 consecutive days (Fig. 1a).
The incision caused continuous mechanical and thermal
hypersensitivity, with dramatic declines in the threshold
(mechanical pain) and latency (thermal pain) on day 1,
and a gradual recovery to baseline on day 11 to day 15,
depending on the treatment (Fig. 1b, c). As expected, SD
alone had no effect. However, rats in the incision+SD
group had a slower recovery to the baseline than those
in the incision only group; at 9 days after surgery, the
paw withdrawal threshold was 55.7% lower and the
latency was 29.9% lower. The sham group had no sig-
nificant changes to mechanical and thermal stimuli
throughout the procedure (Fig. 1b, c). The contralat-
eral (control) paws had similar responses that were
close to baseline values in all four groups (Fig. 1d, e).
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Fig. 1 Perioperative SD prolongs postsurgical pain. a Design of behavior experiments. Baseline responses were measured before all interventions.
SD (6 h per day) began 3 days before and ended 3 days after surgery. Paw withdrawal threshold (mechanical pain) and paw withdrawal latency
(thermal pain) were measured 3 days before surgery and for 15 days after surgery. b, ¢ Paw withdrawal threshold and paw withdrawal latency of
rats in the sham, sham+SD, incision, and incision+SD groups (5 to 10 rats per group). Two-way ANOVA followed by a post hoc Tukey test: F (3,
242)=82.12 for mechanical pain, F (3, 269) =42.62 for thermal pain; *p < 0.05, **p < 0.01 for the incision group vs. the incision+SD group at each
time point. d, e Paw withdrawal threshold and paw withdrawal latency of contralateral (control paws) in the same four groups (5 rats per group).
Two-way ANOVA followed by a post hoc Tukey test: F (3, 144) = 0.9032 for mechanical pain, F (3, 144) = 4.895 for thermal pain

SD upregulates L-type HVA calcium channels (Ca,1.2) in
lumbar DRG neurons

HVA activated calcium channels in DRG neurons play
critical roles in pain transmission. Thus, we hypothe-
sized that HVA calcium channels might be altered in the
DRG of rats subjected to perioperative SD. We focused
on L-type channels, because they play an important role
in pain, especially Ca,1.2, and almost 90% of the these
channels are encoded by Ca,1.2 in nervous system [28].
At 9 days after surgery, the western blotting results indi-
cated greater expression of L-type HVA calcium chan-
nels in the lumbar DRG of rats in the incision+SD group
than in the incision only group (Fig. 2a, b). Moreover,
SD alone did not change the expression of L-type chan-
nels, and there were no difference in the expression of
other subtypes of HVA calcium channels (N-type, R-
type, and P/Q-type) among the different groups. The

four groups also had no differences in the expression of
T-type channels (Additional file 1: Figure Sla, b). Our
findings thus indicate that perioperative SD of rats leads
to increased expression of L-type HVA calcium channels
in the DRG.

SD mainly increases expression of L-type HVA calcium
channels (Ca,1.2) in medium and large DRG neurons

We next used immunofluorescence staining to deter-
mine the cellular localization of the L-type channels in
the lumbar DRG neurons. The results showed that these
channels were abundant in the DRG neurons of rats in
all four treatment groups, and that rats in the inci-
sion+SD group had significantly greater expression
(32.8 £2.6%) of these channels than rats in the incision
only group (Fig. 3a, b). Consistently, measurement of the
cross sectional areas of neuronal somata showed that
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Fig. 2 Perioperative SD increases expression of L-type HVA channels in lumbar (L4-6) DRG neurons. a Representative western blotting of L-type,
R-type, P/Q-type, and N-type channel proteins in the L4-6 DRG of rats in the different groups on 9 days after incision. b Quantitation of the
results in A (10 rats per group). One-way ANOVA followed by a post hoc Tukey test: F (3, 4) =20.29 for L-type channel, F (3, 4) = 0.06732 for R-
type channel, F (3, 4) = 04816 for P/Q-type channel, F (3, 4) = 0.6502 for N-type channel, **p < 0.01 for incision group vs. the incision+SD, ns: no

Day 9 after incision

approximately 6.59% of cells with L-type channels were
small (< 600 pmz), 42.86% were medium (600 to 1200 umz),
and 50.55% were large (> 1200 um?; Fig. 3c).

We further examined the distribution of L-type chan-
nels by performing double immunofluorescent staining of
L-type channels with a calcitonin gene-related peptide
(CGRP, a marker for small peptidergic neurons), isolectin
B4 (IB4, a marker for small non-peptidergic neurons), or
neurofilament-200 (NF200, a marker for medium/large
neurons). The results indicated that the L-type channels
were mainly co-labeled with NF200 (Pearson’s r =0.784),
rather than CGRP (r=-0.026) or IB4 (r=-0.136;
Fig. 3d). These data thus indicate that the increased
level of L-type HVA calcium channels in the inci-
sion+SD group mainly occurred in medium and large
DRG neurons and their axons, although L-type chan-
nels were still partially co-labeled with CGRP.

SD increases L-type calcium current and excitability in
DRG neurons

Because L-type calcium channels are essential for neur-
onal excitability [28], we sought to confirm the role of
L-type calcium channels in the hyperactive response to
SD by measuring L-type calcium current and neuronal
excitability in the DRG of rats. Whole-cell voltage-clamp
recording was performed in acutely disassociated neu-
rons from the L4/5 DRG at 8 to 9days after surgery.
The Cold Spring Harbor protocol [15] was applied to
separate HVA calcium channels from L-type calcium

channels. The current was stable during these recordings
(Additional file 1: Figure S2a). The results indicated that
HVA calcium channel current densities were signifi-
cantly greater in the large, medium, and small DRG
neurons of rats in the incision+SD group (Fig. 4a, b;
Additional file 1: Figure S2b, d). In contrast, there were
no marked differences in the HVA current from large,
medium, and small neurons from the L4/5 DRG among
the other 3 groups. Bath application of 1 pM nifedipine
(a selective L-type calcium current inhibitor) led to greater
reductions in the HVA calcium current from large,
medium, and small DRG neurons in the incision+SD group
than in the other 3 groups (Fig. 4c; Additional file 1: Figure
S2¢, e). This indicates greater activity of L-type channels in
all sizes of DRG neurons of rats in the incision+SD group.
DRG neurons from the sham, sham+SD, and incision
groups had similar reductions in L-type channel current
after nifedipine treatment (Fig. 4c; Additional file 1: Figure
S2¢, e).

We also performed whole-cell current-clamp record-
ing to measure neuronal excitability from the L4/5 DRG
of rats at 8 to 9days after surgery. Compared with the
incision group, large, medium, and small DRG neurons
of rats in the incision+SD group had significantly less
negative resting potentials (4.3, 5.3, and 5.8 mV, respect-
ively; Fig. 4d left; Additional file 1: Figure S3a) and
decreased current threshold for generation of action po-
tential (34.6, 29.1, and 34.7%, respectively; Fig. 4d right;
Additional file 1: Figure S3b). Moreover, the large,
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medium, and small DRG neurons of the incision+SD
group had more APs than the incision group (Fig. 4e, f;
Additional file 1: Figure S3c, d). However, there were no
marked changes in membrane input resistance and other
action potential parameters, including threshold, ampli-
tude, overshoot, or afterhyperpolarization amplitude
among the groups (Additional file 1: Table S1). These
data indicate that the increased expression of L-type cal-
cium channels in the incision+SD group was associated
with increased neuronal hyperexcitability in the DRG in
this group.

Blocking L-type HVA channels in the lumbar DRG
accelerates recovery from postsurgical pain in rats
subjected to SD

To examine if the increased activity of L-type channels in
the lumbar DRG is related to SD-induced postsurgical
pain, we examined the effect of nifedipine-mediated
blocking of these channels on the duration of postsurgical

pain. Nifedipine has a well-established inhibitory effect on
L-type channels and an antinociceptive effect on rats [49].
Thus, we administered intraperitoneal nifedipine or solv-
ent into incision+SD rats on days 8 and 9 after surgery
(Fig. 5a); this is the time when there was the greatest
difference between the incision only and incision+SD
groups (Fig. 1). As expected, incision+SD led to mechan-
ical allodynia and thermal hyperalgesia in both groups
prior to day 9. However, nifedipine administration signifi-
cantly reduced both types of postsurgical pain (Fig. 5b, c).
In particular, nifedipine led to a paw withdrawal threshold
that was about two-fold greater (Fig. 5b) and a 59.3% in-
crease in paw withdrawal latency (Fig. 5c). Experiments
with the contralateral (control) paws led to similar results
in both groups (Additional file 1: Figure S4a, b).

We then specifically blocked the L-type channels of
neurons in the DRG by performing in vivo microinjec-
tions of AAV2/5-H1-shRNA(Cacnalc)-CAG-EGFP into
the L4 and L5 DRG to knockdown L-type calcium
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Fig. 4 Perioperative SD increases the activity of HVA calcium channels and L-type calcium channels and excitability in large DRG neurons at 9
days after surgery. a Representative trace of HVA calcium channels in large DRG neurons before and after bath perfusion of 1 um nifedipine. b
Quantitation of the results in A (5 to 6 rats per group; 13 neurons from sham group, 15 neurons from sham+SD group, 15 neurons from incision
group, 19 neurons from incision+SD group). One-way ANOVA followed by a post hoc Tukey test: Fuaseline (3, 58) = 2.903, Fifedipine (3, 58) = 0461,
*p < 0.05 for the incision group vs. the incision+SD group. ¢ Effect of nifedipine on channel activity. Numbers of neurons and rats were the same
as in B. One-way ANOVA followed by a post hoc Tukey test: F (3, 58) = 3.223, *p < 0.05 for the incision group vs. the incision+SD group. d Resting
membrane potentials (left) and current threshold needed to evoke the first action potential (right) from large DRG neurons (5 to 6 rats per group,
sham group: n=21; sham+SD: n = 16; incision group: n = 18; incision+SD group: n = 21). One-way ANOVA followed by a post hoc Tukey test: Fayp
(3, 72)=1095; Fr (3, 72) =1044. **p < 0.01 for the incision group vs. the incision+SD group. e Representative traces of evoked action potentials
from DRG neurons. f Effect of current intensity on the number of evoked action potentials in large DRG neurons. Numbers of rats and neurons
were the same as in D. Two-way ANOVA followed by a post hoc Tukey test: Fy o0 (3, 1008) = 9637, *p < 0.05, **p < 0.01 for the incision group vs.

the incision+SD group at each stimulation intensity

channels; AAV2/5-H1-NC_shRNA-CAG-EGFP-WPRE-
pA was used as a negative control. We subjected rats to
SD and incision surgery 3 weeks after viral microinjection
to ensure efficient virus expression (Fig. 5d). Behavioral
tests indicated that rats which received AAV2/5-H1-
shRNA (Cacnalc)-CAG-EGFP had reduced hypersensitiv-
ity and significantly accelerated recovery from surgery
relative to the controls (Fig. 5e, f). Frozen sections of L4
and L5 microinjected DRG showed that these neurons
had abundant green fluorescence, indicating that the posi-
tive and control AAVs effectively infected the DRG neu-
rons (Fig. 5g). Furthermore, the expression of L-type
calcium channels was partially but significantly decreased
in rats injected with AAV2/5-H1-shRNA(Cacnalc)-CAG-
EGEFP, indicating that the virus specifically knocked down
the expression of these channels (Fig. 5h). Experiments
with the control paws led to similar results in both groups
(Additional file 1: Figure S4c, d). These results indicate
that L-type calcium channels in the lumbar DRG may be
required for the presence and prolongation of postsurgical
pain in rats subjected to perioperative SD.

Blocking L-type HVA channels in the lumbar DRG reduces
L-type calcium current and excitability of DRG neurons in
rats subjected to SD
We further investigated whether specific blockage of the
L-type calcium channels could affect the recovery of
hyperexcitability of DRG neurons of rats that received
incision+SD. Thus, we recorded EGFP-positive neurons
at day 9 after incision (Fig. 6a), with transfection with
control or shRNA virus as described above. The results
indicated the AAV2/5-Canalc-shRNA led to a signifi-
cant reduction of the HVA calcium current density in
large, medium, and small DRG neurons (18.6, 14.5, and
9.9 pA/pf, respectively; Fig. 6b, ¢; Additional file 1:
Figure S5a, c). Bath application of 1 uM nifedipine fur-
ther reduced the current in large, medium, and small
DRG neurons of this group (Fig. 6d; Additional file 1:
Figure S5b, d), thus indicating that virus microinjection
led to knockdown of L-type calcium channels.

Current clamp recording also indicated that shRNA
virus microinjection decreased the resting membrane
potential in large, medium, and small DRG neurons (4.7,



Li et al. Acta Neuropathologica Communications (2019) 7:217

Page 10 of 15

: Nifedipine or normal saline ip. 1
v onday8and9 !

Incisjon+sleep
2\

Baselne L L P ey ) deprivation y @
v Sleep deprivation(3Days) Sleep deprivation(3Days v +C“aqna1c-shR‘NA
_‘_ Thermal and mechanical pain test . B »
Incision

b ~ Mechanical pain c Thermal pain

D309 < Incision+sleep deprivation+NS > < Incision+sleep deprivation+NS

% @ Incision+sleep deprivation+Nifedipine ;’ 20 -9 Incision+sleep deprivation+Nifedipine

< o

D [ =4

Q . .

g 20 & Nifedipine/NS Incision+sleep

® g depriyation™g

g © 10 +control g

g0 2 "’

z =

z 3

F o

o 3 13 5 7 9 11 13 15 3 13 5 7 9 11 13 15

Days after incision Days after incision
d e e m e ————— , h Incision+sleep Incision+sleep
| DRG microinjection of AAV2/5-H1-shRNA(Cacnalc)-CAG- deprivation+ deprivation+
! EGFP or AAV2/5-H1-NC_ShRNA-CAG-EGFP-WPRE-pA | control Cacnafc-shRNA
Baseline . i L-type “ — - —
Thermal and mechanical pain test i
Incision TUDUIN e o e w————

e f

S Mechanical pain . L-type channel

3, Thermal pain - L

g 30 @ Incisionssleep deprivationscontrol B207 < Inisionssieep depration+conirl 15 Incision+sleep deprivation

2 -9 Incision+sleep deprivation+Cacnalc ShRNA 3 @ Incision+sleep deprivation+Cacnalc shRNA [} +Cacnalc shRNA

2 = * © incision+sleep deprivation

E Q >

£ 20 ®"° wx =10 +control

= = * )

*k

5 810 °

k=] o =

£ & s _

= 2, 14

& g

o a

-3 1 3 5
Days aﬂer incision

experiments were performed as described in Fig. 1, but with DRG injection

multiple comparisons test: F(1, 135) = 36.13 for mechanical pain (e),

Days after incision

Fig. 5 Blocking L-type HVA channels in the lumbar DRG accelerates recovery from postsurgical pain in rats subjected to perioperative SD. a

Behavior experiments were performed as described in Fig. 1, but with intraperitoneal injection of nifedipine or solvent (normal saline, NS) on 8 or
9 days after surgery. b, ¢ Paw withdrawal threshold and paw withdrawal latency were determined as described in Fig. 1 (10 rats per group) Two-
way ANOVA followed by post Sidak's multiple comparisons test: F (1, 180) =
*p < 0.05, **p < 0.01 for comparison of the incision+SD + nifedipine group vs. the incision+SD + NS group at each indicated time. d Behavior

CAG-EGFP-WPRE-pA at 21 days before behavior testing, and measurement of virus expression 3 days before paw surgery. e, f Paw withdrawal
threshold and paw withdrawal latency were determined as described in Fig. 1 (5 to 10 rats per group). Two-way ANOVA followed by post Sidak's
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Green fluorescence indicates expression of EGFP. h Expression of L-type channel protein in the L4-5 DRG of rats at 21 days after DRG injection of
AAV2/5 viruses on day 9 after surgery (4 rats per group). Two tailed unpaired t -test: t =4.388, **p < 0.01 for comparison of the two groups
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4.3, and 4.4 mV, respectively; Fig. 6f left, Additional file
1: Figure S5e) and increased the current threshold for
AP generation in all sizes of DRG neurons (276.5, 121.7,
and 93.68 pA, respectively; Fig. 6f right; Additional file 1:
Figure S5f). Moreover, shRNA virus microinjection in
large, medium, and small DRG neurons led to a de-
creased number of APs in large, medium, and small
DRG neurons (Fig. 6e, g; Additional file 1: Figure S5g,
h). Neither group had significant changes in membrane
input resistance and other action potential parameters,
including threshold, amplitude, overshoot, or afterhyper-
polarization amplitude (Additional file 1: Table S2).
These data indicate that specific knockdown of L-type
calcium channels accelerates the post-surgical recovery
of DRG neurons in rats subjected to incision+SD. L-type

calcium channels thus appear to play a major role in the
recovery from the perioperative SD.

Egr-1 may trigger Ca,1.2 gene transcription in lumbar
DRG of perioperative SD-exposed rats

Finally, we examined the cause of L-type channel upreg-
ulation in the lumbar DRG of perioperative SD-exposed
rats. A query of the AnimalTFDB database indicated that
Egr-1 might be a transcription factor of Ca,1.2. Thus, we
speculate that Egr-1 may have such a role, because it
regulates the activity of L-type channels and is also re-
lated to sleep [13, 18, 40, 46]. Our double immunofluor-
escence staining of L-type channels with Egr-1 showed
that Egr-1 and L-type channels were mostly in the same
neurons (Fig. 7a). Furthermore, the expression of Egr-1
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Fig. 6 Specific knockdown of L-type HVA channels in the lumbar DRG decreases the level and activity of HVA calcium channels and
hyperexcitability of large DRG neurons on day 9 after surgery in rats subjected to perioperative SD. a Neurons labelled with EGFP indicated
successful virus transfection. b Representative trace of total HVA calcium channels before and after bath perfusion of 1 um nifedipine in large
DRG neurons. ¢ Current density of total HVA calcium channels before and after bath perfusion of 1 um nifedipine (5-6 rats per group; 17 neurons
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comparison of the two groups. d Effect of nifedipine on percentage change in current density. Numbers of neurons and rats were the same as in
C. Unpaired Student's t-test: t = 2497, *p < 0.05 for comparison of the two groups. e Representative traces of evoked action potentials from DRG
neurons. f Resting membrane potentials (RMP, left) and current threshold (CT, right) of the first action potential generation in large DRG neurons
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correlated with changes in L-type channels (Fig. 7b, c),
and an in vitro luciferase assay confirmed that Egr-1
overexpression significantly increased the activity of the
Cacnalc(Ca,l.2) gene promoter (Fig. 7d). These data
suggest that Egr-1 regulates L-type channels and plays a
role in the SD-mediated delay of recovery from postop-
erative pain. Future studies are needed to support or
refute these inferences.

Discussion

This study of male Sprague Dawley rats demonstrated
that short-term SD before and after surgery delayed
recovery from postsurgical pain. In addition, our electro-
physiological and molecular biology experiments indi-
cated that prolonged postsurgical pain duration was
related to the increased expression and activity of L-type
calcium channels in the lumbar DRG, and that blocking
these channels accelerated postsurgical recovery from

pain. These results suggest that the prolonged duration
of postsurgical pain that is mediated by perioperative SD
depends on the expression and activity of L-type calcium
channels.

L-type channels, one of the four subtypes of HVA
channels, are encoded by the Ca,l.1-1.4 genes. Mam-
mals have almost no expression of Ca,l.1 and Ca,1.4 in
their nervous systems, but Ca,1.2 and Ca,1.3 are
expressed in most excitable cells, including neurons [28].
These proteins are present in the cell body and also in
axons [9, 36], consistent with our staining results. Also,
mammals with Ca,1.3 knockout have a normal pain
phenotype [10]. These previous results led us to focus
on the L-type channels encoded by Ca,l.2. As L-type
channels are widely distributed in cells that participate
in the pain pathway, previous studies have also examined
the role of these channels [1, 38, 41]. Increased L-type
channels in spinal cord lamina II mediate hyperalgesia in
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Fig. 7 Reporter experiments indicate that Egr-1 may trigger Cacnalc transcription in lumbar DRG of rats that received perioperative SD. a
Representative fluorescence images showing that L-type channel (Cacnalc) is co-expressed mostly with Egr-1. b Western blotting of L-type
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rats in a chronic constriction injury (CCI) model [1].
Lack expression of L-type channels in the anterior cin-
gulate cortex of mice correlates with pain relief [23].
The L-type channel mRNA in the cerebral cortex and
thalamus is up-regulated in the presence of a migraine
aura [8]. Moreover, administration of the L-type channel
blocker nifedipine can enhance anti-nociceptive effect of
opioids, which were microinjected into the midbrain
ventrolateral periaqueductal gray (VPAG). This suggests
that the activity of the L-type channels of PAG may play
an important role in the development of pain [21]. In
addition, L-type channels are also associated with psycho-
logical factors, such as stress, anxiety, and depression [27].
These previous studies thus indicate that L-type channels
have major roles in pain occurrence and development.
Our current work demonstrated that L-type channels
in the DRG contributed to the SD-induced prolongation
of postsurgical pain. Our western blotting and electro-
physiology data indicated increased expression and activ-
ity of L-type channels of rats that received incision+SD,
and our immunofluorescent staining indicated that in-
creased L-type channels were mainly located in medium
and large neurons, but they had a lower level in small
neurons. Our electrophysiological data also confirm
these results. It should be noticed that although the
altered L-type channels mostly located in medium and

large neurons, which mainly contributed to the mechan-
ical pain, the CGRP+ small neurons still have a propor-
tion of co-labeling with L-type channels. According to
previous reports, CGRP+ neurons mainly control thermal
pain [6, 35, 54]. This is consistent with our behavioral data
that the thermal pain could be partially reversed. More-
over, to rule out the effects of L-type channels at other
anatomical sites in the pain pathway, we performed DRG
microinjections with a recombinant AAV to specifically
knockdown the L-type channels to confirm our interpret-
ation. These findings extend the limited literature regard-
ing the effect and mechanism of SD before or/and after
surgery on recovery from postsurgical pain.

With the continuous improvement of people’s living
standards, the quality of sleep has become a topic of in-
creasing concern. Especially for surgical patients, sleep
disorders often occur before and after surgery. Many
studies have shown that sleep disorders and pain are
closely related. In particular, sleep disorders can cause
many changes in endogenous regulatory factors, which
in turn can cause hyperalgesia. For example, insufficient
sleep leads to increased migration of B cells into the
brain compartment [24], activation of complement [47],
and increased levels of IL-1 [55], thus leading to the
onset and aggravation of neuroinflammation, a key fac-
tors underlying pain. In addition, stress caused by sleep
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disorders can cause dysfunction of the HPA axis, causing
cortisol dysfunction to trigger, exacerbate, or prolong
pain, impair healing, and contribute to chronic disability
[20]. However, a common problem with these regulators
is that specific regulation is difficult; for example, it is
difficult to inhibit inflammation and regulate plasma
cortisol levels to achieve pain relief. Moreover, most pre-
vious studies have focused on the relationship between
sleep and pain, and few studies have examined postsur-
gical pain.

Our current study focused on the L-type calcium
channel, and found the endogenous factor Egr-1 might
have an important in the regulation of these channels in
DRG. This suggests that specific regulation of the activ-
ity of Egr-1 and L-type channels has potential for the
therapeutic management of peripheral postsurgical pain.
Most previous studies in this field have examined the ef-
fects of SD on pain in naive animals. These studies dem-
onstrated that long-term consecutive or intermittent SD
caused abnormal nociceptive sensitivity at the basal level
[11, 19]. However, it is still unclear whether short-term
SD before and after surgery actually affects postsurgical
pain. We established an animal model of perioperative
SD, in which rats with SD had slightly greater pain sensi-
tivity than control rats (no SD) from 1 to 5days after
surgery, although these differences were not statistically
significant. This may be due to factors such as the strain
of the rat, feeding conditions, and other details of the ex-
perimental model. This model thus simulates a common
clinical situation, because most surgical patients have
short-term SD before and after surgery, and this short-
term SD does not cause changes in pain perception.

The relationship between central nervous system activ-
ity and delayed postoperative pain recovery is currently
unclear. It is possible, although uncertain, whether pre-
and post-surgical SD initially affects the central nervous
system (CNS) and then the peripheral nervous system
(PNS), eventually leading to a delay of postsurgical recov-
ery. There is much evidence that SD causes a series of
changes in the CNS. For example, mice subjected to sleep
disturbance produce more Ly-6C"" monocytes and less
hypocretin (a neuropeptide that promotes wakefulness) in
the lateral hypothalamus [34]. More importantly, long-
term lack of sleep in rats can lead to increased neural
activity in the periaqueductal grey (PAG) and the nucleus
accumbens (NAc), which are closely related to perception
of pain [42]. Studies of animal models of chronic pain
have identified some molecular mechanisms and neuro-
biological activities that are associated with the transition
from acute pain to chronic pain. The most studied de-
scending pain pathway projects from the midbrain peria-
queductal grey (PAG) to the rostral ventromedial medulla
(RVM). Electrical stimulation of the PAG can block the
spinal cord’s response to noxious stimuli, and stimulation
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of the RVM can inhibit and/or promote pain signaling
[57]. In addition, insufficient sleep can cause release of
glucocorticoids from the adrenal gland [2] while endogen-
ous glucocorticoids can interact with Egr-1 [7]. Therefore,
we speculate that changes in glucocorticoid levels after
short-term SD may also be associated with persistent
postsurgical pain. Overall, we believe that a regulatory
mechanism first affects the CNS and then the PNS, so that
short-term SD before and after surgery delays postsurgical
recovery from pain. This regulatory mechanism, which
may be related to neuroimmunity, neural circuits, and/or
endocrine systems, is a topic of our future studies.

A limitation of the present study is that we did not
examine the effect of overexpression of L-type channels in
DRG to verify that recovery from postsurgical pain is
delayed upregulation and activation of these channels. To
the best of our knowledge, upregulation of L-type chan-
nels leads to hyperalgesia. For example, in one animal
model of chronic pain, the chronic constriction injury
(CCI) model, up-regulation of L-type channels markedly
decreases the pain threshold in rats. Moreover, use of L-
type calcium channel blockers reduces the frequency of
spontaneous excitatory postsynaptic currents, thereby pro-
viding relief from pain [1]. Thus, if we overexpressed the
L-type channels in the DRG, the rats would likely remain
in a constant state of hyperalgesia, and this could be diffi-
cult to distinguish from postsurgical pain. Another limita-
tion is that we did not perform genetic knock-out of
Ca,l1.2 to confirm our results. This was because of the
technical difficulties in performing knock-out of the Cac-
nalc gene in rats. Instead, we performed lumbar DRG
microinjection of Cacnalc-shRNA to specifically eliminate
Ca,1.2 in L4/5 DRG; an advantage of our approach is that
it was specific to the lumbar region. The results of our
shRNA microinjection experiments confirmed that L-type
calcium channels function in the prolongation of postsur-
gical pain.

Conclusions

Our study confirmed that short-term sleep deprivation be-
fore and after surgery prolonged the postsurgical recovery
from pain in rats, and that this response is related to in-
creased expression and activity of L-type channels in the
lumbar DRG. Partially specific blockage of the L-type chan-
nels in the lumbar DRG accelerates the postsurgical recov-
ery from pain. Our findings may suggest that changes in
the L-type channels may be related to Egr-1. Overall, our
findings may help to explain why acute postsurgical pain
leads to persistent postsurgical pain, and how to predict
and prevent this development. Use of an alternative method
of post-surgical pain management might help to re-
duce the social burden of the opioid crisis and im-
prove patient quality of life after surgery.
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