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Abstract

TAR-DNA binding protein 43 (TDP-43) proteinopathy is a common brain pathology in elderly persons, but much
remains to be learned about this high-morbidity condition. Published stage-based systems for operationalizing
disease severity rely on the involvement (presence/absence) of pathology in specific anatomic regions. To examine
the comorbidities associated with TDP-43 pathology in aged individuals, we studied data from the National
Alzheimer’s Coordinating Center (NACC) Neuropathology Data Set. Data were analyzed from 929 included
subjects with available TDP-43 pathology information, sourced from 27 different American Alzheimer’s Disease
Centers (ADCs). Cases with relatively unusual diseases including autopsy-proven frontotemporal lobar degeneration
(FTLD-TDP or FTLD-tau) were excluded from the study. Our data provide new information about pathologic features
that are and are not associated with TDP-43 pathologies in different brain areas—spinal cord, amygdala, hippocampus,
entorhinal cortex/inferior temporal cortex, and frontal neocortex. Different research centers used cite-specific methods
including different TDP-43 antibodies. TDP-43 pathology in at least one brain region was common (31.4%) but the
pathology was rarely observed in spinal cord (1.8%) and also unusual in frontal cortex (5.3%). As expected, TDP-43
pathology was positively associated with comorbid hippocampal sclerosis pathology and with severe AD pathology.
TDP-43 pathology was also associated with comorbid moderate-to-severe brain arteriolosclerosis. The association
between TDP-43 pathology and brain arteriolosclerosis appears relatively specific since there was no detected
association between TDP-43 pathology and microinfarcts, lacunar infarcts, large infarcts, cerebral amyloid angiopathy
(CAA), or circle of Willis atherosclerosis. Together, these observations provide support for the hypothesis that many
aged brains are affected by a TDP-43 proteinopathy that is more likely to be seen in brains with AD pathology,
arteriolosclerosis pathology, or both.
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Introduction
There is an evolving appreciation of a common brain
disease with TAR-DNA binding protein 43 (TDP-43)
proteinopathy that mimics Alzheimer’s disease (AD)
clinically [5, 25, 26, 34, 39, 50] and affects 10–25% of
persons aged 85 or older [5, 19, 21, 33, 50]. The defining
characteristics of this disease are recognized by neuro-
pathologic observations: TDP-43 pathology, often with
comorbid neuronal loss and astrocytosis pathology in
the hippocampus [1, 33], the latter two features collect-
ively termed hippocampal sclerosis (HS). The literature
that pertains to this disease was initially focused on HS
pathology (TDP-43 pathology was discovered as a dis-
ease marker in 2006 [38]), but it is now recognized that
TDP-43 pathology is the most sensitive and specific
marker of the disease. For example, cases with HS path-
ology due to acute anoxia is immunonegative for
TDP-43 and is considered a fundamentally different dis-
ease [2, 20, 33]. Importantly, the presence of TDP-43
proteinopathy, with or without comorbid HS pathology,
is independently associated with cognitive impairment
[5, 26, 29, 31].
“TDP-43 pathology” lacks a universally applied specific

connotation, but refers to phosphorylated TDP-43 de-
posits in cytoplasmic (where it may appear like speckles,
skeins, or tangles), intranuclear, perivascular, and/or
neurite-like structures. TDP-43 pathology may also
manifest as a decrease in the normal (non-phosphorylated)
TDP-43 in the nucleus [4], or within twig-like deposits of
phosphorylated TDP-43 detected immunohistochemically
in the subpial or subependymal regions [11, 18, 30]. In prior
published papers that have studied the spectrum of
TDP-43 pathologies in aged brains (often with comorbid
AD pathology), the severity of TDP-43 proteinopathy has
been mostly graded according to stage-based classification
systems where the presence of any TDP-43 pathology in a
given region defines a particular stage [15, 17, 27, 29, 44].
For example, the amygdala seems to be affected very early
so this is the first stage. By contrast, in cases with extensive
pathology, the frontal neocortex may be affected and if this
region has any detectable TDP-43 pathology, that is indica-
tive of a late disease stage. Unfortunately, there currently is
no consensus as to a specific antibody or combination of
antibodies recommended for detecting TDP-43 proteinopa-
thy. Further, the stage-based classification systems for com-
mon age-related disease differ from TDP-43 pathologic
staging systems that were developed for amyotrophic lateral
sclerosis (ALS) and/or frontotemporal lobar degeneration
(FTLD)-TDP [6, 10, 45].
Prior published findings suggest that vascular factors

may cause or exacerbate the disease process that mani-
fests neuropathologically as TDP-43 (with or without HS
pathology) in the aged brain [8, 41, 47, 49]. In prior
work, arteriolosclerosis – dysmorphic changes in small

arterioles – was preferentially associated with this dis-
ease [36]. Further, arteriolosclerosis was observed in re-
gions outside of the hippocampal formation in cases
with comorbid HS pathology, indicating a “whole-brain
disease” rather than a disease process isolated to the
medial temporal lobe [37]. However, the precise under-
lying mechanisms are not understood, and more work is
required to determine how the clinical and pathologic
endpoints are associated with each other.
The AD Centers (ADCs) program has constituted a

critical resource for research on AD and related demen-
tias in the U.S. This network derived from a National
Institutes of Health (NIH)-funded initiative that started
in 1984 and has included more than 30 different ADCs
geographically dispersed across the U.S. Each ADC fol-
lows a longitudinal cohort of generally elderly individ-
uals reflecting a broad spectrum of clinical diseases and
pathologic manifestations. The National Alzheimer’s
Coordinating Center (NACC) oversees data collection
by the ADCs. For research subjects that died and came
to autopsy, a standardized form was created by NACC
to describe the neuropathology in a systematic man-
ner, and for correlation with clinical, radiographic, gen-
etic, and biochemical parameters in the same persons.
The latest Neuropathology (NP) Form was updated in
2014, and is referred to as version 10 (v10). The NACC
NP Form v10 incorporated detailed neuropathological
data including Thal phase for Aβ plaques [43], relatively
newly categorized FTLD neuropathologic changes [23],
ALS/motor neuron disease (MND), HS of the CA1 and/
or subiculum, and distributions of TDP-43 immunoreac-
tive inclusions in five brain regions. The summary data
for the updated v10 form was recently described [3].
Here we focused on the clinical and pathologic corre-
lates of TDP-43 pathology in the NACC NP v10 data set
among individuals lacking unusual conditions such as
FTLD.

Materials and methods
Participants
For the current study, data (before exclusion criteria
were applied) derived from 30 different ADCs with aut-
opsies reported using the NACC NP v10 form, which
started in 2014, through the data freeze of July 11th
2018. Autopsies were performed within each of the con-
tributory ADCs. The database comprises a standardized
set of data collected based on the NACC NP v10 data
collection form (https://www.alz.washington.edu/NON
MEMBER/NP/rdd_np.pdf). Inclusion criteria for this
study were neuropathology data available through the
NACC NP Form v10, age at death ≥65 years, and
non-missing data on TDP-43 referent to at least one of
the five brain regions of interest (see below). Exclusion
criteria were the presence of at least one of 19 rare
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neurological diseases (see Additional file 1: Table S1). Re-
search using the NACC database was approved by the
University of Washington Institutional Review Board. In-
formed consent was obtained from all participants at the
individual ADCs. The NACC data were de-identified.

Measurements
Neuropathology data
TDP-43-immunoreactive inclusions were evaluated in
five brain regions: spinal cord, amygdala, hippocampus,
entorhinal cortex/inferior temporal cortex (EC/inferior
TCTX), and frontal neocortex, with the response cat-
egories “no”, “yes”, “not assessed”, and “missing/un-
known”. Because data on TDP-43 pathology in spinal
cord contained more “not assessed’” or “missing/un-
known” values (Additional file 1: Table S2), we consid-
ered TDP-43 inclusions in four brain regions (all except
spinal cord) in the subsequent multivariable regression
analyses. HS was determined by the variable of “hippo-
campal sclerosis of CA1 and/or subiculum” ("unilateral",
"bilateral", or "present but laterality not assessed"). Data
was obtained from all 30 contributory ADCs on whether
the antibody used was phospho-specific or
non-phospho-specific. A survey was sent to all the ADC
Neuropathology Core leaders as to what specific anti-
bodies were used. The phospho-specific antibodies were
mostly 1D3 (EMD Millipore), followed by 11–9 (Cosmo
Bio) and the polyclonal Cosmo Bio antibody
(TIP-PTD-P02). The non-phospho-specific antibodies
were almost all Proteintech 10,782–2-AP (rabbit poly-
clonal), with one center reporting to use Sigma C-term
(T1580). Examples of results from the two most fre-
quently used antibodies are shown in Fig. 1. For
AD-related pathology, data were included on density of
diffuse plaques ("none", "sparse", "moderate", or "fre-
quent"), density of neocortical neuritic plaques ("none",
"sparse", "moderate", or "frequent"), Thal phase for Aβ
distribution (Thal Aβ phases 0 to 5), Braak stage for
neurofibrillary degeneration (Braak NFT stages 0 to VI).
For cerebrovascular pathology, data were available on
atherosclerosis severity in the circle of Willis ("none",
"mild", "moderate", or severe), cerebral amyloid angiopa-
thy ("none", "mild", "moderate", or "severe"), infarct and
lacunes (no or yes), microinfarcts (no or yes), hemor-
rhages and microbleeds (no or yes), and arteriolosclerosis
("none", "mild", "moderate", or "severe"; see Fig. 2). The de-
tailed response categories of these variables and the di-
chotomized scoring are shown in Additional file 1: Table
S3.

Statistical analysis
Descriptive statistical analyses were performed for sex,
age at death (both available in the NACC NP Form v10),
and years of education, apolipoprotein E (APOE) genotype

(no ε4 alleles = 0, one ε4 allele = 1, or pair of ε4 alleles = 2),
and other health conditions at the last clinical visit (via
self-report) including diabetes, hypertension, hypercholes-
terolemia, and thyroid disease (all from the NACC
Uniform Data Set (UDS)).
Comparisons of characteristics of individuals with and

without the TDP-43 pathology were performed using
t-tests for continuous variables and Pearson’s chi-square
test for categorical variables. Multivariable logistic
regression was used to examine the associations of
TDP-43 pathology with AD and cerebrovascular disease
pathologies. We controlled for sex, age at death, APOE
genotype, and the type of TDP-43 antibody in the ana-
lyses for AD pathologies, and additionally for Braak NFT
stage and Thal Aβ phase in the analyses for cerebrovas-
cular disease pathologies. All statistical analyses were
carried out with R version 3.4.4 [40]. Statistical signifi-
cance was set at 0.05.

Results
Subjects who were assessed by ADC neuropathologists
using the NACC NP Form v10 and died at age 65 years
or older (n = 1968) were extracted from the NACC NP
dataset. We excluded 476 subjects who had at least one
rare neurological disease listed in Additional file 1:
Table S1, and we also excluded 562 subjects who had
no TDP-43 pathology (i.e., missing) data reported in
all five brain regions and 1 subject with “other” re-
ported as the TDP-43 antibody used (Fig. 3). Follow-
ing exclusions, a total of 929 subjects were included
in this study. For these subjects, TDP-43 pathology
data were sourced from 27 different ADCs (range of
the number of subjects with any TDP-43 pathology in
this study: 1–123 cases per center), including ADCs
that only recently began to perform autopsies for inclusion
in this dataset. The mean number of the subjects analyzed
per ADC was 34 (median 33). Overall, 67.3% of the sub-
jects were stained with phospho-specific antibodies; the
rest with non-phospho-specfic antibodies. Among the 20
different ADCs that submitted 10 or more subjects with
relevant TDP-43 immunohistochemistry (IHC) data to
NACC, 13 ADCs used all or mostly phospho-specific
antibodies for TDP-43 IHC, whereas 7 ADCs used all
or mostly non-phospho-specific TDP-43 antibodies
(Additional file 1: Table S4).
Table 1 shows the characteristics of the study subjects

in total and stratified by TDP-43 pathology absent or
present in at least one brain region. In all included sub-
jects, the mean (standard deviation (SD)) age at death
was 83.1 (8.7), 51.8% were males, and the mean of years
of education was 15.5 (3.1). The subjects with TDP-43
pathology in at least one region died older (p-value <
0.001). There were no statistically significant differences

Katsumata et al. Acta Neuropathologica Communications           (2018) 6:142 Page 3 of 11



in sex, APOE genotype, educational attainment, and
other health conditions between subjects with and with-
out TDP-43 pathology.
We compared TDP-43 pathology frequencies between

HS present and absent in each brain region (Fig. 4). HS
pathology was strongly associated with TDP-43

pathology in each brain region except spinal cord. Table
2 shows the associations between TDP-43 and
AD-related pathologies in each brain region. AD path-
ologies were strongly and positively associated with
TDP-43 pathology in amygdala, hippocampus, and EC/
inferior TCTX, although the association between

Fig. 1 Examples of TDP-43 immunohistochemistry performed with the most commonly used antibodies against non-phosphorylated TDP-43 (a,b:
Proteintech 10,782–2-AP), and phosphorylated TDP-43 (c,d: EMD Millipore clone 1D3) in the Alzheimer’s Disease Centers (ADCs) that contribute to
the NACC neuropathology dataset. These sections are counterstained with hematoxylin (blue-stained nuclei). Shown are portions of dentate granule
cells from the hippocampi of cases without TDP-43 pathology (a,c) which are contrasted against cases with detectable TDP-43 pathology (b,d). In normal
brains, non-phosphorylated TDP-43 protein is seen in cell nuclei (a). In cases with TDP-43 pathology, the non-phosphorylated TDP-43 protein can be seen
in some cells’ cytoplasm instead of the cell nucleus (b). The antibody against phosphorylated TDP-43 protein shows no brown reaction product in normal
brain (c), with only the hematoxylin (blue) counterstain evident. By contrast, there are clearly intracellular aggregates (brown-colored chromagen) of
phosphorylated TDP-43 protein in panel (d). Scale bars = 30 μm
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dichotomized diffuse plaques (moderate/frequent vs. no/
sparse) and TDP-43 pathology in hippocampus was not
statistically significant. Among cerebrovascular disease
pathologies, there were no significant associations (or
even consistent trends) between TDP-43 pathology in
any brain regions with atherosclerosis of the circle of

Willis, cerebral amyloid angiopathy, infarct and lacunes,
microinfarcts, hemorrhages or microbleeds.
By contrast, arteriolosclerosis pathology was associated

with TDP-43 pathology in amygdala and EC/inferior
TCTX when adjusted for sex, age at death, APOE geno-
type, and the type of TDP-43 antibody. The significant

Fig. 2 Arteriolosclerosis pathology in the aged human brain. The present study used a 0–3 scale of severity for arteriolosclerosis pathology, which
is illustrated in panels (a-d). These photomicrographs depict vascular profiles in sections of amygdala or peri-amygdaloid regions from aged
individuals at various stages of arteriolosclerosis pathology. Panel (a) shows an arteriole (yellow arrow) next to a presumed venule (red
arrow), which have histopathologic features within normal limits in aging, including some eosinophilic material in the vessel wall and
Virchow-Robin space [*] that may be partly an artifact of fixation and embedding. Panel (b) shows an arteriole with thicker vessel wall
and intact cellular constituents, but with eosinophilic material (green arrow) in the adventitia. Panel (c) depicts arteriolosclerosis of moderate
severity with some “onion-skinning” of the vessel wall and extravasation of macrophages (blue arrow) in the Virchow-Robin space. Panel (d) shows
severe arteriolosclerosis in two vessels that have extensive proliferation of eosinophilic material in the vessel wall, attenuation of normal arteriolar
cellular contents, apparent partial occlusion of the vessel itself, and the vessels are surrounded by corpora amylacea (yellow arrow) indicating localized
brain injury. The pathologic appearance of brain arteriolosclerosis is heterogeneous, particularly in the area of the brain (amygdala; panels e,f) that is at
high risk for incipient TDP-43 pathology. In panel (e), one can see pathologically affected blood vessel(s) with surrounding leukocytes and eosinophilic
and small slit-like profiles that appear to be cholesterol clefts in the vessel wall. In panel (f), two vessels are seen (arrows) with largely attenuated
cellular contents in the vessel walls. Scale bars = 150 um (a,d); 100 um (b,c), 300 um (e), 250 um (f)
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association in EC/inferior TCTX remained after
AD-pathologies were added as covariates in the model
(Table 3). To examine whether APOE genotype differ-
ence affects the association between TDP-43 pathology
and arteriolosclerosis pathology, we further performed
logistic regression analyses stratified by APOE genotype.
As shown in Table 4, the associations of TDP-43 path-
ology in amygdala and EC/inferior TCTX with arteriolo-
sclerosis pathology were observed in the subjects with
APOE −/− or −/ε4 genotype. The significant association
of TDP-43 in EC/inferior TCTX remained after includ-
ing Thal Aβ phase and Braak NFT stage as additional
covariates in the model. However, in persons with APOE
ε4/ε4 (n = 77), TDP-43 pathologies in amygdala,

hippocampus, and frontal neocortex were not associated
with arteriolosclerosis pathology.

Discussion
Here we present data focusing on TDP-43 pathology in
the aged human brain, using a large sample with autopsy
confirmation, sourced from multiple high-quality re-
search centers. Our data provide new information about
comorbidities that are and are not apparently associated
with TDP-43 pathologies in different brain regions.
TDP-43 pathology is strongly associated with advanced
AD and brain arteriolosclerosis pathologies.
There are some potential pitfalls in our study sample,

as we have discussed previously [3]. Contributory ADC

Fig. 3 Included study subjects for the present study. NACC = National Alzheimer’s Coordinating Center; NP = Neuropathology
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Table 1 Characteristics of included study subjects

Characteristic All included subjects
(n = 929)

No TDP-43 pathology
(n = 637)

TDP-43 pathology at
least one regiona

(n = 292)

P-valueb Excluded subjectsc

(n = 563)
P-valued

Age at death, mean ± SD 83.1 ± 8.7 82.4 ± 8.8 84.8 ± 8.5 < 0.001 84.4 ± 9.0 0.012

Gender, n (%)

Male 481 (51.8) 341 (53.5) 140 (47.9) 0.13 287 (51.0) 0.81

Female 448 (48.2) 296 (46.5) 152 (52.1) 276 (49.0)

Education (years), mean ± SD 15.5 ± 3.1 15.5 ± 3.1 15.5 ± 3.2 0.95 15.2 ± 3.3 0.10

APOE, n (%)

−/− 370 (49.0) 275 (51.6) 95 (42.8) 0.063 229 (52.8) 0.43

−/ε4 309 (40.9) 210 (39.4) 99 (44.6) 162 (37.3)

ε4/ε4 76 (10.1) 48 (9.0) 28 (12.6) 43 (9.9)

Diabetes, n (%)

Recent/remote 91 (15.5) 66 (15.6) 25 (15.2) 1 56 (13.2) 0.35

Absent 495 (84.5) 356 (84.4) 139 (84.8) 368 (86.8)

Hypertension, n (%)

Recent/remote 375 (64.3) 270 (64.1) 151 (64.8) 0.95 281 (67.9) 0.27

Absent 208 (35.7) 105 (35.9) 57 (35.2) 133 (32.1)

Hypercholesterolemia, n (%)

Recent/remote 411 (63.7) 300 (63.6) 111 (64.2) 0.96 297 (66.4) 0.39

Absent 234 (36.3) 172 (36.4) 62 (35.8) 150 (33.6)

Thyroid disease present, n (%)

Yes 70 (24.4) 48 (24.5) 22 (24.2) 1 31 (22.5) 0.75

No 217 (75.6) 148 (75.5) 69 (75.8) 107 (77.5)
aTDP-43 pathology at least one of the five regions: spinal cord, amygdala, hippocampus, EC/inferior TCTX, and frontal neocortex
bThe p-values were computed for the associations with TDP-43 inclusions statuses
cSubjects excluded due to missing TDP-43 data in all regions or other TDP-43 antibody used
dThe p-values were computed for the associations between all included subjects and the subjects with no data on TDP-43 inclusions
SD standard deviation
Bold p-value represents the statistical significance

Fig. 4 Comparisons in percent of TDP-43 pathology in each brain region between hippocampal sclerosis present and absent. Note that there is a
strong association between hippocampal sclerosis (HS) pathology and TDP-43 pathology. However, only a minority of cases, with or without
comorbid HS pathology, have TDP-43 pathology detected in frontal cortex or spinal cord. a n = 4 had missing data on hippocampal sclerosis (HS)
pathology. * p < 0.001. EC = entorhinal cortex; TCTX = temporal cortex
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cohorts tend to be enriched for rare, genetic, early-onset,
and “pure” subtypes of diseases, including AD and many
other degenerative conditions. In particular, this sample
may be biased toward individuals with a clinical syn-
drome that mimics AD. The NACC-contributory ADCs
also tend to recruit (and achieve autopsy consent for) Cauca-
sian/white individuals of relatively high socioeconomic status;
thus, there are relatively few non-Caucasian individuals or
those lacking formal education. Further, ADCs apply exclu-
sion criteria that can limit the number of autopsied partici-
pants with mental illness, substance abuse, physical disability,
or other prevalent conditions. There also are challenges in
data interpretation related to the lack of methodologic
standardization between the ADCs in terms of TDP-43 IHC
methods. This problem will probably plague multi-center
studies for some time since our study confirms that
different state-of-the-art research centers use different
reagents to operationalize TDP-43 proteinopathy (~ 2/
3rd of ADCs use phospho-specific TDP-43 antibodies,
whereas the remaining ADCs use antibodies that
recognize non-phosphorylated epitopes). We also
recognize the current lack of knowledge about

underlying mechanisms is a limitation, and our study
does not describe how the brain arteriolosclerosis
pathology spatially relates to the TDP-43
proteinopathy.
Despite the challenges and potential pitfalls, there also

are considerable strengths related to this use of the
NACC NP data set. We note that despite the abovemen-
tioned sources of data variability, our study found

Table 2 Associations between TDP-43 and Alzheimer’s disease
pathologies using binary logistic regression (n = 929)

Region OR (95% CI)a P-value

Diffuse plaques (moderate + frequent vs. no + sparse)

Amygdala 3.34 (1.47–8.99) 0.0079

Hippocampus 1.45 (0.81–2.71) 0.23

EC/inferior TCTX 2.61 (1.20–6.53) 0.025

Frontal neocortex 2.30 (0.63–14.93) 0.28

Neuritic plaques (moderate + frequent vs. no + sparse)

Amygdala 2.84 (1.57–5.44) 9.1 × 10− 4

Hippocampus 2.56 (1.58–4.29) 2.2 × 10− 4

EC/inferior TCTX 4.04 (2.11–8.43) 6.6 × 10− 5

Frontal neocortex 1.88 (0.71–5.92) 0.23

Thal Aβ phase (phase 4 + 5 vs. phase 0 to 3)

Amygdala 2.78 (1.56–5.21) 8.5 × 10− 4

Hippocampus 2.34 (1.44–3.93) 8.5 × 10− 4

EC/inferior TCTX 2.52 (1.41–4.77) 0.0029

Frontal neocortex 1.42 (0.53–4.50) 0.51

Braak NFT stage (stage V + VI vs. stage 0 to IV)

Amygdala 3.38 (1.99–5.95) 1.3 × 10− 5

Hippocampus 2.90 (1.86–4.63) 4.2 × 10− 6

EC/inferior TCTX 3.15 (1.86–5.53) 3.4 × 10− 5

Frontal neocortex 1.22 (0.52–3.06) 0.66
aOdds ratios were adjusted for sex, age at death, APOE genotype, and the type
of TDP-43 antibody
OR odds ratio, CI confidence interval, EC entorhinal cortex, TCTX temporal cortex,
NFT neurofibrillary tangle
Bold p-value represents the statistical significance

Table 3 Associations between TDP-43 and cerebrovascular
disease pathologies using binary logistic regression (n = 929)

Region Model 1a Model 2b

OR (95% CI) P-value OR (95% CI) P-value

Atherosclerosis of the circle of Willis (moderate + severe vs. none + mild)

Amygdala 0.96 (0.63–1.47) 0.87 0.90 (0.58–1.39) 0.63

Hippocampus 1.07 (0.74–1.55) 0.70 0.98 (0.67–1.43) 0.93

EC/inferior TCTX 1.16 (0.77–1.75) 0.48 1.07 (0.70–1.62) 0.77

Frontal neocortex 1.03 (0.47–2.27) 0.93 1.00 (0.45–2.21) 0.99

Cerebral amyloid angiopathy (moderate + severe vs. none + mild)

Amygdala 0.82 (0.52–1.28) 0.38 0.66 (0.41–1.04) 0.077

Hippocampus 0.89 (0.59–1.32) 0.57 0.71 (0.47–1.07) 0.10

EC/inferior TCTX 0.99 (0.64–1.52) 0.97 0.79 (0.50–1.22) 0.29

Frontal neocortex 1.16 (0.49–2.60) 0.73 1.11 (0.46–2.56) 0.81

Infarct and lacunes (yes vs. no)

Amygdala 0.77 (0.43–1.32) 0.35 0.84 (0.47–1.45) 0.54

Hippocampus 0.76 (0.45–1.23) 0.28 0.81 (0.48–1.33) 0.42

EC/inferior TCTX 0.79 (0.45–1.32) 0.38 0.87 (0.49–1.48) 0.61

Frontal neocortex 1.64 (0.63–3.82) 0.27 1.66 (0.63–3.89) 0.26

Microinfarcts (yes vs. no)

Amygdala 1.15 (0.73–1.79) 0.55 1.08 (0.68–1.70) 0.74

Hippocampus 1.14 (0.76–1.70) 0.51 1.14 (0.75–1.70) 0.54

EC/inferior TCTX 1.25 (0.80–1.94) 0.31 1.21 (0.77–1.88) 0.41

Frontal neocortex 1.76 (0.78–3.84) 0.16 1.77 (0.78–3.86) 0.16

Hemorrhages and microbleeds (yes vs. no)

Amygdala 0.65 (0.26–1.44) 0.32 0.65 (0.25–1.47) 0.33

Hippocampus 0.71 (0.30–1.50) 0.40 0.69 (0.29–1.46) 0.36

EC/inferior TCTX 0.57 (0.21–1.29) 0.21 0.55 (0.20–1.26) 0.19

Frontal neocortex 0.45 (0.02–2.34) 0.45 0.44 (0.02–2.32) 0.44

Arteriolosclerosis (moderate + severe vs. none + mild)

Amygdala 1.56 (1.03–2.37) 0.038 1.38 (0.90–2.13) 0.14

Hippocampus 1.31 (0.92–1.89) 0.14 1.16 (0.80–1.69) 0.42

EC/inferior TCTX 1.77 (1.17–2.72) 0.0078 1.61 (1.05–2.49) 0.029

Frontal neocortex 0.97 (0.45–2.13) 0.95 0.93 (0.43–2.06) 0.86
aOdds ratios were adjusted for sex, age at death, APOE genotype, and the type
of TDP-43 antibody used
bThal Aβ phase and Braak NFT stage were included as additional covariates in
model 2
OR odds ratio, CI confidence interval, EC entorhinal cortex, TCTX temporal cortex
Bold p-value represents the statistical significance
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evidence of strong associations between TDP-43 protei-
nopathy and other factors (age, HS pathology, AD path-
ology, and arteriolosclerosis pathology). These data were
collected from individuals who died and came to autopsy
over the past 4 years (NACC NP Form v10), providing
both fresh data and relatively up-to-date clinical and
pathological testing modalities. The study of nearly 1000
brains with APOE genotype and TDP-43 pathology
status in multiple brain regions is unusual, and the stat-
istical power it provides is important. Further, the deriv-
ation of data from 27 different research centers with
expertise in research in AD and related dementias is a
strength because the autopsy data may be considered
more generalizable than the results from a single neuro-
pathologist or small group of pathologists. For the fore-
seeable future, it seems unlikely that all research centers
will agree on a single protocol for TDP-43 IHC, and we
consider it a strength that the current study incorporates
results from multiple research centers using site-specific
protocols.
There are three main findings that we describe:

TDP-43 pathology is strongly associated with advanced
AD pathology; TDP-43 pathology is associated with in-
creasingly severe arteriolosclerosis pathology (particu-
larly in non APOE ɛ4/ɛ4 carriers); and age-related
TDP-43 pathology is predominantly seen in the medial
temporal cortex, uncommon in frontal neocortex, and
very rare in spinal cord.
There is a relatively large extant literature on the

relatively common comorbidity of TDP-43 pathology

with AD, providing a compelling evidence that the
pathologies co-occur whether or not they directly
interact mechanistically [14, 16, 27, 30, 48]. Staging
schema have been proposed to describe how TDP-43
pathology is distributed in brains with comorbid AD
pathology [15, 17, 27]. Notably, in multiple cohorts of
aged persons, TDP-43 pathology is more strongly
linked to HS than early AD pathology [5, 7, 26, 28, 33].
However, within the amygdala of subjects with advanced
AD, protein misfolding (tau, Aβ, α-synuclein, and TDP-43
pathologies alike) tends to occur [14, 16].
Compared with AD, the literature on the association

between TDP-43 pathology and cerebrovascular is
smaller, and overlaps with the paradigm of hypoxia/is-
chemia. As stated by Zarow et al. [49], “HS has long
been hypothesized to result from ischemic-hypoxic in-
sult to the brain. The CA1 sector is fed by small
end-arterioles from the anterior choroidal and posterior
cerebral arteries and is known to be susceptible to hyp-
oxic injury” (with citation to Ref [9]). Others have also
published data compatible with a link between HS path-
ology and cerebrovascular disease [22, 41, 46, 47, 49].
However, we have found in various data sets previous
evidence of a relatively specific association between the
type of HS that frequently is comborbid with TDP-43
pathology, and brain arteriolosclerosis [12, 35–37]. In
the present study, the specificity of that association
was underscored since no other subtype of cerebrovas-
cular pathology was linked to TDP-43 pathology.
There currently is no proven mechanistic explanation
for this association. We note that factors that are con-
ventionally associated with arteriolosclerosis, such as
diabetes or hypertension, do not appear to be specific-
ally associated with TDP-43 pathology. Intriguingly,
Montagne and colleagues recently showed that subtle
blood-brain barrier dysfunction and “leaky vessels” in
the human hippocampus precede cognitive impairment
in advanced aging [24]. Winkler et al. [42] reported
that pericyte damage could contribute to cognitive im-
pairment through disruption of the neurovascular unit,
which may relate to TDP-43 proteinopathy, rather
than AD. There also have been described some genetic
risk factors that may help explain the link between
brain arteriolosclerosis and TDP-43 pathology [32], but
more work is required in this area. We speculate that
there may be some reason that the TDP-43 pathology
is usually confined to the medial temporal lobe of
aged individuals, perhaps analogous to how primary
age-related tauopathy [13], in the absence of comorbid
Aβ plaques, tends not to progress beyond Braak NFT
stage IV. Considering this analogy, there may be, in some
of the brains, a disease-accelerating factor, analogous to
Aβ, which promotes TDP-43 pathology outside of the
medial temporal lobe.

Table 4 Associations between TDP-43 and arteriolosclerosis
(moderate/severe vs. none/mild) pathologies among included
subjects stratified by APOE genotype

Region APOE −/− or −/ε4
(n = 679)a

APOE ε4/ε4
(n = 76)a

OR (95% CI) P-value OR (95% CI) P-value

Model 1b

Amygdala 1.66 (1.07–2.59) 0.023 0.71 (0.16–3.19) 0.65

Hippocampus 1.40 (0.96–2.05) 0.083 0.89 (0.29–2.79) 0.84

EC/inferior TCTX 1.82 (1.18–2.86) 0.0080 1.43 (0.35–6.55) 0.62

Frontal neocortex 1.13 (0.50–2.61) 0.76 0.26 (0.01–3.04) 0.30

Model 2c

Amygdala 1.43 (0.91–2.26) 0.12 0.57 (0.12–2.67) 0.47

Hippocampus 1.19 (0.80–1.77) 0.39 0.80 (0.25–2.56) 0.70

EC/inferior TCTX 1.60 (1.02–2.54) 0.041 1.13 (0.27–5.26) 0.87

Frontal neocortex 1.08 (0.47–2.52) 0.86 0.21 (0.01–2.47) 0.23
aA total of 755 subjects had data on APOE genotype (those data were missing
in 174 subjects)
bOdds ratios were adjusted for sex, age at death, and the type of TDP-43
antibody used
cThal Aβ phase and Braak NFT stage were included as additional covariates in
model 2
OR odds ratio, CI confidence interval, EC entorhinal cortex, TCTX temporal cortex
Bold p-value represents the statistical significance
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