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Oligodendrogliomas, IDH-mutant and 1p/
19q-codeleted, arising during teenage
years often lack TERT promoter mutation
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The genetic alterations that characterize oligodendroglial
neoplasms have been defined over the past decade. In
adults, oligodendrogliomas are genetically defined by the
combination of IDH1 p.R132 or IDH2 p.R172 mutation,
TERT promoter hotspot mutation (either c.-124C >T or
c.-126C >T), and chromosomes 1p and 19q co-deletion,
which is frequently accompanied by mutations involving
CIC, FUBP1, TCF12, NOTCH1, and PIK3CA genes [2, 3, 7,
13, 21]. Oligodendrogliomas in children often lack the IDH
mutation,TERT promoter mutation, and 1p/19q-codeletion
that is observed in their adult counterparts [14, 20]. Instead,
they most commonly harbor solitary pathogenic alterations
in the FGFR1 oncogene that cause constitutive activation of
the kinase domain via gene fusion, tandem duplication, or
missense mutations that localize at one of two hotspots
(p.N546 or p.K656) [18, 23].
To investigate the molecular pathogenesis of oligo-

dendrogliomas arising during teenage years, we assembled
a cohort of tissue specimens from three patients (Fig. 1a).
The one male and two female patients ranged in age at
time of initial surgery from 10-18 years. All patients pre-
sented with headaches that led to brain imaging, which
demonstrated non-enhancing, T2-hyperintense masses cen-
tered in the frontal (n=2) or parietal (n=1) lobes (Fig. 1b).
All cases were histologically characterized by an infiltrative
glial neoplasm composed of cells with uniform round

nuclei containing delicate chromatin (Fig. 1c). Mitoses were
inconspicuous, and neither microvascular proliferation nor
necrosis were present. Immunohistochemistry revealed that
the tumor cells were OLIG2 positive, had intact/retained
nuclear expression of ATRX protein, and showed only oc-
casional positivity for p53 protein. The Ki-67 labeling index
was uniformly low (less than 2%).
Genomic DNA was extracted from formalin-fixed,

paraffin-embedded tumor tissue, and targeted capture-
based next-generation DNA sequencing was performed
as previously described using the UCSF500 Cancer
Panel [8, 9, 11, 16, 17], which assesses approximately
500 cancer-associated genes for mutations, copy num-
ber alterations, and structural variants including gene
fusions (Additional file 1: Table S1). All three cases
demonstrated IDH mutation, with two harboring
IDH2 p.R172K and one harboring IDH1 p.R132H
(Additional file 1: Table S2 and Additional file 2: Fig.
S1). Additionally, case #1 contained a damaging mis-
sense mutation in TP53 (p.R175H), which was present
at a subclonal allele frequency (6%) relative to the
IDH1 mutation (20%), indicating that it was only
present in a subset of tumor cells. Case #3 addition-
ally contained a truncating nonsense mutation in the
CIC tumor suppressor gene (p.S349*). No pathogenic
mutations were identified involving any of the other
genes targeted for sequencing by this assay. Chromo-
somal copy number analysis revealed losses of 1p and
19q in all three cases, which uniformly involved the
entire arms of these chromosomes. No other chromo-
somal gains, losses, or focal amplifications or
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deletions were identified in any of the tumors
(Additional file 1: Table S3 and Additional file 2: Fig. S2).
Notably, all three cases lacked mutation at either of the
two hotspots in the promoter region of the TERT gene
(Fig. 1d), and also did not harbor either TERT gene ampli-
fication or structural rearrangement within the 50 Kb of
upstream sequence covered by this assay, where rear-
rangements are commonly found in high-risk neuro-
blastomas, chromophobe renal cell carcinomas, and
IDH-wildtype glioblastomas lacking TERT promoter
hotspot mutation [5, 6, 15, 22].

In order to further assess the frequency of TERT pro-
moter mutation in IDH-mutant and 1p/19q-codeleted
oligodendrogliomas in teenagers, we examined data from
the four major pediatric low-grade glioma genomics
studies published to date [1, 18, 19, 23]. Together, these
four studies included only a single teenage patient with
an oligodendroglioma, IDH-mutant and 1p/19q-code-
leted, in which TERT promoter status had been assessed.
This patient (SJLGG034 from the Zhang et al study, also
labeled LGNT20 in the Qaddoumi et al study) was a 15
year old male with an oligodendroglioma that harbored

Fig. 1 Oligodendrogliomas, IDH-mutant and 1p/19q-codeleted, arising during teenage years often lack TERT promoter hotspot mutation. a, Table of
the clinicopathologic features of the three teenagers with oligodendroglioma. b, Pre-operative magnetic resonance imaging for the three patients. c,
Histology of the three tumors. Hematoxylin and eosin staining, 60× magnification. d, Snapshot from the Integrated Genome Viewer for the three
oligodendrogliomas in teenagers demonstrating absence of the TERT promoter hotspot mutation seen in oligodendrogliomas, IDH-mutant and 1p/
19q-codeleted, from adults

Lee et al. Acta Neuropathologica Communications  (2018) 6:95 Page 2 of 4



IDH1 p.R132H mutation, multiple CIC mutations, 1p/
19q-codeletion, and reportedly lacked TERT promoter
mutation [18, 23]. We next examined data from the
most recent glioma metagenomics study by The Cancer
Genome Atlas Research Network that included 89 cases
of oligodendroglioma, IDH-mutant and 1p/19q-code-
leted, WHO grade II or III, in which TERT promoter
status was reported [4]. 87 of these 89 cases (98%) re-
portedly harbored TERT promoter hotspot mutation and
were all in adults (age range 20-75 years at diagnosis).
Two of the 89 cases are reported to be TERT promoter
wildtype, one in a teenager and one in an older adult.
The first TERT promoter wildtype oligodendroglioma
case (TCGA-DB-5278) was centered in the left frontal
lobe of a 17 year old male who had presented with sei-
zures, demonstrated WHO grade II histologic features,
IDH1 p.R132H mutation, CIC mutation, 1p/19q-codele-
tion, and did not have TERT overexpression. The second
TERT promoter wildtype oligodendroglioma case
(TCGA-HT-8010) was in a 64 year old female, had
WHO grade II histologic features, IDH mutation, NF1
mutation, 1p/19q-codeletion, and also did not have
TERT overexpression. Thus, according to the latest pub-
lished dataset from The Cancer Genome Atlas, TERT
promoter mutation was present in 87/88 cases (99%) of
IDH-mutant and 1p/19q-codeleted oligodendrogliomas
in adults age 20+ years at time of diagnosis. In contrast,
TERT promoter mutation was present in 0/5 cases (0%)
of IDH-mutant and 1p/19-codeleted oligodendrogliomas
in teenagers, including the three patients from our co-
hort, one patient from Zhang et al, and one patient from
The Cancer Genome Atlas.
Together, these findings suggest that oligodendrogli-

omas arising during teenage years are genetically distinct
from their adult counterparts based on the absence of
TERT promoter mutation. Though telomere maintenance
has been proposed as a requirement for gliomagenesis in
adults [10, 12], it does not appear to be necessary in oligo-
dendrogliomas, IDH-mutant and 1p/19q-codeleted, in
teenagers. We speculate that this may be due to the low
number of cell divisions that have taken place in oligo-
dendrogliomas arising in teenagers relative to adults such
that selection pressure for acquisition of telomere main-
tenance mechanism has not yet occurred. The absence of
telomerase activation in these tumors may potentially cor-
relate with the less frequent anaplasia and more indolent
clinical behavior that has been observed in pediatric oligo-
dendrogliomas compared to their adult counterparts [20].
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