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Abstract

Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer’s disease (AD). Mouse
models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts
of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several
studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally
in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of
mouse APP and its effects on the transgenic models and the readout for therapeutic approaches.
Here, we report that hAPP-transgenic models of amyloidosis devoid of endogenous mouse APP expression
(mAPP-knockout / mAPPko) show increased amounts and higher speed of Aβ deposition than controls with
mAPP. The number of senile plaques and the level of aggregated hAβ were elevated in mAPPko mice, while the
deposition in cortical blood vessels was delayed, indicating an alteration in the general aggregation propensity
of hAβ together with endogenous mAβ. Furthermore, the cellular response to Aβ deposition was modulated:
mAPPko mice developed a pronounced and age-dependent astrogliosis, while microglial association to amyloid
plaques was diminished. The expression of human and murine aggregation-prone proteins with differing amino
acid sequences within the same mouse model might not only alter the extent of deposition but also modulate
the route of pathogenesis, and thus, decisively influence the study outcome, especially in translational research.
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Introduction
Aggregation of β-amyloid (Aβ) is a key pathological
event in Alzheimer’s disease (AD) [14]. While an in-
creased production and/or aggregation propensity is
triggering the accumulation of Aβ in familial forms of
AD [32], sporadic cases of AD are characterised by im-
paired Aβ clearance [25]. In most animal models, the
pathological events are initiated by overexpression of
mutant human transgenes, namely the amyloid precur-
sor protein (APP) and presenilin 1 or 2 (PS1/2) [29].
Despite the potential interactions, transgenes are generally

expressed in addition to endogenous murine proteins.
Murine Aβ (mAβ) differs in three amino acids from its hu-
man homologue (position 5, 10 and 13) [15]. These
sequential changes entail vast alterations in aggregation
propensity and toxicity [28, 35, 36]. Mixed fibrils of murine
and human Aβ generated in vitro possessed a lower solu-
bility than pure human Aβ fibrils [12]. However, this is
completely contradictory to in vivo results, showing that
deposits of various transgenic mice are by far more un-
stable than those of AD patients [15, 16, 21]. Accordingly,
overexpression of murine APP (mAPP) in transgenic mice
enhanced solubility of aggregates, increased vascular de-
position of Aβ but left plaque burden unchanged [15]. The
effect of a mAPP knockout is controversial, as a recent
study found alterations only in a model with slow develop-
ment of deposits, while no changes were apparent in a
more aggressive amyloidosis model [23]. Considering the
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decisive role of transgenic models in basic, therapeutic and
translational research, the impact of endogenous proteins
should receive particular attention. To further elucidate
the effect of mAPP in hAPP-transgenic models, we
assessed the effect of its co-expression in an established
transgenic model of cortical amyloidosis.

Results
To analyse the pathogenic consequences of mAPP co-
expression in transgenic mice, APP/PS1 mice [30] were
crossbred with mAPP-deficient mice [39]. Originating
animals expressing hAPP with Swedish double mutation
(KM670/671NL) and mutant human PS1 (L166P) in ab-
sence of mAPP, were used for experiments and referred
to as mAPP0/0. APP/PS1 transgenic mice with natural
expression of murine APP served as control and are re-
ferred to as mAPP+/+.

Absence of murine APP promotes deposition of
human β-amyloid
Brain sections of mAPP0/0 and mAPP+/+ mice were im-
munostained for human Aβ (hAβ) to screen for qualita-
tive and quantitative differences in cortical amyloidosis.
First deposits appeared similar at 50 days of age in both,
mAPP0/0 and mAPP+/+ mice (Fig. 1). However, with in-
creasing age mAPP0/0 mice presented with a significantly
higher number of cortical deposits compared to mAPP
+/+ animals (Fig. 1c). While plaque load (Aβ-positive cor-
tical area) was elevated as well (Fig. 1e), the mean size of
plaques was just slightly altered (Fig. 1d). Because histo-
logical assessment of plaques is only an approximate in-
dication for the amount of deposited Aβ, immunoassays
were additionally performed. Two fractions were gener-
ated and individually analysed, to distinguish monomers
and small oligomers (carbonate-soluble fraction) from
fibrillary forms of Aβ (guanidine-soluble fraction). The
employed assay recognises both, murine and human Aβ42.
Levels of aggregated (guanidine-soluble) Aβ42 were
consistently higher in mAPP0/0 mice (Fig. 1f). The amount
of carbonate-soluble Aβ42 followed a similar pattern with
advancing age in both groups (Fig. 1g). To verify that
neither altered generation nor degradation provoked the
elevated levels of Aβ, expression levels of the most import-
ant proteases were determined. Levels of α-secretase
ADAM10, β-secretase BACE1 and amyloid degrading IDE
were neither age- nor genotype-dependently changed
within the analysed age range (Fig. 2).

Vascular deposition of hAβ is accelerated by co-expression
of murine APP
To examine the influence of mAPP expression on the de-
velopment of cortical amyloid angiopathy, deposition of
hAβ in leptomeningeal blood vessels was quantified as pre-
viously described [20]. Despite the higher cortical levels of

hAβ, deposition in blood vessels was delayed in mAPP0/0

mice (Fig. 1h). In general, the proportion of affected vessels
strongly rose in both groups until 100–125 days, when a
similar and rather stable level was reached.

Cellular response to hAβ deposits is altered upon knockout
of endogenous mAPP
The deposition of Aβ activates microglia and astrocytes,
which gather in the vicinity of plaques and interfere with
further accumulation. At first, microglial reaction was
analysed at 150 days of age. Cells were typically orga-
nised in clusters and presented with enlarged cell bodies
and short, sparsely ramified processes (Fig. 3). The total
area covered by microglial cells was identical in both
groups (Fig. 3e). To explore potential differences in
microglia-plaque interaction, their interplay was ana-
lysed in hAβ and Iba1 double-stained sections. Microglia
were largely found to surround amyloid plaques,
whereby their respective coverage depended on age and
the particular size of plaques. The mean coverage of pla-
ques by microglial cells was diminished upon knockout
of endogenous mAPP (Fig. 3f ). To evaluate if the de-
creased response was solely caused by elevated plaque
load, the total area of plaque-associated microglia was
determined and found to be lower in mAPP0/0 mice as
well (Fig. 3g). Sections immunostained for GFAP were
analysed to detect astrocytic alterations. While total area
of GFAP-positive astrocytes remained unchanged during
aging in mAPP+/+ mice, mAPP0/0 animals developed a
pronounced and age-dependent astrogliosis (Fig. 3).

Neuronal density is unaffected by endogenous mAPP
knockout
Progressive neuronal loss and apoptosis are characteris-
tic but relatively late events in the pathogenesis of AD.
To determine the effects of murine APP co-expression
on the number of cortical neurons, NeuN-stained sec-
tions were analysed. Despite the higher hAβ load in
mAPP0/0 mice, the neuronal density in layers II to VI
was not significantly changed at 150 days of age (Fig. 4).
Additionally, we analysed expression levels of two cas-
pases which contribute to neuronal death and show ab-
normal expression levels in patients with AD, initiator
caspase 9 and effector caspase 3. However, protein levels
displayed neither age- nor genotype-dependent differ-
ences and therefore as well no hint for alterations in
apoptosis within the analysed age range (Fig. 5).

Discussion
Most of the current murine models of AD co-express mu-
tant human transgenes to induce the desired pathology.
However, potential interactions between endogenous and
transgenic APP proteins have rarely been addressed so far.
By combining an murine model of cortical amyloidosis
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[30] with a murine APP knockout strain [39], we have
shown here that mAPP co-expression significantly alters
accumulation and aggregation of hAβ. Mice that exclu-
sively express hAPP developed more amyloid deposits and
presented with higher levels of aggregated hAβ42, while
deposition in cortical blood vessels was delayed, levels sta-
bilized and were equivalent in older animals. The inverse
changes in soluble and aggregated hAβ42 levels further
indicated an alteration in general solubility.
In line with our results a previous study showed that

additional overexpression of mAPP in APP/PS1 double
transgenic mice elevated the solubility of generated de-
posits and intensified accumulation in cortical blood
vessels, but neither accelerated nor increased the paren-
chymal deposition of hAβ [15]. Another recent study
suggested that the impact of mAβ on aggregation de-
pends on the particular model, as deposition was only
changed when amyloidosis developed slowly [23].
Murine Aβ is generally thought to contribute to amy-

loid load, as it accumulates in transgenic models [23],

generates mixed fibrils with human Aβ [12] and is part
of amyloid plaques in transgenic animals [23, 37]. Al-
though APP gene dose is principally of crucial impor-
tance [13], neither physiological expression [23] nor
overexpression [15] of mAPP increased plaque load. The
contributing role of mAβ in hAPP-transgenic models
might, therefore, no longer remain sustainable. Further-
more, aggregating proteins implicated in other neurode-
generative disorders possess similar characteristics. In
mice, endogenous tau was shown to interfere with ag-
gregation of transgenic human tau [1]. In humans,
mutant variants of hAPP [3] and PrP [2] protect their
carriers from aggregation and consequently develop-
ment of either AD or Kuru and classical Creutzfeldt–
Jakob disease.
Although mAPP-deficient mice are viable and fertile,

they display a number of relevant abnormalities. They
present with a reduced body and brain weight [22] and
diminished locomotor activity [7, 34]. Furthermore,
these mice develop a pronounced and age-dependent

Fig. 1 Deposition of β-amyloid is altered upon knockout of murine APP (mAPP0/0). Representative micrographs of cortical brain sections from 150
d old a mAPP0/0 and b mAPP+/+ mice, immunostained for hAβ and contrasted with haematoxylin illustrate the elevated deposition of human Aβ
in murine APP-deficient mice. Semi-automatic analysis confirmed the increase in c amount of cortical plaques, d mean size of plaques
and e plaque load (Aβ-positive cortical area). Immunoassays revealed f consistently higher levels of deposited (guanidine soluble) Aβ in
mAPP0/0 mice, while g soluble (carbonate soluble) Aβ was only significantly changed at 125 d. In contrast to parenchyma, h deposition
in leptomeningeal vessels was delayed in murine APP-deficient mice. (Scale bar: 500 μm; * p ≤ 0.05; n ≥ 7)
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astrogliosis and show impairments in spatial learning
and memory [7, 27, 34]. The partial compensation by
transgenic hAPP that might be speculated is likely re-
stricted by the utilised Thy1-promotor, which is acti-
vated postnatally in neuronal cells [30]. Herein, we used
the C57BL/6 J genetic background for experiments, as it
was shown to reduce the adverse effects of APP-
deficiency [22].
Our findings confirm the previously described age-

dependent astrogliosis [7]. Due to the variety of astrocyte

functions, the impact of the astrogliosis can hardly be
estimated under these conditions. But as astrogliosis typi-
cally reduces plaque load in murine AD-models [5, 6], the
observed alterations are unlikely the cause for the
increased deposition of Aβ. However, astrocytes were fur-
ther shown to suppress the recruitment and activation of
microglia in APP/PS1 transgenic animals [19]. Accor-
dingly, we found a substantial reduction in microglial
plaque coverage upon knockout of murine APP that
might be triggered by the strong astrogliosis. As microglia

Fig. 3 Expression levels of APP- and Aβ-cleaving enzymes remain unchanged. Western blots of the most relevant α- and β-secretases (ADAM10
and BACE1) revealed an age- and genotype independent expression. Levels of Aβ-degrading IDE were likewise unchanged. (β-actin was used as
loading control)

Fig. 2 Altered cellular response in murine APP-deficient mice. Cortical brain sections were immunostained for Aβ and IBA1 (a, b, 150 d) or GFAP
(c, d, 200 d) and contrasted using haematoxylin. Representative micrographs emphasize the impaired microglial response and pronounced
astrogliosis in mAPP0/0 mice a, c compared to mAPP+/+ animals b, d. While the total area of microglial cells (IBA1+) was stable upon knockout
of murine APP e, microglial coverage of plaques f and the total area of plaque associated microglial cells (G) were reduced. By contrast, a
pronounced and age-dependent astrogliosis developed in mAPP0/0 mice (C, D, H). (Scale bars: 250 μm in overview, 50 μm in enlargements; *
for p ≤ 0.05; n ≥ 7)
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actively clear soluble [24] and fibrillary [18] Aβ, their di-
minished recruitment might further contribute to elevated
levels of Aβ.
Due to the important functions of APP in develop-

ment and maintenance of the brain, mAPP0/0 mice ad-
ditionally suffer from the lack of beneficial APP
functions in neuronal development. However, neither
neuronal density nor expression levels of caspases were
significantly altered in the analysed age range. This
corresponds to previous studies, showing that neu-
ronal loss is not evident until 8 months of age in the
utilised strain [30].
The majority of therapeutic strategies against AD are

directed against Aβ. The accurate reconstruction of Aβ
aggregation is therefore of paramount importance. A de-
creased aggregation propensity, analogical to the herein
reported effect of murine APP co-expression, not only
restricts accumulation and aggregation but makes Aβ
better available for degradation [3] and promotes its
elimination. The extent of aggregation interference, pe-
ripheral and central degradation and the efflux across
the blood-brain barrier by LRP1 [17, 38] and differ-
ent ABC-transporters [20, 26] might, therefore, been
estimated inaccurately. The co-expression of murine

APP may, thus, impede transferability of results to
the human system.
To eliminate the interactions between transgenic hAβ

and endogenous mAβ, humanised models can be used
as background strains. Although the mutagenesis of
mAPP has early been reported [8, 31], it attracted only
little interest. While humanisation of mAPP already in-
creased the production of Aβ, it did not provoke depo-
sition of Aβ [8]. However, a more physiological murine
model of inherited AD with slow developing amyloidosis
was generated by targeted mutations in humanised APP
(KM670/671NL) and PS1 (P264L) [9]. This model
achieves Aβ deposition without any overexpression. Fur-
thermore, keeping APP and PSEN1 in their chromo-
somal position with the natural promotor preserves the
developmental, cell- and tissue-specific expression pat-
tern of APP and PS1.

Conclusions
The vast majority of the employed murine models of AD
are premised on the overexpression of mutant human
transgenes to provoke the desired pathological changes.
Combining a murine APP-deficient and a human APP-
transgenic strain, we were able to analyse the progression

Fig. 5 Expression levels of major caspases remained unchanged. Western blot analysis indicated neither age- nor genotype-dependent differences between
in expression levels of caspase-3 and -9. (β-actin was used as loading control)

Fig. 4 Neuronal density is unchanged in murine APP-deficient mice. Representative brain sections immunostained for NeuN (neuronal nuclei)
and contrasted using haematoxylin revealed no significant differences in neuronal density between mAPP0/0a and mAPP+/+ mice b at 150 d.
Semi-automatic evaluation of digitised slides confirmed similar density of neurons in both groups c. (Scale bar: 250 μm; unpaired t-test with
Welch’s correction displayed no significant differences; n ≥ 10)
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of the cortical amyloidosis independent of the murine
variant. The lack of endogenous mAPP resulted in acceler-
ated deposition and, thus, increased number of senile pla-
ques and higher levels of aggregated hAβ. The delayed
deposition in cortical blood vessels further substantiates
the assumption of an altered aggregation propensity of
hAβ in the presence of endogenous mAβ. The depletion
of mAPP also modulated the balance of astrocytic and
microglial response, as a pronounced and age-dependent
astrogliosis develops, which was accompanied by a di-
minished microglial association to amyloid plaques. In
summary, our results indicate that the coexpression
of endogenous mAPP with transgenic hAPP has a sig-
nificant effect on the deposition of hAβ in the ana-
lysed transgenic model of AD. Research results and
treatment studies to date might have, therefore, been
affected by the interference of the endogenous murine
APP, depending on the employed model and the spe-
cific experiments. Such interspecies effects should also
be kept in mind when dealing with models for other
diseases caused by aggregation-prone proteins.

Materials and methods
Chemicals and materials were purchased from Carl Roth
GmbH (Germany), unless stated otherwise.

Animals
Inbred C57BL/6 J mice provided genomic background for
all analysed mice and were purchased from the Jackson
Laboratory (C57Bl/6 J, #000664). APP-knockout mice [39]
were purchased as congenic strain in the C57Bl/6 J
genomic background from the Jackson Laboratory
(B6.129S7-Apptm1Dbo/J, #004133). Transgenic C57Bl/6 J
mice harbouring two mutant human transgenes, amyloid
precursor protein (KM670/671NL) and presenilin 1
(L166P) both driven by the murine Thy1.2-promoter [30]
(B6-Tg(Thy1-APPswe; Thy1-PS1 L166P)) were used as
model for cortical amyloidosis and were kindly provided
by the University of Tübingen, Germany. Heterogeneous,
APP/PS1 transgenic mice with natural expression of mu-
rine APP (APP/PS1+/0, mAPP+/+) were used as controls
throughout all analyses and are referred to as mAPP+/+.
To induce cortical amyloidosis in mAPP-deficient mice,
homozygous mAPPko females were mated with heterozy-
gous male hAPP/PS1 mice. Murine APP-deficient mice
with human APP/PS1 transgenes (APP/PS1+/0, mAPP0/0)
were used for all experiments and are referred to as
mAPP0/0. Animals were genotyped to determine actual
genetic status of transgenes and targeted mutations. All
mice were group-housed in 12-h day/night cycles at 22 °C
with free access to food and water. All experiments were
approved by local authorities of the state Saxony-Anhalt.
A sum of at least seven animals of both genders was used
per group and time point.

Tissue preparation
For tissue preparation, mice were sacrificed by cervical
dislocation and transcardially perfused with PBS. The
brain was removed; one hemisphere was stored in buff-
ered 4% paraformaldehyde for paraffin-embedding and
immunohistochemistry, while the other hemisphere was
snap-frozen in liquid nitrogen and stored at −80 °C for
biochemical analysis [11].

Immunohistochemistry
Tissue was post-fixed in 4% buffered paraformaldehyde
solution for 72 h, dehydrated and embedded in paraffin
as previously described [10, 33]. 4 μm coronal sections
(1.5 mm caudal of bregma) were mounted, deparaffi-
nised and rehydrated before peroxidase-blocked and im-
munostained using BOND-III Autostainer. Epitope
retrieval was carried out as follows: 5 min in 95% (v/v)
formic acid for 6F3D; 20 min in EDTA buffer (1 mM
EDTA, 0.05% (v/v) Tween 20, pH 9.0) for IBA1; 10 min
enzymatic digestion (Bond Enzyme Pretreatment Kit) for
GFAP or 20 min in citric acid buffer (10 mM citric acid,
0.05% (v/v) Tween 20, pH 6.0) for NeuN. Antibodies
against β-amyloid (clone 6F3D; Dako Deutschland
GmbH, Germany; 1:100, 15 min), ionised calcium-
binding adapter molecule 1 (IBA1; Wako Chemicals,
Germany; 1:1000, 15 min), glial fibrillary acid protein
(GFAP; Dako Deutschland GmbH, Germany; 1:500,
15 min), neuronal nuclear antigen (NeuN; Millipore,
Germany; 1:500, 15 min) were used and detected with
Bond Polymer Refine Detection kit (Leica Biosystems
GmbH, Germany). For double-stained slides, Aβ was de-
tected on the same slide as Iba1 using anti-β amyloid
clone 6F3D (1:100, 15 min) and the Bond Polymer
Refine Red Detection kit (Leica Biosystems GmbH,
Germany). Finally, all slides were counterstained
(haematoxylin, 5 min) subsequently dried and embedded
using Pertex® mounting medium (Leica Biosystems
GmbH, Germany). Slides were digitised using Pannoramic
MIDI digital slide scanner (3DHistech Ltd., Hungary) at a
resolution of 230 nm/pixel and neocortical areas were
analysed under blinded conditions, computer-assisted
using either AxioVision (hAβ, GFAP, IBA1 and IBA1/hAβ
double stains, Zeiss Microsystems GmbH, Germany)
or ImageJ (NIH, USA) (NeuN stains) and the ITCN
plugin [4].

Western blot
Frozen hemispheres were gently thawed in 500 μl
RNAlater® (Thermo Fisher Scientific Inc., USA) for
one hour on ice, and then were homogenised for 30 s
with a homogeniser (SpeedMill PLUS, Analytik Jena
AG, Germany) after removing RNAlater®. For western
blot analyses, homogenates were dissolved in RIPA
buffer with proteinase inhibitors (complete-mini; Roche
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Diagnostics) and homogenised again. After centrifuga-
tion, the protein concentration of the supernatant was
determined (Pierce™ BCA Protein Assay; SpectraMax
Paradigm, Molecular Devices LLC., USA). Samples
were mixed with protein sample buffer (0.25 μl/μl sam-
ple, 200 mM Tris, 40% (v/v) glycerine, 16% (w/v) SDS,
4% (v/v) 2-Mercaptoethanol) and denatured (5 min,
95 °C). 25 μg protein of each sample was loaded on a
12% polyacrylamide gel. After separation, proteins were
blotted onto a PVDF membrane in PAGE transfer buf-
fer (192 mM glycine, 25 mM Tris, 20% (v/v) methanol).
The blot was blocked (blocking buffer, Rockland Immu-
nochemicals; 1 h, room temperature) and subsequently
probed using either anti-ADAM10 (Abcam plc., UK;
1:500), BACE1 (Abcam plc., UK; 1:1000), anti-caspase-3
(Cell Signaling Technology Inc., USA; 1:1000), anti-
caspase-9 (Cell Signaling Technology Inc., USA; 1:1000)
or anti-Insulin-degrading enzyme (Abcam plc., UK; 1:50)
and anti-β-actin (Sigma-Aldrich Co. LLC., USA; 1:30,000).
Primary antibodies were diluted in blocking buffer and in-
cubated overnight with gentle agitation at 4 °C. IRDye®-la-
belled anti-mouse and anti-rabbit antibodies (LI-COR
Biosciences), diluted in blocking buffer (1:15,000) were
used for detection and incubated for 1 h at room
temperature with gentle agitation. Blots were visualised
using the Odyssey infrared imaging system (LI-COR
Biosciences).

Electrochemiluminescence immunoassay
For Aβ42 electrochemiluminescence immunoassays, brain
homogenates were mixed with 20 μl/mg carbonate buffer
(100 mM Na2CO3, 50 mM NaCl, protease inhibitors,
pH 11.5); and re-homogenated (SpeedMill PLUS). After
centrifugation (20,000 g, 20 min, 4 °C), supernatant and
pellet were processed separately. The supernatant was
mixed with 610 μl/mL guanidine buffer I (8.2 M guanidine
hydrochloride, 82 mM Tris, pH 8.0), rigorously vortexed,
centrifuged (20,000 g, 20 min, 4 °C) and supernatant was
kept as carbonate soluble fraction. The pellet was mixed
with 8 μl/μg protein of guanidine buffer II (5 M guanidine
hydrochloride, 50 mM Tris, pH 8.0) and incubated for 3 h
(1500 rpm at room temperature), subsequently centri-
fuged (20,000 g, 20 min, 4 °C) and supernatants were
referred to as guanidine-soluble fraction. Protein concen-
tration was determined using ScanDrop® spectrophoto-
meter (Analytik Jena AG, Germany). Aβ42 concentration
in carbonate- and guanidine-soluble fractions was deter-
mined using V-PLEX Aβ42 Kits (Meso Scale Diagnostics
LLC, USA) and a MESO QuickPlex SQ 120 (Meso Scale
Diagnostics LLC, USA).

Statistics
Results were statistically analysed using GraphPad Prism
6 (GraphPad Software Inc., USA) and two-way ANOVA

followed by Holm-Šidák’s multiple comparison test, were
applicable, or unpaired t-test with Welch’s correction
and considered significant if p ≤ 0.05. Data are presented
as arithmetic mean with corresponding standard error of
the mean (SEM).
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