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Clobetasol promotes remyelination in a
mouse model of neuromyelitis optica

Xiaoming Yao, Tao Su and A. S. Verkman*
Abstract

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system that can
produce marked neurological deficit. Current NMO therapies include immunosuppressants, plasma exchange and
B-cell depletion. Here, we evaluated 14 potential remyelinating drugs emerging from prior small molecule screens
done to identify drugs for repurposing in multiple sclerosis and other demyelinating neurological diseases.
Compounds were initially evaluated in oligodendrocyte precursor cell (OPC) and cerebellar slice cultures, and then
in a mouse model of NMO produced by intracerebral injection of anti-AQP4 autoantibody (AQP4-IgG) and human
complement characterized by demyelination with minimal axonal damage. The FDA-approved drug clobetasol
promoted differentiation in OPC cultures and remyelination in cerebellar slice cultures and in mice. Intraperitoneal
administration of 2 mg/kg/day clobetasol reduced myelin loss by ~60 %, even when clobetasol was administered
after demyelination occurred. Clobetasol increased the number of mature oligodendrocytes within lesions without
significantly altering initial astrocyte damage or inflammation. These results provide proof-of-concept for the
potential utility of a remyelinating approach in the treatment of NMO.
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Introduction
Neuromyelitis optica (NMO) is a neuroinflammatory
demyelinating disease that affects spinal cord and optic
nerve, and to a lesser extent brain. Most NMO patients
are seropositive for IgG1-class autoantibodies against
astrocyte water channel aquaporin-4 (AQP4). It is
thought that the anti-AQP4 autoantibodies (called
AQP4-IgG) are pathogenic in NMO by a mechanism
involving complement- and cell-dependent astrocyte
damage and an inflammatory response, which leads to
oligodendrocyte injury, demyelination and neurological
deficit [6, 29, 36]. Current NMO therapeutics include im-
munosuppressants, plasma exchange and B-cell depletion
therapy [42]. Alternative targets under consideration for
NMO therapy include the AQP4-IgG antibody and its
binding to AQP4 [40], complement and complement
inhibitory proteins [32, 33] and various immune cells in-
cluding plasma cells and granulocytes [7, 11, 16, 28].
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Here, we evaluated remyelination as a potential thera-
peutic approach in NMO, with the goal of reducing
axonal degeneration and neuronal loss following demye-
lination associated with disease exacerbations, which
could reduce cumulative neurological deficit. Though
the subject of remyelination therapeutics is under active
investigation for multiple sclerosis [12, 17, 26], remyeli-
nation has received little attention in NMO, perhaps in
part because of theoretical challenges in effecting remye-
lination in NMO, because: (i) primary astrocyte damage
in NMO could interfere with oligodendrocyte-astrocyte
interactions that might be important in oligodendrocyte
functions [5, 19, 45]; (ii) blood–brain barrier disruption
in NMO could inhibit oligodendrocyte migration along
microvessels [41]; and (iii) the inflammatory environ-
ment in active NMO lesions could inhibit remyelination
and produce irreversible axonal injury. However, limited
analysis of early pathology in NMO suggests similar
axonal preservation in NMO and multiple sclerosis [3],
which would support the evaluation of remyelinating
therapeutics in NMO.
Notwithstanding these challenges, here we investigated

the potential efficacy of small molecule remyelinating
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compounds in NMO. For in vivo studies we modified an
established, passive-transfer mouse model of NMO in
which intracerebral administration of AQP4-IgG and
human complement by stereotaxic infusion produces
characteristic NMO pathology with loss of AQP4 and
GFAP, complement deposition, inflammation and
demyelination, but with minimal axonal damage. We
evaluated 14 potential remyelination drugs, as listed in
Table 1, based on our review of the literature and selec-
tion of those drugs that have a mechanism consistent
with use in NMO and for which the data are most
clear-cut. All compound have been identified in in vitro
drug screens of oligodendrocyte precursor cell (OPC)
maturation or function. One compound, the approved
drug clobetasol, promoted oligodendrocyte maturation
in the primary OPC cultures, and remyelination in
AQP4-IgG treated cerebellar slice cultures and mice,
providing proof of concept for remyelinating therapy
in NMO.

Materials and methods
Mice
Experiments were done on male wild-type mice on a
CD1 genetic background of age 10–12 weeks. Mice were
maintained in air-filtered cages and fed normal mouse
chow in the UCSF animal facility. All animal procedures
were approved by the UCSF Institutional Animal Care
and Use Committee.

Compounds and NMO antibody
Purified human monoclonal recombinant AQP4-IgG
rAb-53 (AQP4-IgG) was provided by Dr. Jeffrey Bennett
Table 1 Compounds with reported remyelinating activity

Compound Model systems

Benztropine EAE, cuprizone mouse model

CDP-choline EAE, cuprizone mouse model

Clemastine Lysolecithin mouse model

Clobetasol Lysolecithin model, EAE

Enprofylline Kainic acid-induced spinal cord injury ex vivo

Fasudil OPC culture

GC-1 OPC culture/P7 mouse model of myelination

Indazole EAE

Miconazole Lysolecithin model, EAE

Olesoxime Lysolecithin mouse model, cuprizone mouse model

Quercetin EAE

Quetiapine EAE, cuprizone model, cerebral ischemia

Retinoic acid Lysolecithin model, ethidium bromide model

Y-27632 Lysolecithin in cerebellar slice cultures
(Univ. Colorado Denver) as described [45]. Control hu-
man IgG (control-IgG) was purchased from Pierce Bio-
technology (Rockford, IL, USA). Human complement
(HC) was purchased from Innovative Research (Novil,
MI, USA). Test drugs included clobetasol, miconazole,
benztropine, clemastine, fumarate, retinoic acid and
citicolone (Sigma-Aldrich, St. Louis, MO, USA), enpro-
fylline, olesoxime and quetiapine fumarate (Santa Cruz
Biotechnology, Dallas, TX, USA), GC-1 and quercetin
(Tocris Bioscience, Bristol, UK), fasudil (Tszchem,
Lexington, MA, USA), and Y-27632 (BD Biosciences,
San Jose, CA, USA); Triiodothyronine (T3, Calbiochem,
Billerica, MA, USA) was used as positive control. Drugs
were dissolved in 2.5 % DMSO + 2 % solutole in PBS.
Unless otherwise specified all other chemicals and media
were purchased from Sigma-Aldrich.

Primary culture of mouse oligodendrocyte precursor
cells (OPCs)
OPC cultures from mice were generated as described [9]
with modifications. Briefly, whole mouse brain was
harvested from ice-anesthetized postnatal day 7 pups
and brain cortexes were isolated and placed in a
pre-chilled Petri-dish containing Hank’s balanced salt
solution (HBSS, pH 7.2; Invitrogen, Camarillo, CA,
USA) without Ca2+ and Mg2+. After removal of the
meninges, cortexes were diced and digested for 20 min at
37 °C in Ca2+ and Mg2+-free HBSS containing 20 units/ml
papain, 5 mM L-cysteine and 20 units/ml DNase I. The
enzyme reaction was stopped by adding Dulbecco’s
Modified Eagle Medium (DMEM) containing 10 % Fetal
Bovine Serum (FBS) and trypsin inhibitors. The brain
Proposed mechanisms References

Muscarinic agonist [8]

Protein kinase C-mediated OPC proliferation [37]

Antihistamine, anticholinergic [20]

Glucocorticoid receptor signaling, Hedgehog
signaling, OPC differentiation

[10, 24, 27, 34, 44]

Adenosine receptor antagonist [21]

Rho-kinase inhibitor, vasodilator [2]

Thyroid receptor agonist, OPC differentiation [4]

Estrogen receptor beta agonist [22]

ERK1/2 activator, OPC differentiation [14, 24]

Mitochondrial pore modulator [18]

γ-secretase inhibition interfering with
canonical Notch signaling

[15]

Free radical scavenging, neurotrophic factor
stimulation

[51]

Retinoid X receptor γ agonist [13]

Rho-kinase inhibitor [31]
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tissue was then passed 5 times through an 18-gauge nee-
dle and centrifuged at 1200 g for 5 min. The tissue pellet
was resuspended in 6 ml of DMEM containing 10 % FBS
and incubated at 34 °C for 1 h with gentle shaking. The
tissue suspension was passed through a 70-μm nylon
strainer and then added onto 15 % Percoll in DMEM and
centrifuged at 1200 g for 15 min to remove myelin and
large debris. OPCs were enriched using anti-O4 MicroBe-
ads (Miltenyi Biotec, San Diego, CA, USA) and magnetic
cell sorting (MACS). The cell pellet was suspended at ~2
× 107 cells in 180 μl BSS containing 25 μl of anti-O4-
MicroBeads. After incubation at 4 °C for 15 min the cell
suspension was passed 3 times through MACS LS
columns. Bound cells were eluted by OPC culture
medium consisting of NeuroBasal medium (Gibco, Grand
Island, NY, USA) containing 1 % FBS, B27-without
vitamin A (Invitrogen, Camarillo, CA), non-essential
amino acids, L-glutamine and PDGF-AA (25 ng/ml;
ProSpec-Tany TechnoGene, Rehovot, Israel). The OPC
yield with this method was 5 × 105 cells per brain, and the
purity of oligodendrocytes was greater than 95 %. Cells
were cultured on poly-D-lysine coated 75 cm2 tissue cul-
ture flasks and passed three times for experiments.
For compound testing, OPC cultures at passage three

were sub-cultured (25,000 cells/well) on laminin-coated
Falcon 8-well-culture slides (Corning, NY, USA). After
24 h, test compounds were added in OPC culture
medium with reduced PDGF (5 ng/ml). Cells were
cultured for 6 days, with media (with compound)
changed every 2 days. Cells were then fixed with PBS
containing 4 % PFA with 0.05 % Triton X-100 for immu-
nostaining for MBP and Olig2. The numbers of
Olig2- and MBP-positive cells were counted at 400x
with six fields in each of three different wells counted
per compound. In addition, MBP-positive cells were
scored for maturation level at a scale grade of 1 to 3, as
described [38, 47]; grade 1 - simple primary branches;
grade 2 - medium-size secondary branches, grade 3 -
many tertiary branches.

Organotypic cerebellar slice cultures and ex vivo NMO
model
Cerebellar slice cultures were prepared using an
interface-culture method as described [24, 39] with
modification. Postnatal day 7 mouse pups in a CD1
genetic background were decapitated and the whole
cerebellum was rapidly removed, placed in ice-cold
Hank’s balanced salt solution (HBSS, pH 7.2; Invitrogen)
and embedded in 2 % low-melting agarose. Parasagittal
slices of 300-μm thickness were cut using a vibrating
microtome (VT-1000S; Leica, Wetzlar, Germany). Individ-
ual slices were placed on transparent, non-coated
membrane inserts (Millipore, Millicell-CM 0.4-μm pores,
30-mm diameter) in six-well (35-mm diameter) plates
containing 1 mL culture medium (50 % MEM, 25 %
HBSS, 25 % horse serum, 1 % penicillin–streptomycin,
0.65 % glucose and 25 mM HEPES), with a thin film of
culture medium covering slices. Slices were cultured in
5 % CO2 at 37 °C for 7 days and medium was changed
every 2 days. AQP4-IgG (5 μg/ml) or control-IgG
(5 μg/ml) with 5 % human complement were added
on day 7 to the culture medium for 20 h. Drugs were
then given after removal of AQP4-IgG or control-IgG.
After 6 day of treatment slices were fixed in 4 % PFA
for whole-mount immunostaining.

Mouse model of NMO
A mouse model of NMO was created by intracerebral
injection of AQP4-IgG and human complement as
described [35, 36] with modification to obtain demyelin-
ation with minimal axonal damage. A brain NMO model
was used here for technical reasons, as injection can be
accomplished with minimal trauma, and pathology is
highly reproducible. Mice were anesthetized with keta-
mine (100 mg/kg) and xylazine (10 mg/kg intraperito-
neal) and mounted on a stereotaxic frame. A midline
scalp incision was made and a burr hole of diameter
1 mm was drilled on each side of skull 0.5 mm anterior
and 2 mm lateral to the bregma. A glass pipette with
40-μm tip made on a micropipette puller (Model P-97,
Sutter Instrument Co., Novato, CA, USA) was inserted
3-mm deep to infuse AQP4-IgG (or control-IgG) and
1 μl human complement (HC) in a total volume of 3 μl
over 10 min by pressure injection (PMI-100, DAGAN
Corporation, MN, USA) at 10 psi. After injection, the
glass pipette remained in place for 10 min before slow
withdrawal (over 5 min) to prevent leaking. For drug
testing, mice were treated with test compound (in 2.5 %
DMSO + 2 % solutole with PBS) or vehicle starting on
day 1 and sacrificed on day 9. Some mice were treated
with drug or vehicle starting on day 4 and sacrificed on
day 9. At the time of sacrifice mice were deeply
anesthetized and transcardiacally perfused with 50 mL
heparinized PBS and 50 mL of 4 % PFA in PBS. Brains
were removed and post-fixed for 2 h in 4 % PFA follow-
ing cryoprotection in 20 % sucrose. Serial frozen
coronal sections (thickness 7 μm) were cut by a cryo-
stat (Leica Biosystems, IL, USA) and stored at −20 °C
for immunostaining.

Immunofluorescence
Cerebellar slices were fixed with 4 % PFA for 1 h at
room temperature and then transferred to 12-well plates
for immunostaining. Brain sections were air dried and
immunostaining was done as described [35] with modifi-
cation. After washed three times with PBS, brain sec-
tions or fixed cerebellar slices were incubated in PBS
containing 1 % BSA, 0.1 % Triton X-100 in PBS and
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normal donkey serum (NDS, 2 % for sections and 10 %
for cerebellar slices) at 4 °C overnight. Incubation for
1 h at room temperature was done with primary anti-
bodies: rabbit anti-AQP4 (1:200, Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), mouse anti-GFAP (1:100,
Millipore, Temecula, CA, USA), goat anti-myelin basic
protein (MBP) (1:200, Santa Cruz Biotechnology), rabbit
anti-neurofilament (1:400, Millipore), rabbit anti-Iba1
(1:500, Wako, Richmond, VA, USA), rat anti-CD45
(1:50, Pharmingen, BD Biosciences, Oxford, UK), mouse
anti-CC1 (1:100, Calbiochem), rabbit anti-Olig2 (1:100,
Millipore), or rabbit anti-C5b-9 neo (1:50, Santa Cruz
Biotechnology). After three washes with PBS, the appro-
priate species-specific Alexa Fluor-conjugated secondary
antibody (1:500, Invitrogen) was added and incubated
for 1 h at room temperature. Nuclei were counterstained
blue with DAPI (Life technologies, Eugene, OR, USA).
Fluorescence was visualized on a Leica DM 4000 B
microscope or a Nikon confocal D-ELIPSE C1 system.
AQP4, GFAP, MBP and NF immunonegative areas were
defined by hand and quantified using ImageJ (version
1.43 m, National Institutes of Health, USA; http://
rsbweb.nih.gov/ij). Data are presented as percentage of
immunofluorescence loss area normalized to total area
of brain hemisphere (or whole cerebellar slice).

Statistics
Data are presented as mean ± S.E. Statistical analysis was
performed using Prism 5 GraphPad Software package
(GraphPad Software, San Diego, CA, USA). The normal-
ity of the data was established by Bartlett’s test for equal
variances and a one-way ANOVA with Newmann-Keuls
post-hoc test to compare groups. Individual statistical
tests are reported in text and figure legends. The signifi-
cance levels were set at p < 0.05 (*) and p < 0.01 (**).

Results
Clobetasol promotes OPC maturation and remyelination
in vitro
OPC maturation studies were done for the 14 potential
remyelinating drugs listed in Table 1, together with
negative control (vehicle alone) and positive control
(T3). Representative fluorescence micrographs are
shown in Fig. 1a (top), with immunostaining for MBP, a
marker of myelin produced by mature oligodendrocytes,
and Olig2, a marker of OPCs and mature oligodendro-
cytes. MBP-positive cells were graded into three levels
(grade 1 to 3) according to their maturation level, as
summarized in Fig. 1a (bottom). In vitro OPC matur-
ation was confirmed for most of the drugs listed in
Table 1, with strong maturation induced by GC-1, clobe-
tasol and miconazole. Following preliminary evaluation
showing greatest remyelinating efficacy in NMO models
in cerebellar slices cultures and in mice, as described
below, we focused attention on clobetasol, which was
reported previously to enhance OPC differentiation
and promote myelination in an in vitro phenotypic
screen using stem cell-derived OPCs [24]. Figure 1b
shows clobetasol concentration-dependence data, in
which ~15 % of cells were MBP-positive after 6 days
at 5 μM, which is the concentration used below in
cerebellar slice cultures.

Clobetasol promotes remyelination in AQP4-IgG treated
cerebellar slice cultures
To investigate whether clobetasol promotes remyeli-
nation in an ex vivo model of NMO, a previously
described NMO slice culture model [48] was modified
to enable studies of remyelination (Fig. 2a). As done
in prior remyelination studies in a lysolecithin-
induced demyelination model [24], here we used
mouse cerebellar slice cultures in which long axonal
segments are preserved and easily visualized. Culture
conditions and the concentrations of AQP4-IgG and
human complement were selected to give robust
NMO pathology, with demyelination but minimal
axonal injury (Fig. 2b). Cerebellar slices exposed to
AQP4-IgG and human complement showed astrocyte
cytotoxicity as seen by loss of AQP4 and GFAP
immunofluorescence, inflammation as seen by Iba1
immunofluorescence, deposition of activated comple-
ment as seen by C5b-9 immunostaining, and myelin
loss with axonal preservation as seen by MBP and NF
immunofluorescence. These changes were not ob-
served in cerebellar slices treated with control-IgG
and human complement (Fig. 2b), or in slices exposed
to AQP4-IgG without complement, or in slices from
AQP4 knockout mice exposed to AQP4-IgG and
human complement (data not shown).
For clobetasol experiments, we first confirmed in

preliminary studies that 5 μM clobetasol promoted
remyelination at 6 days following 20 h incubation
with 0.5 mg/ml lysolecithin (data not shown), in
agreement with prior published results [24]. As dia-
grammed in Fig. 2a, cerebellar slices were exposed to
AQP4-IgG (or control human IgG) and 5 % human
complement for 20 h, and then cultured for 6 days
with clobetasol (or vehicle control). Fluorescence mi-
crographs in Fig. 2c (left) showed significantly less
myelin loss in the clobetasol-treated slices compared
with control slices, as scored quantitatively in Fig. 2c
(right). The number of mature oligodendrocytes was
significantly greater in the clobetasol-treated slices, as
seen by increased CC1 and Olig2 immunofluores-
cence (Fig. 2d). Clobetasol thus promotes oligo-
dendrocyte maturation and remyelination in cerebellar
slice cultures in which demyelination is produced by
AQP4-IgG and complement.
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Fig. 1 Evaluation of potential remyelinating drugs in primary cultures of oligodendrocyte precursor cells (OPCs). a. Representative immunofluorescence
(Olig2, red; MBP, green) of OPC cultures treated for 6 days with vehicle (DMSO), T3 (30 nM) as positive control, and indicated drugs (GC-1 30 nM;
benztropine, clemastine and fasudil 1 μM; others 5 μM) (top). Percentage of MBP-positive cells, with cells graded for degree of maturation (mean ± S.E.,
n= 18 fields in three wells, ** P< 0.01) (bottom). b. Clobetasol concentration-dependence study for OPC cultures treated for 6 days (top). Percentage of
MBP-positive cells (mean ± S.E., n= 6 fields in three wells, ** P< 0.01) (bottom)
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Clobetasol reduces myelin loss in a passive-transfer
mouse model of NMO
A previously established mouse model of NMO pro-
duced by intracerebral injection of AQP4-IgG and
human complement was modified for remyelination
studies by optimizing concentrations, volumes, injection
coordinates and measurement times in order to produce
robust NMO pathology with demyelination but with
minimal axonal injury. As diagrammed in Fig. 3a, mice
were infused with 3 μl of a solution containing 7.5 μg
AQP4-IgG (or control IgG) and 30 % human comple-
ment at coordinates 0.5 mm anterior and 2 mm lateral
from the bregma. In an initial dose-finding study, differ-
ent concentrations of AQP4-IgG and complement were
tested. As seen in Fig. 3b, a low amount (5 μg) of AQP4-
IgG produced little pathology, whereas a high amount
(10 μg) produced marked pathology with loss of AQP4
and MBP immunofluorescence, with axonal damage and
loss of NF immunofluorescence. An intermediate amount
of AQP4-IgG (7.5 μg) and human complement (30 %)
produced robust NMO pathology with myelin loss but
minimal axonal damage.
A time course study was done to characterize the

model. Mice were sacrificed at 4, 7 and 9 days after
intracerebral injection of 3 μl of PBS containing 7.5 μg
AQP4-IgG and 30 % human complement. Figure 3c
shows astrocyte damage with loss of AQP4 and GFAP
immunofluorescence, and demyelination at 4, 7 and
9 days, with little loss of NF immunofluorescence. There
was relatively less demyelination at 4 days. By 9 days
there was some evidence of reactive gliosis as seen by
AQP4 staining. In the contralateral hemisphere (injected
with control IgG), no pathology was seen except very
near the needle tract. At high magnification at 9 days,
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there was inflammation and deposition of activated
complement in the AQP4-IgG-treated mice, as seen by
Iba1, CD45 and C5b-9 immunofluoresence (Fig. 3d). In
control studies, these changes were not seen in mice
injected with AQP4-IgG alone or control (non-NMO-
IgG) IgG and human complement, or in AQP4 knockout
mice injected with AQP4-IgG and human complement
(data not shown), in agreement with prior studies done
using similar mouse models [35, 36]. Figure 3e shows
exemplary data using the model for 3 candidate
remyelinating drugs, clobetasol, miconazole and GC-1,
which was in part the basis for the focus on clobetasol.
Less myelin loss was seen in clobetasol-treated mouse
brain comparing with miconazole and GC-1.
To test the efficacy of clobetasol to promote remyeli-

nation in NMO in vivo, mice were treated with clobeta-
sol from days 1 to 9 (Fig. 4a). The dose of clobetasol
(2 mg/kg/day, i.p.) was the same as that reported to
promote remyelination in lysolecithin and EAE
mouse models [24]. Figure 4b shows representative
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human complement at day 0 and treated with drugs (or vehicle) from days 1 to 9
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low magnification immunofluorescence from three
control (vehicle) and three clobetasol-treated mice,
each of which received 3 μl of PBS containing 7.5 μg
AQP4-IgG or control-IgG and 30 % human complement,
with high magnification confocal micrographs shown in
Fig. 4c (left). There was reduced myelin loss (MBP
staining) in the clobetasol-treated than control mice, with
minimal axonal damage (NF staining) and similar astro-
cyte damage (AQP4 immunofluorescence). The loss of
AQP4, MBP and NF immunofluorescence is summarized
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in Fig. 4c (right). Figure 4d shows similar inflammation
(Iba-1 and CD45 immunofluorescence) and complement
activation (C5b-9 immunofluorescence) in the clobetasol-
and vehicle-treated mice. A significant increase in the
number of mature, differentiated oligodendrocytes was
seen in and around lesions in the clobetasol-treated mice,
though the numbers of oligodendrocyte precursor cells
was similar (Fig. 4e).

Clobetasol promotes remyelination in NMO
The above data suggest that clobetasol promotes remye-
lination rather than inhibiting inflammation or reducing
initial astrocyte damage, as clobetasol increased the
number of mature oligodendrocytes in NMO lesions
without affecting the loss of AQP4 immunofluorescence
or inflammation. As further evidence that clobetasol
promotes remyelination in our model, mice were treated
with clobetasol (or vehicle control) starting 4 days after
intracerebral administration of AQP4-IgG and human
complement, a time at which demyelination and the pri-
mary inflammatory response has occurred (Fig. 5a). Mice
sacrificed on day 4 showed loss of AQP4 and MBP im-
munofluorescence; on day 9 there was some remyelina-
tion in the vehicle-treated mice, which was much greater
in the clobetasol-treated mice (Fig. 5b). Immunofluores-
cence showed similar astrocyte damage (AQP4) and
inflammatory response (Iba-1 and CD45), with an in-
creased number of CC1-positive mature oligodendro-
cytes (Fig. 5c).
To further investigate whether the corticosteroid ac-

tion of clobetasol might be involved in reducing myelin
loss in our model, mice were treated with high-dose
dexamethasone (3 mg/kg/day) at day 4 and sacrificed at
day 9 (Fig. 5d). Immunofluorescence showed similar loss
of AQP4 and MBP in the control and dexamethasone-
treated mice, and a similar inflammatory response
(Fig. 5e).

Discussion
Remyelination has received considerable attention as a
potential therapeutic strategy in multiple sclerosis, with
several drugs in pre-clinical development or clinical tri-
als, including anti-Lingo-1 antibody, antagonists of M1
and/or M3 muscarinic receptors (benztropine), antihis-
tamine and anticholinergic drugs (clemastine), and mito-
chondrial pore modulators (TRO19622) [8, 20, 50]. In
addition, screens of approved and investigational drugs
with oligodendrocyte precursor cells have yielded add-
itional candidate drugs for potential repurposing in de-
myelinating disorders [24], some of which are listed in
Table 1. The study here was done to investigate the
appropriateness of remyelination for NMO therapy.
Because NMO pathogenesis involves primary astrocyte
cytotoxicity and an inflammatory environment with
blood–brain barrier disruption, it was not clear a priori
whether drug-induced OPC maturation could promote
remyelination in NMO. Our results support this possi-
bility, as clobetasol produced significant remyelination in
a mouse model of NMO produced by passive-transfer of
AQP4-IgG. However, it is difficult to predict with confi-
dence whether this conclusion from a mouse model will
translate to human NMO, though recent findings show-
ing similar early axonal loss in NMO and multiple scler-
osis [3] supports the possibility of a remyelination
approach in NMO, at least as an early intervention dur-
ing a disease exacerbation before gliosis and axonal in-
jury occurs.
The in vivo mouse model of NMO chosen for the

studies here involved a single, stereotaxic injection of a
recombinant monoclonal AQP4-IgG and human com-
plement into brain under conditions that produce ro-
bust, reproducible NMO pathology with loss of AQP4
and GFAP immunoreactivity, inflammation, complement
deposition, and, most importantly, demyelination with
minimal axonal loss. The single injection model used
here, as adapted from the original description [36] and
follow-on applications [30, 32, 35], was modified with re-
gard to injection details and amounts of AQP4-IgG and
complement to give demyelination with minimal axonal
injury. A pulled glass pipette with 40-μm tip diameter
minimized traumatic brain tissue injury, as did the min-
imal volume of injected fluid and the slow infusion rate
and pipette withdrawal. We did not use continuous
AQP4-IgG infusion models, as described [49], for tech-
nical simplicity and to avoid potential pathology caused
by chronic needle placement. We did not use rat
models, as described [1], because the pharmacology and
efficacy of the drugs tested had been established in mice,
as well as practical considerations in creating the model
in a sufficient number of animals to yield statistically sig-
nificant differences. It is acknowledged, however, that
available animal models of NMO are imperfect, as NMO
pathology requires invasive, passive-transfer of AQP4-
IgG rather than spontaneous autoimmunity, and because
of differences between rodents and humans in astrocy-
te:neuron ratios and their biology.
Our approach was to evaluate drug candidates that

were reported to induce differentiation and/or prolifera-
tion of OPC cultures, and promote remyelination in
cerebellar slices and mice following AQP4-IgG-induced
demyelination. Following initial evaluation in pure OPC
cultures and cerebellar slices, the most efficacious com-
pounds were screened in the mouse model of NMO,
from which clobetasol was selected for full analysis. Be-
cause the study here was done primarily for proof of
concept we were not overly concerned with selection of
the very best molecule for clinical development. Though
we think it unlikely, it is possible that an NMO-specific
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remyelination drug screen might yield alternative, more
efficacious compounds. It is not practical, however, to
screen thousands of molecules for efficacy in a model of
NMO demyelination.
Clobetasol was discovered as a potential remyelinating

agents in a screen of 727 drugs in an in vitro phenotypic
assay using mouse epiblast stem cell (EpiSC)-derived
OPCs [24]. Another screen of 1200 FDA-approved drugs
in a mouse immortalized oligodendrocyte cell line
identified clobetasol as one of the top ranking compounds
in promoting myelin basic protein expression [34]. Clobe-
tasol is a FDA-approved topical corticosteroid used clinic-
ally for the treatment of various skin disorders including
eczema, psoriasis, alopecia areata, vitiligo, lichen sclerosus
and lichen planus. Unlike benztropine and clemastine,
clobetasol does not inhibit muscarinic receptor subtypes
(M1-M5), nor does it inhibit various kinase isoforms [24].
As a corticosteroid, clobetasol modulates glucocorticoid
receptor signaling in cytoplasm. Clobetasol has been shown
to promote Schwann-cell-mediated myelination in the
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peripheral nervous system [23] and functions as a smooth-
ened (Smo) agonist [43, 44] that activates Hedgehog signal-
ing and stimulates OPC proliferation and differentiation
[10, 27, 34]. Clobetasol is currently approved only for top-
ical administration in humans; however, recent pharmaco-
kinetics data in rodents [24] showed effective blood–brain
barrier penetration following systemic administration. Sev-
eral lines of evidence suggest that the remyelinating efficacy
of clobetasol in our model does not involve a glucocorticoid
anti-inflammatory effect, but rather an action on OPCs, as:
(i) clobetasol induced OPC maturation in pure OPC cul-
tures; (ii) clobetasol promoted remyelination in cerebellar
slices; (iii) clobetasol was effective when given after primary
astrocyte injury, inflammation and demyelination; and (iv)
high-dose dexamethasone did not promote remyelination.
Though dexamethasone has anti-inflammatory actions, it
did not have effect here probably because the acute inflam-
mation in our model is largely resolved by 4 days. Like clo-
betasol, dexamethasone has effects on Smo and Hedgehog
signaling pathways [25, 43, 46], though there is no literature
on dexamethasone action on OPC maturation.
Though our results provide proof of concept for the po-

tential utility of remyelinating drugs in NMO, several ca-
veats are noted in extrapolating the data here to
predicting the efficacy of remyelinating drugs in human
NMO. As mentioned above, there are differences in the
proportions of astrocytes vs. neurons in rodents and
humans, and there may be differences in the biology of
oligodendrocyte maturation and interaction with astro-
cytes and microvascular endothelia. There may be
differences between mice and humans in drug pharmaco-
kinetics and penetration into the central nervous system.
With regard to our mouse model of NMO produced by
passive, intracerebral transfer of AQP4-IgG, though it
recapitulates the major pathological features of human
NMO, it is far from the ideal, not yet realized model of
NMO in which spontaneous AQP4 autoimmunity pro-
duces NMO pathology in spinal cord, optic nerve and
brain. Finally, we note that remyelination requires intact
axons and neuronal viability, which may be heterogeneous
in timing and extent in human NMO.

Conclusion
In summary, our results provide evidence for remyelinat-
ing therapy in NMO, which might be most effective
when administered early during a disease exacerbation.
As remyelination requires intact axons, therapeutics pro-
moting remyelination may be of limited benefit when
administered late in the course of NMO. Because of
their distinct mechanisms of action and targets, remyeli-
nation therapeutics may be efficacious in combination
with therapeutics used currently in NMO, as well as
therapeutics in the development pipeline. For example,
AQP4-IgG targeted approaches, plasma exchange and
immunosuppressants target upstream disease-initiating
events, inflammation and demyelination, while remyeli-
nating drugs would protect against neuronal injury and
reduce the cumulative neurological deficit. Our data
support clinical testing of remyelinating drugs in NMO.
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