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Abstract

be influenced by age and disease status.

as reference.

Introduction: CSF levels of established Alzheimer's disease (AD) biomarkers remain stable despite disease
progression, and non-amyloid non-tau biomarkers have the potential of informing disease stage and progression.
We previously identified complement 3 (C3) to be decreased in AD dementia, but this change was not found by
others in earlier AD stages. We hypothesized that levels of C3 and associated factor H (FH) can potentially
distinguish between mild cognitive impairment (MCl) and dementia stages of AD, but we also found their levels to

Results: We developed a biochemical/bioinformatics pipeline to optimize the handling of complex interactions
between variables in validating biochemical markers of disease. We used data from the Alzheimer's Disease Neuro-
imaging Initiative (ADNI, n =230) to build parallel machine learning models, and objectively tested the models in a
test cohort (n=73) of MCl and mild AD patients independently recruited from Emory University. Whereas models
incorporating age, gender, APOE &4 status, and CSF amyloid and tau levels failed to reliably distinguish between
MCI and mild AD in ADNI, introduction of CSF C3 and FH levels reproducibly improved the distinction between the
two AD stages in ADNI (p < 0.05) and the Emory cohort (p = 0.014). Within each AD stage, the final model also
distinguished between fast vs. slower decliners (p < 0.001 for MCl, p =0.007 for mild AD), with lower C3 and FH
levels associated with more advanced disease and faster progression.

Conclusions: We propose that CSF C3 and FH alterations may reflect stage-associated biomarker changes in AD,
and can complement clinician diagnosis in diagnosing and staging AD using the publically available ADNI database
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Introduction

Diagnosis for Alzheimer’s disease (AD) is significantly
enhanced by the introduction of objective etiologic bio-
markers, [1-3] but there is currently no fluid or imaging
marker to provide unbiased staging information to
complement clinician judgement. Importantly, levels of
cerebrospinal fluid (CSF) AD biomarkers, including
beta-amyloid 1-42 (Ap42), total tau (t-Tau), and tau
phosphorylated at threonine 181 (p-Taujg;), remain
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relatively stable after disease onset, and do not differen-
tiate between mild cognitive impairment due to AD
(MCI) and mild AD dementia [4, 5]. In addition to
amyloid and tau biomarkers, the CSF proteome is a
ready source of non-amyloid, non-tau (NANT) bio-
markers. These CSF proteins can provide staging infor-
mation related to the degree of neurodegeneration or
secondary events associated with different disease
stages, but successful replication of NANT biomarkers
for AD has been hampered by differences in cohorts,
platforms, and analyses to allow for clinical translation.

Among candidate NANT biomarkers, we previously
found CSF C3 levels to be altered in AD using a com-
mercial immunoassay panel [6]. These results were
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replicated in one study using demented AD patients [7]
but not another using non-demented patients from earl-
ier stages (Clinical Dementia Rating of 0.5) [8]. Discrep-
ant findings have also been reported for CSF C3 and its
interacting partner factor H (FH) by mass spectrometry-
based methods [9-11]. Several lines of evidence point to
the importance of characterizing complement activation
through biomarkers in AD. Genome wide association stud-
ies have shown polymorphisms in complement receptor 1
(CR1I) to be associated with genetic risks to AD [12]. Mul-
tiple components of the classical complement pathways
have been associated with neuritic plaques and cerebrovas-
cular amyloid [13], and mouse models for AD with reduced
classical pathway activation showed reduced neuropathol-
ogy [14]. As biomarker-driven clinical trials gain traction in
AD, it is critical to identify AD patients with and without
classical complement activation at baseline. Because dis-
crepant findings related to C3 and FH resulted from prefer-
ential analysis of early (mild cognitive impairment, MCI)
or late (dementia) AD stages, we hypothesized that C3 and
FH levels were altered (in keeping with complement activa-
tion) during the transition from MCI to dementia in
AD. At the same time, cut-off values may be difficult to de-
rive because demographic variables (such as age-related
changes) and comorbid conditions can confound the inter-
pretation of C3 and FH. This limitation can be overcome
with machine learning (ML) strategies built on real world
data similarly confounded by complex interactions to pre-
dict class membership, but often suffer from over-training
which limits their generalization [6, 8].

Here we built a new analytical pipeline to bridge the
gaps between biomarker development, independent
cohort testing, machine learning, and t-statistics to de-
termine if CSF C3 and FH are useful staging biomarkers
in AD. This method, which we call XMITTN (cross[X]-
validation, Machine learning, Independent Training and
Test set, and Null hypothesis testing, Fig. 1), objectively
assesses nine ML algorithms in any given dataset
through 1000-fold cross-validation in a training dataset,
and chooses appropriate ML models according to a
priori p-values. The learned biomarker-ML models —
not just the biomarker levels — are then directly applied
to the test dataset without building new models, with
p-values generated through 1000-fold bootstrapping.
We used data from the publically available multi-
center Alzheimer’s Disease Neuro-imaging Initiative
(ADNI) and an independent cohort at Emory University
to test our hypothesis that a biomarker-ML combination
provides staging information in AD.

Methods

Study participants

Two cohorts of patients were included in the current
study. ADNI data used in the preparation of this article
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Fig. 1 Graphical representation of XMITTN. Two independent
datasets were included, with the ADNI cohort as the training set and
the Emory cohort as the independent test set. Within the ADNI
cohort, 1000-fold cross validation is performed with each biomarker
feature set (without or without C3 and FH) to determine which
biomarker-ML combination results in internally validated separation
between MCl and AD. The successful biomarker-ML combination is
then tested in the test set through 1000-fold bootstrapping

were obtained from the ADNI database (adniloni.u
cla.edu; adni.loni.usc.edu). Briefly, ADNI (PL: Michael W.
Weiner, MD) is the result of efforts of many co-
investigators from a broad range of academic institutions
and private corporations, and subjects have been re-
cruited from over 50 sites across the U.S. and Canada
[15]. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research, approxi-
mately 200 cognitively normal older individuals to be
followed for three years, 400 people with MCI to be
followed for three years and 200 people with early AD to
be followed for two years (www.adni-info.org). ADNI-1
enrolled about 800 participants with multiple longitu-
dinal biomarker and cognitive measurements at 6 or
12 month intervals up to four years.

The Emory validation cohort included 73 consecu-
tive patients recruited and longitudinally followed in


http://www.adni-info.org

Hu et al. Acta Neuropathologica Communications (2016) 4:14

the Emory Cognitive Neurology Clinic or the Emory
Alzheimer’s Disease Research Center. The study was
approved by the Emory University Institutional Review
Board, and informed consent was obtained from all sub-
jects or their authorized representatives. All participants
underwent standard neurological and cognitive assessments
and were assigned diagnosis according to consensus criteria
including those for mild cognitive impairment (MCI) [16,
17] and AD (Clinical Dementia Rating 1 or 2) [18, 19]. For
the purpose of this study, only MCI subjects with CSF bio-
markers consistent with AD were included (# = 51). Com-
pared to ADNI subjects, Emory subjects were younger
(68.7 vs. 74.5 yr, p<0.001), more likely to be women
(534 % vs. 39.6 %, p=0.037), and less likely to have the
APOE &4 allele (45.2 % vs. 66.5 %, p = 0.001, Table 1).

Procedures

CSF samples from ADNI subjects were collected as pre-
viously described [20, 21]. Samples from Emory subjects
were collected according to strict protocols. At collec-
tion, participants were >21 years of age and in good gen-
eral health, having no other psychiatric or major medical
diagnoses that could contribute significantly to cognitive
impairment or dementia other than the primary neuro-
degenerative disorder. CSF samples were collected be-
tween 8 AM and 2 PM without overnight fasting. These
time frames were chosen as CSF AP42 levels during
these times represent approximately 95 %-105 % of aver-
age CSF AP42 over time [22]. CSF was immediately ali-
quotted after collection and before freezing, and
otherwise we used the ADNI biofluid protocols includ-
ing the use of 24 G Sprotte needles, aspiration syringes,
and transfer into 15 mL polypropylene tubes.

Biomarker measurement in ADNI
CSF levels of AP42, t-Tau, and p-Taug; in ADNI were
measured as previously described. MCI subjects with
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CSF Tau/AP42 ratio greater than or equal to 0.39 were
classified as having MCI due to AD (abbreviated as MCI
hereafter). CSF levels of FH and C3 were measured ac-
cording to a modified manufacturer's protocol [23].
Briefly, 4 uL of never-thawed CSF was diluted at 1:2 with
a protease inhibitor mix, and then further diluted a final
dilution of 1:800. 50 pL of the diluted CSF was mixed
with 25 pL of beads and 25 pL of buffer and allowed to
mix on shaker for 18 hr at 4 °C (final CSF dilution
1:1600). After thorough washing, 25 pL of secondary
antibodies were added to the beads and allowed to mix
for 3 hr at room temperature. Substrates were allowed
to develop for 30 min at room temperature. CSF C3 and
FH levels were available for 135 subjects with MCI (CSF
t-Tau/Ab42 > 0.39) and 95 subjects with mild AD. These
230 subjects were entered for subsequent analyses.

Biomarker measurement in the independent validation
cohort

CSF AD biomarker levels (Ap42, t-Tau, p-Tau;g;) among
Emory subjects were measured using the commercially
available INNO-BIA AlzBio3 kits (Fujiribio, Ghent,
Belgium). Our center achieves an average inter-plate
coefficient of variation of 11.2 % for Ap42, 10.2 % for
t-Tau, and 13.8 % for p-Taujg;. Only MCI subjects
with CSF Tau/AP42 ratio greater than or equal to
0.39 were included. CSF C3 and FH levels were mea-
sured using the commercially available Milliplex MAP
Kit: Human Neurodegenerative Disease Panel (Millipore,
Billerica, MA) in the xXMAP Luminex platform (Luminex
Corp, Austin, TX) using a modified manufacturer's proto-
col. Specifically, 5 pL of never-thawed CSF was diluted at
1:400 without protease inhibitors, and 25 pL of CSF was
added to a mixture containing 25 pL of antibody-beads
and 50 pL of buffer (to give sufficient volume for mixing)
for 2 hr at room temperature (final CSF dilution of
1:1600). After thorough washing, 25 pL of secondary

Table 1 Demographic and biomarker information for subjects from Emory and ADNI

ADNI Emory

MCI (n=135) AD (n=95) MCI (n=51) AD (n=22)
Male (%) 86 (64 %) 53 (56 %) 28 (55 %) 6 (27 %)
Age (S.D.), yr 74.7 (7.6) 743 (7.7) 69.0 (7.4) 65.6 (8.8)
Education (S.D)), yr 158 (2.9) 149 (3.1) 154 (2.5 139 (24)
Having at least one APOE4 allele 86 (64 %) 67 (70 %) 25 (49 %) 8 (36 %)
CSF
AB42 (pg/mL) 136.7 314) 143.5 (39.9) 129.8 (55.3) 168.3 (104.0)
t-Tau (pg/mL) 122.8 (60.6) 122.5 (57.8) 97.7 (49.6) 1203 (60.0)
p-Tausg; (pg/mL) 424 (16.1) 414 (19.9) 556 (25.7) 61.1 (26.2)
FH (pg/mL) 1568 (629) 1750 (835) 1594 (493) 1692 (474)
Z-score, log(C3) —0.060 (0.929) 0.061 (1.084) —0481 (1.031) —0.064 (0.784)

MCI: mild cognitive impairment with CSF t-Tau/AB42 > 0.39; AD: mild dementia due to Alzheimer's disease
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antibodies were then added to the beads and allowed
to incubate for 1 hr at room temperature. Substrates
were allowed to develop for 30 min at room temperature.
The lower limit of detection was 143 pg/mL for C3
and 7 pg/mL for FH. Our center achieves an average
inter-plate coefficient of variation of 8.8 % for C3 and
7.8 % for FH, and individual samples with >20 % vari-
ations in measurements were repeated. A subset of
samples (8 MCI and 8 mild AD) were also analyzed
by liquid chromatography-tandem mass spectrometry
(LC-MS/MS) to account for potential technical differ-
ences in measurements.

CSF C3 and FH levels - Mass Spectrometry

CSF C3 and FH levels were also analyzed in 16 randomly
chosen Emory MCI and mild AD subjects in two inde-
pendent runs of (LC/MS-MS) as described previously
[24]. Aliquots of CSF (20 pL) from each subject was re-
solved on a 10 % SDS-PAGE gel and then five gel bands
corresponding to molecular weight ranges underwent
overnight trypsin digestion. Extracted peptides were ana-
lyzed by LC-MS/MS on a hybrid LTQ XL Orbitrap mass
spectrometer (ThermoScientific). The MS/MS spectra
were then matched to a complete semi-tryptic human
protein database (NCBI reference database v.54) util-
izing a target-decoy approach and peptides spectral
matches filtered until achieving a false discovery rate
(FDR) of<1 % [25, 26]. Label free relative protein
quantification was performed based on peptide spec-
tral counts (SCs) and the extracted ion current mea-
surements. Mann Whitney U-tests were used to
compare FH and C3 levels between MCI-AD and
mild AD (n#=16) due to the small sample size.

Statistical analysis
Baseline statistical analyses and longitudinal cognitive
analyses were performed using IBM SPSS Statistics
Version 22 (IBM, Armock, NY). At baseline, chi-squared
tests were used to determine differences in dichotomous
variables, and Student’s T-tests or analyses of variance
were used to analyze continuous variables. CSF C3 levels
were not distributed normally and were log-transformed.
Due to differences in Emory and ADNI protocols in pri-
mary incubation time and temperature (ADNI assay no
longer available), C3 levels measured from Emory sub-
jects were lower than C3 levels from ADNI subjects (no
significant difference in FH levels). For comparison pur-
poses, log-transformed C3 levels were normalized into
Z-scores using C3 levels from cognitively normal sub-
jects in ADNI (n=115) or Emory (n =25, Additional
file 1: Table S1). FH levels were distributed normally
and not adjusted before analysis.

Nine ML algorithms were included in XMITTN:
logistic regression, perceptron, decision tree, boosted

Page 4 of 10

decision tree, gradient boosting, Naive Bayesian, random
forests (RF), K-nearest neighbors, and support vector
machine (SVM). Some of these were previously applied
to CSF AD biomarkers analysis [6, 8], but the import-
ance of each biomarker can be over-stated due to these
algorithms’ intrinsic properties and over-training. We
designed XMITTN to evaluate these models through
null hypothesis testing in four stages:

Stage One involves 1000-fold cross validation (CV)
using the training (ADNI) cohort. 1000 random chosen
training cohorts (1 =180) are simultaneously processed
through each of the 9 ML algorithms, with 1000 match-
ing sets of internal CV cohort (n=50). In Stage Two,
each ML will perform two classification experiments on
the same training/CV cohorts. Experiment 1 incorpo-
rated 6 features: age, gender, presence of at least one
APOE &4 allele, CSF AB42, CSF t-Tau, and CSF p-Tauyg;.
Experiment 2 had all features included in Experiment 1
plus levels of C3 and FH. Within each training cohort x
ML algorithm x experiment combination, a model is
built to maximize the classification between MCI and
mild AD, and then tested on the CV cohort. The perform-
ance of each unique model generates a Gini index (from 0
to 1) which assesses the improvement in classification
performance from chance alone, such that every ML algo-
rithm will have an associated Gini index for each CV co-
hort. Because of the random separation of the ADNI
cohort into 1000 training and CV sets, the Gini indices
over 1000-fold CV form a normal distribution curve for
each ML algorithm x experiment combination.

In Stage Three, the performance of each ML algorithm
will be assessed by null hypothesis testing in the CV co-
horts using the distribution curve of Gini indices. In this
stage, the null hypothesis is true when the classification
by ML is no better than chance alone. Because classifica-
tion accuracy by chance alone has Gini index of 0, the
frequency of this across the 1000-fold CV is equivalent
to the area under the curve to the left of Gini index of 0.
When the Gini index cannot be logically less than zero
(classification performance is equivalent to chance when
Gini index < 0), the frequency of Gini=0 for each ML
algorithm x experiment combination is equivalent to the
p-value for null hypothesis testing. This allows for a
more objective selection of ML algorithms for the inde-
pendent test cohort, with the threshold of p<0.05 in
Experiment 1 or 2 across 1000-fold CV for each ML
algorithm. Because each model is to be tested in an
independent validation cohort, we did not adjust for
multiple comparisons at this stage.

The final stage of XMITTN applies the model(s) opti-
mized on the training (ADNI) set to the independent
Emory test set. Conventionally, one accuracy measure
will be calculated from the test set using a cut-off value
derived from the training set. Applying the principle of
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null hypothesis testing to the test set, we used bootstrap-
ping to generate 1000 evenly distributed test sets (50
MCI-AD, 50 AD). Gini indices derived from these sets
can then be compared with classification by chance
alone, with the frequency of Gini = 0 being equivalent to
the p-value. If this final p-value is less than 0.05 or
threshold adjusted for multiple comparisons, then the
particular experiment (feature set x ML algorithm com-
bination) was interpreted as demonstrating a significant
improvement from classification by chance alone in two
separate datasets.

Results

Univariate analysis of CSF C3 and FH levels in two
datasets and two platforms

We found no significant differences in CSF levels of C3
and FH between MCI and mild AD in the training or test
set (Fig. 2). A subset of subjects (8 MCI and 8 mild AD)
were analyzed by LC/MS-MS which also failed to show
any significant level differences (data not shown), suggest-
ing that the findings were not biased by the platform.

CSF C3 and FH levels are influenced by many factors

At the same time, it is not surprising that direct compar-
isons of biomarker levels without taking into account in-
fluences of age, gender, and other factors would show no
level differences. To better understand if CSF C3 and
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FH levels are influenced by demographic factors, we per-
formed mixed linear analysis in the entire ADNI CSF
dataset (including those with normal cognition and
MCI-Other, Additional file 1: Table S2). For C3, there
were main effects from age, diagnosis, and AP42, with
older subjects and MCI-Other subjects having greater
CSF C3 levels. For FH, there were main effects from age,
diagnosis, diagnosis x age, AP42, and p-Tau;g;. Older pa-
tients with CSF consistent with AD have higher FH
levels, but age did not influence FH levels among sub-
jects whose CSF AD biomarkers were normal. Thus,
even though univariate analysis did not reveal any CSF
C3 and FH level differences between MCI and mild AD,
direct comparison of C3 and FH levels without account-
ing for effects from age and diagnosis at the patient and
biomarker level — rather than at the model level — may
have masked stage-dependent differences in C3 and FH
levels. Approaches beyond univariate analyses are thus
necessary to address whether C3 and FH levels differed
between MCI and mild AD.

Using machine learning to analyze CSF C3 and FH levels
in MCl and mild AD

To account for the complicated relationship between C3,
FH, age, diagnosis, and established CSF AD biomarkers,
we used XMITTN to determine if the introduction of C3
and FH levels into a two-class classification model can
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enhance the distinction between MCI and mild AD. In
the ADNI cohort, we found through 1000-fold CV that, as
expected, a biomarker panel including demographic vari-
ables, APOE €4 status, and CSF amyloid and tau bio-
markers could not sufficiently distinguish between MCI
and mild AD using any of the nine ML algorithms
(Table 2). After we introduced C3 and FH as additional
features, we found improved classification of MCI and
mild AD in two algorithms (p = 0.043 for RF, p = 0.033 for
SVM). We then applied the RF and SVM algorithms built
on the training dataset to the independent test dataset.
The ADNI SVM model (Fig. 3) reproducibly distinguished
between MCI and mild AD in the Emory cohort (p = 0.014)
but the ADNI RF model did not (p = 0.595). In the Emory
cohort, the ADNI SVM model had an average sensitivity of
59.3 %, an average specificity of 62.9 %, and an average ac-
curacy of 61.1 % over 1000 bootstrapped samples.

Association between biomarker-based staging and
cognitive functions

Because CSF amyloid and tau biomarker levels are asso-
ciated with differences in longitudinal cognitive func-
tions, we hypothesized that classification using CSF C3
and FH levels can enhance the prediction of longitudinal
cognitive decline. For each subject in the Emory cohort,
we calculated a dementia probability score P(AD). A
subject who is consistently classified as mild AD in
combined ADNI-Emory SVM validations has a P(AD) of
100 %, and a subject who is consistently classified as
MCI across all SVM validations has a P(AD) of 0 %. For
simplicity, we divided MCI subjects in the Emory cohort
into those with P(AD) <50 % (likely MCI) and those with
P(AD) = 50 % (likely mild dementia). Among MCI subjects
with longitudinal follow-up (n=44), the P(AD) <50 %
group had less executive dysfunctions than P(AD) =50 %
group (difference in Z-score of 0.48, 95 % CI 0.20 — 0.77,
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p =0.001, Fig. 3), as well as a trend of less memory dys-
function (difference in Z-score of 0.78, 95 % CI -0.09 —
1.66, p =0.078, Additional file 1: Table S3). We interpret
this as the P(AD) >50 % MCI group having more severe
cognitive dysfunction and a cognitive phenotype closer
to mild AD. Among mild AD subjects with longitudinal
follow-up (n=10), the P(AD) <50 % group had slower
rates of decline in executive functions, with a differ-
ence in Z-score of 0.035 per month (95 % CI 0.011 —
0.059, p=0.007, Fig. 4). There was also a trend that
the P(AD) <50 % having less memory dysfunction than
the P(AD)>50 % group. We interpret this as the
P(AD) <50 % mild AD group having less severe cogni-
tive dysfunction and a cognitive phenotype closer to
MCI. Thus, using longitudinal cognitive data and
XMITTN, we confirmed that the ADNI SVM model
incorporating C3 and FH levels can enhance the dis-
tinction between MCI and mild AD in a completely
different patient population.

Discussion

C3 and FH levels have been repeatedly associated with
AD in the past, although the findings were not always
consistent between studies. We analyzed the complex re-
lationship between C3, FH, established CSF AD bio-
markers, and AD stages, and developed a statistically
rigorous analytical pipeline XMITTN to select not only
demographic and fluid biomarkers but also ML algo-
rithms themselves as biomarkers. Using clinical diagno-
sis as pseudo-gold standard, we successfully improved
the distinction between early (MCI) and later (mild de-
mentia) stages of AD in the independent (ADNI) and
test (Emory) datasets. Importantly, the XMITTN-driven
subclassification according to P(AD) within each clinical
AD stage identified endophenotypes with different pat-
terns of cognitive impairment, especially involving the

Table 2 XMITTN output for ADNI and Emory cohorts assessing whether classification using two sets of variables is better than

chance

Machine learning algorithm p-value, Experiment 1,

p-value, Experiment 2,

p-value, Experiment 1, p-value, Experiment 2,

ADNI cohort ADNI cohort Emory cohort Emory cohort
Logistic 0.510 0.140
Perceptron 0.792 0912
Decision Tree 0.197 0.161
Random Forests 0.128 0.043 0.560 0.595
Naive Bayes 0403 0.367
K-Nearest Neighbor 0.106 0.069
Boosted Decision Tree 0.399 0.245
Gradient Boosting 0.185 0.104
Support Vector Machine 0.125 0.033 0.266 0.014

Experiment 1 includes 6 features: age, gender, presence of at least one APOE &4 allele, CSF AB42, CSF t-Tau, and CSF p-Tau,g;, and no ML algorithm performed
better than chance in distinguishing between the two AD stages. Experiment 2 has all previous features plus C3 and FH and levels, and achieved improved
classification in two algorithms in the ADNI cohort and support vector machine in the Emory cohort (p < 0.05 shown in bold)
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Replication of initially promising results remains a fun-
damental challenge in translational biomarker research
[27]. Our hypothesis related to C3 being a potential
classifier between MCI and mild AD stemmed from
conflicting findings of previous studies using CSF

executive domain. We propose that a biochemical
model predicting AD stages built on a publically avail-
able dataset (ADNI) will enhance individual clinicians’
diagnostic assignment of MCI vs. AD in clinical and re-
search settings.
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immunoassays [6-8, 28]. One of us (WTH) found CSF
C3 levels to be decreased in mild AD in an autopsy-
confirmed series [6], but a follow-up study using the
same commercial analytical platform showed subjects
with Clinical Dementia Rating of 0.5 had normal CSF
C3 levels [8]. A recent analysis using ADNI data also
showed minimal difference in absolute C3 and FH
levels, even though there was a hint that C3 and FH
levels were associated with cognitive decline over time
[23]. While there have been significant discussions on
the standardization of CSF collection and assay perform-
ance, there is little uniformity in which statistical or
informatics-based approach should be used to analyze
biomarker measures. Linear regression remains the most
common first pass strategy to account for factors known
to influence biomarker levels, and ML approaches are
preferred to account for influences from known and un-
known factors. At the same time, ML algorithms are de-
signed to optimize desired outcomes in a single cohort,
which makes it difficult to assess whether the ML-
outcome pairing is reproducible. Such problems are not
unique to fluid biomarker analysis, as MRI data are often
subjected to various analytical platforms which some-
times give rise to incongruent conclusions. It is thus crit-
ical to recognize that the translation of any promising
biomarker to clinical applications involves not only assay
standardization but also analytical standardization. In
other word, the selection of the appropriate model and
training set is likely as important as the biomarker
identities. As others have pointed out [29], the exact
context of biomarkers (screening in a community co-
hort, differential diagnosis, clinical trial design) also
needs to be considered in the construction of future
ML models such that the appropriate model is as reli-
able and reproducible as the actual biochemical ana-
lytes themselves [30].

Exactly how FH and C3 alterations are mechanistically
involved in AD remains unclear. C3 and FH polymor-
phisms have been both associated with AD [31]. Earlier
data showed that C3 deactivation enhanced AD path-
ology in transgenic mice [32], and more recent data
showed that acetylcholine enhances C3 activation in as-
trocytes in vitro [33]. FH regulates C3 levels [34], is itself
found on neuritic plaques [35], and may be regulated by
amyloid toxicity [36]. CSF C3 and FH levels may thus
directly reflect the interplay between AD neuropathology
and neuroinflammation. At the same time, altered CSF
levels of C3 and FH may not be unique to AD, as similar
changes have been reported in frontotemporal degener-
ation [6] and «a-synucleinopathies [7]. The XMITTN
model suggests that mild AD is associated with lower
C3 levels than MCI, and it is likely that the imperfect
syndromic diagnosis is not the ideal gold standard for
model building. Instead of considering MCI and AD as
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two distinct entities each with a homogeneous compos-
ition, the biggest advantage of model like XMITTN may
be its ability to identify distinct subgroups, each with
relatively uniform membership according to objective
biomarkers. Future studies can determine if patients
showing CSF complement changes continue to demon-
strate similar biochemical changes longitudinally, and
whether there is a transition to cell-mediated inflamma-
tion in later AD stages. Treatment trials can also opti-
mally match the therapeutics’ proposed mechanism of
action with the matching patients to maximize the
chance of a positive outcome.

Like the analytes and interactions they are designed to
model, not all MLs have the same theoretical underpin-
ning or application. The performance of each ML is
dependent on sample size, data dimensionality, and
inter-relationship between the variables. For example, lo-
gistic regression relies on the assumption that there is
sufficient power to model the association between inde-
pendent and dependent variables as linear relationships.
Tree-based approaches such as RF and gradient boosting
do not rely on linear assumptions, and can better handle
categorical independent variables. Naive Bayesian per-
forms better in the absence of interactions between in-
dependent variables, and do not project well onto a CV
or test set when a particular feature combination is not
present (probability of 0) in the training set. SVM using
a linear kernel is similar to logistic regression, but using
a non-linear kernel creates more freedom in modeling
with better handling of high dimensional data and noise.
At the same time, better performance and over-training
often come hand-in-hand [37, 38]. While computational
methods exist to reduce overtraining [39], replication of
the model (including biomarker levels and ML algo-
rithm) across independent cohorts should remain the
gold standard in identifying reproducible findings [40].

This study is built on two large, independent, well-
characterized cohorts and detailed biochemical and bio-
informatics analysis, but also has some weaknesses. CSF
C3 levels were measured at Emory and ADNI using dif-
ferent assays due to the discontinuation of ADNI C3 as-
says, but the Z-score transformation within each cohort
and the use of a high-dimensional data analysis allowed
comparison of the two cohorts' data. We did not exam-
ine the conversion rate from MCI to dementia, as the
clinician-based assessment of conversion is susceptible
to the same bias as the distinction between MCI and
dementia. Because our hypothesis bore from previous
studies on MCI-AD and mild AD dementia, we did
not assess our model as a classifier between pre-
symptomatic AD and MCI-AD, or between mild and
severe AD dementia which can be assessed in the
future. Since studies have failed to show any level
difference between MCI-AD and healthy seniors, the
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likelihood of a C3/FH model distinguishing between
mild and severe AD dementia is much greater than it
identifying MCI-AD from normal aging. We also did
not incorporate findings from cerebral amyloid im-
aging, as an independent ML-based assessment of cere-
bral amyloid deposition is necessary to determine if the
lack of association between ante- and post-mortem
measures of amyloid can be resolved [27]. Finally, we
did not measure levels of other complements or related
proteins, and their levels may further inform baseline
and longitudinal differences between the different bio-
chemical cohorts.

Conclusions

We propose that along with established CSF AD bio-
markers, CSF C3 and FH levels will significantly enhance
the distinction of different AD stages in clinical practice
and trial design, minimize bias in single clinician or con-
sensusbased diagnostic mechanisms, and reduce the bio-
chemical heterogeneity within the existing syndromic
categories. Future studies can assess the correlation be-
tween peripheral and central complement activation pat-
terns, especially if complement modulating therapies will
be considered in AD.

Additional file

Additional file 1: Table S1. Demographic and biomarker information
for cognitive normal subjects and MCI patients with CSF t-Tau/AB42 <
0.39 in the ADNI and Emory cohorts. Table S2. Main effects from mixed
linear modeling of CSF FH and C3 levels in ADNI. In each model, FH or
C3 was entered as the dependent variable; age, gender, presence of
APOE €4 allele, diagnosis, AB42, t-Tau, p-Tau,g;, gender X age, presence of
APOE €4 allelle X age, and diagnosis X age were entered as fixed factors;
and age was also entered as a random factor. Factors with main effect
p > 0.10 were removed in a step-wise fashion to arrive at final model.
See text and Fig. 2 for effects from different diagnostic categories.
Table S3. Mixed linear modeling of Pxp-based diagnostic classification
and time (in months) on longitudinal memory and executive functions
in the Emory validation cohort. A) Among patients initially classified as
MCI with longitudinal follow-up (n=44), reclassification using Pap showed
differences in absolute executive Z-scores between those reclassified as
likely MCl vs. likely mild AD, but no difference in rates of executive function
decline or memory functions. B) Among patients initially classified as mild
AD with longitudinal follow-up (n=10), only time was associated with
longitudinal memory and executive function decline in this underpowered
subgroup. (DOCX 21 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

WTH conceived the study design, participated in the collection and analysis of
CSF data, developed the XMITTN framework, and drafted the manuscript. KDW
performed the biomarker assays and drafted the manuscript. PT wrote the
open-sourced XMITTN code, and drafted the manuscript. TPN performed the
biomarker assays, performed baseline statistical analysis, and drafted the
manuscript. JCH performed the biomarker assays and critically revised the
manuscript. RCL participated in the collection and analysis of CSF data, and
critically revised the manuscript. MG participated in the collection and analysis
of CSF data, and critically revised the manuscript. CMH, AIL, and JIM
participated in the study design, collection of CSF, and critical revision

Page 9 of 10

of the manuscript. EKL participated in the conception of the study, provided
bioinformatics consultation during the development of XMITTN, and critically
revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This study has been supported by the Viretta Brady Discovery Fund, U01
AG042856, the American Federation for Aging Research, K23 AG016976, and
Emory University. Data collection and sharing for this project was funded by
the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of
Health Grant UO1 AG024904). ADNI is funded by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengineering, and
through generous contributions from the following: Abbott; Alzheimer's
Association; Alzheimer's Drug Discovery Foundation; Amorfix Life Sciences
Ltd,; AstraZeneca; Bayer HealthCare; BioClinica, Inc,; Biogen Idec Inc,; Bristol-
Myers Squibb Company; Eisai Inc; Elan Pharmaceuticals Inc; Eli Lilly and
Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech,
Inc; GE Healthcare; Innogenetics, N.V.; IXICO Ltd,; Janssen Alzheimer
Immunotherapy Research & Development, LLC,; Johnson & Johnson
Pharmaceutical Research & Development LLC,; Medpace, Inc; Merck & Co,,
Inc; Meso Scale Diagnostics, LLC,; Novartis Pharmaceuticals Corporation;
Pfizer Inc; Servier; Synarc Inc; and Takeda Pharmaceutical Company. The
Canadian Institutes of Health Research is providing funds to support ADNI
clinical sites in Canada. Private sector contributions are facilitated by the
Foundation for the National Institutes of Health (www.fnih.org). The grantee
organization is the Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimer's Disease Cooperative Study at
the University of California, San Diego. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of California, Los Angeles and
later, at the University of Southern California. The study sponsors have no role
in the study design; collection, analysis, and interpretation of data; writing the
report; and the decision to submit the report for publication.

Data used in preparation of this article were obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such,
the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf

Author details

'Department of Neurology, Emory University School of Medicine, 615
Michael Street, 505 F, Atlanta, GA 30322, USA. “Center for Neurodegenerative
Diseases, Emory University School of Medicine, Atlanta, GA, USA. 3Alzheimer's
Disease Research Center, Emory University School of Medicine, Atlanta, GA,
USA. *Department of Biochemistry, Emory University School of Medicine,
Atlanta, GA, USA. °School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA, USA.

Received: 18 January 2016 Accepted: 19 January 2016
Published online: 17 February 2016

References

1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The
diagnosis of mild cognitive impairment due to Alzheimer's disease:
recommendations from the National Institute on Aging-Alzheimer's
Association workgroups on diagnostic guidelines for Alzheimer's disease.
Alzheimers Dement. 2011;7(3):270-9.

2. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS,
Petersen RC, et al. Cerebrospinal fluid biomarker signature in
Alzheimer's disease neuroimaging initiative subjects. Ann Neurol.
2009;65(4):403-13.

3. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al.
Toward defining the preclinical stages of Alzheimer's disease:
recommendations from the National Institute on Aging-Alzheimer's
Association workgroups on diagnostic guidelines for Alzheimer's disease.
Alzheimers Dement. 2011;7(3):280-92.

4. Buchhave P, Blennow K, Zetterberg H, Stomrud E, Londos E, Andreasen N,
et al. Longitudinal study of CSF biomarkers in patients with Alzheimer's
disease. PLoS One. 2009:4(7), e6294.


dx.doi.org/10.1186/s40478-016-0277-8
http://www.fnih.org
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Hu et al. Acta Neuropathologica Communications (2016) 4:14

20.

21.

22.

23.

24.

25.

26.

27.

Zetterberg H, Pedersen M, Lind K, Svensson M, Rolstad S, Eckerstrom C,

et al. Intra-individual stability of CSF biomarkers for Alzheimer's disease over
two years. J Alzheimers Dis. 2007;12(3):255-60.

Hu WT, Chen-Plotkin A, Amold SE, Grossman M, Clark CM, Shaw LM, et al.
Novel CSF biomarkers for Alzheimer's disease and mild cognitive
impairment. Acta Neuropathol. 2010;119(6):669-78.

Wang Y, Hancock AM, Bradner J, Chung KA, Quinn JF, Peskind ER, et al.
Complement 3 and factor h in human cerebrospinal fluid in Parkinson's
disease, Alzheimer's disease, and multiple-system atrophy. Am J Pathol.
2011;178(4):1509-16.

Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, et al.
Multiplexed immunoassay panel identifies novel CSF biomarkers for
Alzheimer's disease diagnosis and prognosis. PLoS One. 2011,6(4), e18850.
Finehout EJ, Franck Z, Choe LH, Relkin N, Lee KH. Cerebrospinal

fluid proteomic biomarkers for Alzheimer's disease. Ann Neurol.
2007,61(2):120-9.

Jahn H, Wittke S, Zurbig P, Raedler TJ, Arlt S, Kellmann M, et al. Peptide
fingerprinting of Alzheimer's disease in cerebrospinal fluid: identification
and prospective evaluation of new synaptic biomarkers. PLoS One.
2011;6(10), e26540.

Mattsson N, Ruetschi U, Pijnenburg YA, Blankenstein MA, Podust VN, Li S,
et al. Novel cerebrospinal fluid biomarkers of axonal degeneration in
frontotemporal dementia. Mol Med Rep. 2008;1(5):757-61.

Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al.
Genome-wide association study identifies variants at CLU and CR1
associated with Alzheimer's disease. Nat Genet. 2009:41(10):1094-9.
Verbeek MM, Otte-Holler |, Veerhuis R, Ruiter DJ, De Waal RM. Distribution of
A beta-associated proteins in cerebrovascular amyloid of Alzheimer's
disease. Acta Neuropathol. 1998,96(6):628-36.

Zhou J, Fonseca M|, Pisalyaput K, Tenner AJ. Complement C3 and C4
expression in Cl1q sufficient and deficient mouse models of Alzheimer's
disease. J Neurochem. 2008;106(5):2080-92.

Weiner MW, Aisen PS, Jack Jr CR, Jagust WJ, Trojanowski JQ, Shaw L, et al.
The Alzheimer's disease neuroimaging initiative: progress report and future
plans. Alzheimers Dement. 2010,6(3):202-11. e7.

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The
diagnosis of mild cognitive impairment due to Alzheimer's disease:
Recommendations from the National Institute on Aging and Alzheimer's
Association Workgroup. Alzheimers Dement. 2011;7(3):270-9.

Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild
cognitive impairment: clinical characterization and outcome. Arch Neurol.
1999;56(3):303-8.

Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P,
Cummings J, et al. Research criteria for the diagnosis of Alzheimer's disease:
revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007,6(8):734-46.
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM.
Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work
Group under the auspices of Department of Health and Human Services
Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939-44.

Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, et al.
Clinical Core of the Alzheimer's Disease Neuroimaging Initiative: progress
and plans. Alzheimers Dement. 2010;6(3):239-46.

Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC,
et al. Update on the biomarker core of the Alzheimer's Disease Neuroimaging
Initiative subjects. Alzheimers Dement. 20106(3):230-8.

Bateman RJ, Wen G, Morris JC, Holtzman DM. Fluctuations of CSF amyloid-
beta levels: implications for a diagnostic and therapeutic biomarker.
Neurology. 2007;68(9):666-9.

Toledo JB, Korff A, Shaw LM, Trojanowski JQ, Zhang J. Low levels of
cerebrospinal fluid complement 3 and factor H predict faster cognitive
decline in mild cognitive impairment. Alzheimers Res Ther. 2014;6(3):36.
Dammer EB, Duong DM, Diner |, Gearing M, Feng Y, Lah JJ, et al. Neuron
enriched nuclear proteome isolated from human brain. J Proteome Res.
2013;12(7):3193-206.

Elias JEGygi SP. Target-decoy search strategy for increased confidence in
large-scale protein identifications by mass spectrometry. Nat Methods.
2007;4(3):207-14.

Xu P, Duong DM, Peng J. Systematical optimization of reverse-phase
chromatography for shotgun proteomics. J Proteome Res. 2009,8(8):3944-50.
Hu WT, Shaw LM, Trojanowski JQ. Alzheimer's disease biomarkers: walk with
deliberate haste, don't run blithely on? Acta Neuropathol. 2013;126(5):625-9.

28.

29.

30.

31

32.

33

34.

35.

36.

37.

38.

39.

40.

Page 10 of 10

Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L, et al.
Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in
Alzheimer's disease. J Neural Transm. 2012;119(7):789-97.

Adamczuk K, Schaeverbeke J, Vanderstichele HM, Lilja J, Nelissen N,

Van Laere K, et al. Diagnostic value of cerebrospinal fluid Abeta ratios in
preclinical Alzheimer's disease. Alzheimers Res Ther. 2015;7(1):75.

The Ronald and Nancy Reagan Research Institute of the Alzheimer's
Association and the National Institute on Aging Working Group. Consensus
report of the Working Group on: "Molecular and Biochemical Markers of
Alzheimer's Disease”. Neurobiol Aging. 1998;19(2):109-16.

Proitsi P, Lupton MK, Dudbridge F, Tsolaki M, Hamilton G, Daniilidou M,

et al. Alzheimer's disease and age-related macular degeneration have
different genetic models for complement gene variation. Neurobiol Aging.
2012;33(8):1843.e9-17.

Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, et al.
Prominent neurodegeneration and increased plaque formation in
complement-inhibited Alzheimer's mice. Proc Natl Acad Sci U S A. 2002;
99(16):10837-42.

Darreh-Shori T, Vijayaraghavan S, Aeinehband S, Piehl F, Lindblom RP,
Nilsson B, et al. Functional variability in butyrylcholinesterase activity
regulates intrathecal cytokine and astroglial biomarker profiles in patients
with Alzheimer's disease. Neurobiol Aging. 2013;34(11):2465-81.

Ingram G, Hakobyan S, Hirst CL, Harris CL, Pickersgill TP, Cossburn MD, et al.
Complement regulator factor H as a serum biomarker of multiple sclerosis
disease state. Brain. 2010;133(Pt 6):1602-11.

Strohmeyer R, Ramirez M, Cole GJ, Mueller K, Rogers J. Association of
factor H of the alternative pathway of complement with agrin and
complement receptor 3 in the Alzheimer's disease brain. J Neuroimmunol.
2002;131(1-2):135-46.

Lukiw WJ, Alexandrov PN. Regulation of complement factor H (CFH) by
multiple miRNAs in Alzheimer's disease (AD) brain. Mol Neurobiol. 2012;
46(1):11-9.

Kloppel S, Abdulkadir A, Jack Jr CR, Koutsouleris N, Mourao-Miranda J,
Vemuri P. Diagnostic neuroimaging across diseases. Neuroimage.
2012;61(2):457-63.

Sebald DJ, Bucklew JA. Support vector machine techniques for nonlinear
equalization. IEEE Trans Signal Process. 2000;48(11):3217-26.

Lee EK. Large-scale optimization-based classification models in medicine
and biology. Ann Biomed Eng. 2007;35(6):1095-109.

Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN,
et al. Systems biology of vaccination for seasonal influenza in humans. Nat
Immunol. 2011;12(8):786-95.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central




	Abstract
	Introduction
	Results
	Conclusions

	Introduction
	Methods
	Study participants
	Procedures
	Biomarker measurement in ADNI
	Biomarker measurement in the independent validation cohort
	CSF C3 and FH levels - Mass Spectrometry

	Statistical analysis

	Results
	Univariate analysis of CSF C3 and FH levels in two datasets and two platforms
	CSF C3 and FH levels are influenced by many factors
	Using machine learning to analyze CSF C3 and FH levels in MCI and mild AD
	Association between biomarker-based staging and �cognitive functions

	Discussion
	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



