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Abstract

Introduction: Neuromyelitis optica (NMO), an autoimmune astrocytopathic disease associated with anti-aquaporin-4
(AQP4) antibody, is characterized by extensive necrotic lesions preferentially involving the optic nerves and spinal cord.
However, previous in-vivo experimental models injecting human anti-AQP4 antibodies only resulted in mild spinal cord
lesions compared to NMO autopsied cases. Here, we investigated whether the formation of severe NMO-like lesions
occurs in Lewis rats in the context of experimental autoimmune encephalomyelitis (EAE), intraperitoneally injecting
incremental doses of purified human immunoglobulin-G from a NMO patient (hIgGNMO) or a high affinity anti-AQP4
monoclonal antibody (E5415A), recognizing extracellular domain of AQP4 made by baculovirus display method.

Results: NMO-like lesions were observed in the spinal cord, brainstem, and optic chiasm of EAE-rats with injection of
pathogenic IgG (hIgGNMO and E5415A), but not in control EAE. Only in higher dose E5415A rats, there were acute and
significantly severer clinical exacerbations (tetraparesis or moribund) compared with controls, within half day after the
injection of pathogenic IgG. Loss of AQP4 was observed both in EAE rats receiving hIgGNMO and E5415A in a dose
dependent manner, but the ratio of AQP4 loss in spinal sections became significantly larger in those receiving high
dose E5415A up to about 50 % than those receiving low-dose E5415A or hIgGNMO less than 3 %. These lesions were
also characterized by extensive loss of glial fibrillary acidic protein but relatively preserved myelin sheaths with
perivascular deposition of IgG and C5b-9, which is compatible with post mortem NMO pathology. In high dose E5415A
rats, massive neutrophil infiltration was observed especially at the lesion edge, and such lesions were highly vacuolated
with partial demyelination and axonal damage. In contrast, such changes were absent in EAE rats receiving low-dose
E5415A and hIgGNMO.

Conclusions: In the present study, we established a severe experimental NMO rat model with highly clinical
exacerbation and extensive tissue destructive lesions typically observed in NMO patients, which has not adequately
been realized in in-vivo rodent models. Our data suggest that the pathogenic antibodies could induce immune
mediated astrocytopathy with mobilized neutrophils, resulted in early lesion expansion of NMO lesion with vacuolation
and other tissue damages. (350/350)
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Introduction
Neuromyelitis optica (NMO), an autoimmune disease of
the central nervous system (CNS), is clinically character-
ized by severe optic neuritis and longitudinally extensive
transverse myelitis (LETM) [1]. About 70–90 % of the
patients are seropositive for disease-specific autoanti-
bodies [2, 3], such as NMO-IgG, which targets
aquaporin-4 (AQP4) [4, 5], the water channel mainly lo-
calized to astrocytic foot processes [6]. NMO is charac-
terized by a higher age of onset, female predominance
[7], and greater autoimmune background than multiple
sclerosis (MS) [8]. Clinical, MRI, and laboratory findings
specific to NMO have been reported [7, 9–13]. The
characteristic childhood-onset symptom of NMO is
mainly optic neuritis, while that in elderly patients is
myelitis [14], suggesting that the age of onset is associ-
ated with the localization of the lesion in NMO. The
reason for the preferential involvement of optic neuritis
and myelitis in NMO remains unclear. In addition to the
optic nerve and spinal cord, there have been several re-
ports on NMO lesions localized at circumventricular or
periaqueductal areas, such as the area postrema [15] and
hypothalamus [16], where AQP4 expression is enriched
in the central nervous system [16]. However, the reason
for the absence of NMO lesions in cerebral or cerebellar
gray matter is still unknown. In a study of the cerebro-
spinal fluid (CSF), marked elevation of glial fibrillary
acidic protein (GFAP) was evident in NMO, but not in
MS, indicating that massive astrocyte lysis is a key to
NMO pathology [9]. Moreover, pathological studies in
autopsied NMO cases demonstrated extensive loss of
astrocytic proteins, AQP4 and GFAP, especially in peri-
vascular lesions with deposition of immunoglobulins and
activated complement [17] and abundant infiltration of
granulocytes and microglia [18]. In contrast, in these
perivascular active lesions, myelin sheaths and axons are
relatively preserved, suggesting a primary astrocytopathy
[17]. We have reported that this vasculocentric AQP4 loss
in the absence of myelin loss is a specific pathological fea-
ture in NMO, which has been reported both in early ac-
tive lesions of autopsied NMO cases and a rodent model
of NMO [17, 19]. Furthermore, in autopsied NMO cases,
most of NMO cases tend to have extensive necrotic
changes, and in the chronic phase in particular, the lesions
show tissue softening and cavity formation [17, 18].
Experimental NMO models are needed for elucidating

the underlying pathomechanisms and for testing candi-
date therapeutic drugs. Previous experimental NMO
models have been useful to clarify the pathomechanisms
of NMO, such as the pathogenicity of NMO-IgG in vitro
[5] and that the NMO-IgG epitope is localized at the
extracellular domains of membrane AQP4 [2, 5]. NMO-
like lesion could not be reproduced by peripheral admin-
istration of only NMO-IgG, even in immature rodents

with a leaky blood–brain barrier (BBB) or in BBB-
permeabilized adult rodents [20]. These in vivo models
have also clarified the participation of myelin-specific T
cells in the development of these lesions [19, 21], and
have reproduced astrocytopathic lesions upon loss of
AQP4, while relatively preserving myelin sheaths [19,
22–25]. Moreover, they have identified IL-6 stimulating
plasmablasts producing NMO-IgG [26] and have eluci-
dated the role of IL-1β in the formation of NMO-like le-
sions [24]. It has become clear that a proinflammatory
milieu, as well as NMO-IgG, is needed to generate an
NMO-like pathology in rodent models [21]. Here, we
presented the characteristics of in vivo experimental
NMO models in Additional file 1 [19, 21–25, 27–32].
There are two major animal models of NMO. One is a
NMO/Experimental autoimmune encephalomyelitis
(EAE) model, involving intraperitoneal injection of
NMO-IgG after the induction of EAE [19, 21–23, 27],
while the other is a direct injection model (DI model),
involving intracerebral, intrathecal or perichiasmal injec-
tion of NMO-IgG [25, 28–32]. The DI model can repro-
duce NMO-like lesions showing AQP4 loss and
demyelination in the cerebral white matter, but the le-
sions are not always vasculocentric, are mostly localized
around the injection site, and the injury caused by nee-
dle insertion poses a problem. In contrast, the NMO/
EAE model can reproduce NMO-like lesions showing
AQP4 loss mainly in spinal cord and this model is per-
haps a more appropriate in vivo model, with CNS in-
flammation that induces movement of NMO-IgG across
the BBB. Actually, in vivo experimental NMO rodent
models have succeeded to partially reproduce NMO
pathomechanism. For example, optic chiasma lesions
were reproduced by continuous perichiasmal injection at
the peri-injected sites in the DI model [31], but there is
no adequate study for inducing an optic chiasma lesion
in the NMO/EAE models. Furthermore, LETM lesions
or lesions of the area postrema is one of the definitive
features of NMO [1]; it has been reported that the size of
the lesion, especially in the spinal cord, were quite small at
each perivascular sites in most previous studies using
pooled purified anti-AQP4 antibodies [19, 21, 22, 27],
which is distinct from the diffuse extensive lesions ob-
served in NMO. Those previous studies suggested that
the reason for the difference in lesion localization and size
in the DI and NMO/EAE models involves the reliability
and accuracy of IgG access to the lesion site, and the
quantity and volume of the IgG itself.
Therefore, in the present study, we hypothesized that

“large astrocytopathy comparable to NMO can develop
and pathological features of NMO can be reproduced by
injecting a massive dose of high-affinity anti-AQP4
monoclonal antibody (mAb) in the NMO/EAE model.”
To establish severe experimental NMO rat model closer
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to NMO pathomechanism, we used an AQP4-IgG de-
rived from a baculovirus display method to generate a
high-affinity and highly concentrated monoclonal IgG
that specifically recognizes the extracellular domains of
AQP4, and used it in the NMO/EAE model, after which
we performed a detailed pathological examination in the
acute phase.

Materials and methods
Animals
A total of 51 female Lewis rats were used in this study.
Adult Lewis rats (LEW/CrlCrlj; 8–10-weeks-old, 140–
180 g bodyweight-matched) were purchased from Charles
River Lab (Yokohama, Japan). They were housed in the
Institute for Animal Experimentation, Tohoku University
Graduate School of Medicine, under standardized cond-
tions. This study was approved by the ethical committee
of the Tohoku University Graduate School of Medicine
Committee on Animal Research (No.2015MdA-146).

A NMO postmortem case
Here we present a double immunohistochemical study of
AQP4 and complement C9neo in a case of typical NMO
in Fig. 2a for better understanding. Her other sections
were used in a previous study [33]. Briefly, she passed
away during her last attack at 63 years old, having 5 epi-
sodes of bilateral optic neuritis and 6 histories of trans-
verse myelitis. In pathology, marked inflammation
consisting neutrophils and macrophages were observed
with large necrotic centrally-located gray and white matter
AQP4-lacked lesions with vasculocentric multiple isolated
lesions especially localized in the periphery of spinal cord.

Antibodies

a) The purification of human IgG from sera in a healthy
control (hIgGcont) and an NMO patient (hIgGNMO)
Sera derived from a healthy person and an
anti-AQP4-antibody-seropositive NMO patient
were heated at 56.0 °C in a water bath for 30 min
in order to inactivate the complement and
preventing agglutination. The sera were clarified by
centrifugation (4 °C , 3000 rpm, 10 min). In each
sample, IgGs were captured by Protein A beads
using a protein column system (rProtein A
Sepharose Fast Flow, GE Healthcare, Tokyo,
Japan), and were dialyzed through Cellu Sep T2
membranes (Membrane Filtration Products Inc,
Texas, USA), and then finally concentrated to
1 mg/ml concentration. Antibody purifications
were carried out after obtaining informed consent
from the donors and from the ethical committee of
Tohoku University Graduate School of Medicine
(2014-1-652).

A NMO patient of hIgGNMO was a 68-year-old
female who had a history of severe optic neuritis
(left blindness) and myelitis, with 5-year disease
duration. Her anti-AQP4 antibody titer was relatively
high as 1:8,388,608 in our in-house cell-based assay,
fulfilling the 2015 diagnostic criteria of NMO
spectrum disorders [1]. She was negative for other
autoantibodies, such as ANA, SS-A/Ro, and SS-B/La.

b) Mouse monoclonal antibody against the extracellular
domains of AQP4
Monoclonal antibodies were established as
previously reported [34, 35]. In brief, cDNA
fragments encoding mouse AQP4 (mAQP4) M23
isoform in the E series or human AQP4 (hAQP4)
M23 isoform in the D series [36] were inserted into
a pBlueBac4.5 vector (Life Technologies, Carlsbad,
CA, USA) to produce budded baculovirus (BV)
expressing mAQP4 or hAQP4. To circumvent the
immunological tolerance for mAQP4, we used
AQP4-knockout mice (Acc. No. CDB0758K, ref.
[37]) in E series as hosts, or used wild type mice in
D series. Mice were immunized intraperitoneally
with a phosphate-buffered saline solution containing
BV expressing mAQP4 M23 or hAQP4 M23 isoforms
and pertussis toxin. Flow cytometry and an ELISA
(using CHO cells stably expressing mAQP4 M1 and
M23, and human AQP4 (hAQP4) M1 and M23
isoforms) were used to screen the affinity of the
antibodies for AQP4; we then chose two clones
(E5415A and D15107) for use in rat NMO models,
because these antibodies showed the highest affinity
for mouse M1 and M23 (E5415A) and human M1
and M23 (D15017; data not shown), as previously
reported [38].

Cell-based affinity assay to assess binding of NMO-IgGs to
rat AQP4
To perform a cell-based assay (CBA) for estimating
binding affinities of all antibodies used in this study for
rat AQP4, we established a CHO-cell clone expressing
rat AQP4 M23. A cDNA encoding rat AQP4 M23 was
cloned from total RNA extracted from rat cerebella by
reverse transcription polymerase chain reaction, using
primers 5′-GCTAGCATCATGGTGGCTTTCAAAGGA
GTCTGGAC-3′ and 5′-CCGCGGTCATACAGAAGA
TAATACCTCTCCAGACG-3′. After sequencing, the
cDNA was inserted into the NheI and the SacII sites of a
pIRES2-EGFP vector (Clontech Laboratories, Mountain
View, CA, USA), in which the unique AflII site had been
changed to an EcoRI site by linker ligation. For establish-
ment of CHO-cell clones stably expressing rat AQP4,
the vector was linearized with EcoRI before transfection.
Then, the linearized vector was transfected into CHO
cells seeded onto 3.5-cm dishes at a density of 2 × 105
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cells/dish using Lipofectamine Plus reagents (Life Tech-
nologies, Carlsbad, CA, USA). Two days after transfec-
tion, cells were trypsinized and reseeded onto ten 10-cm
dishes in medium containing G418 (500 μg/ml, Nacalai
Tesque, Inc., Kyoto, Japan). Approximately 10 days after
selection with G418, several colonies positive for fluores-
cence of EGFP were picked. After amplification and con-
firmation of AQP4 expression by western blotting, several
single-cell clones were obtained by limiting dilution.
In stably cultured slides of the transfected cells, these

cells were exposed to serially diluted IgG, including anti-
AQP4 antibodies (4 °C temperature, overnight), followed
by Alexa Fluor 568 or 594 IgG as the secondary antibody
(room temperature, 1 h). A membrane-fluorescent pat-
tern, at the rims of CHO cells, was considered to indicate
the affinity of the anti-AQP4 antibody. All three NMO-
IgGs, such as E5415A, D15107, and hIgGNMO showed
positive staining, but their affinity for rat AQP4 was mark-
edly different in a double-dilution method, started at
1 mg/ml. Among the antibodies tested, E5415A showed
the highest affinity for rat AQP4 (Additional file 2). There-
fore, we selected E5415A as the highest affinity anti-AQP4
monoclonal antibody (mAb), and used it in our subse-
quent experiments. The IgG subtype of E5415A is IgG2a,
with an ability to activate complement, as does the IgG1
subtype in human.

NMO/EAE experiment—an experimental NMO rat model

a) EAE induction
Fifty-one Lewis rats, divided into the following
groups: normal rats injected with hIgGcont (n = 2),
normal rats injected with hIgGNMO (n = 2), normal
rats with E5415A (n = 2), EAE not injected with
antibody (n = 8), EAE with injection of 20 mg
hIgGcont (n = 7), 2 mg hIgGNMO (n = 2), 20 mg
hIgGNMO (n = 6), 40 mg hIgGNMO (n = 5), 80 mg
hIgGNMO (n = 1), 0.01 mg E5415A (n = 4), 0.1 mg
E5415A (n = 5), or 1 mg E5415A (n = 7), were used
in the present study. Initially, these rats were
immunized with an encephalitogenic mixture
containing guinea pig brain myelin basic protein
(MBP; Sigma-Aldrich, Tokyo, Japan) in complete
Freund’s adjuvant (CFA; Chondrex Inc, Redmond,
WA, USA), which stimulates the disruption of the
BBB and mobilizes activated T cells in the CNS to
promote a proinflammatory milieu. Each animal
received a single subcutaneous injection of 200 μl
of an emulsified solution including 1 mg/ml MBP
in PBS and CFA containing 1 mg/ml heat-killed
H37Ra Mycobacterium tuberculosis.

b) Intraperitoneal injection of IgGs
About 2 weeks after the injection of the emulsion,
ascending paresis (starting with a flaccid tail,

followed by hindlimb paresis) developed in most
rats (42/45, 93.3 %). Three rats did not show any
symptoms and were excluded from this study; these
included two in the EAE without injection group,
and one in the relatively low-dose 0.01 mg E5415A
group. At the time of clinical onset, we administered
an intraperitoneal (IP) injection of IgG without
complement. In the hIgG groups, we injected 20 mg
hIgGcont into Lewis rats (n = 7) as the normal control,
and we injected different doses of hIgGNMO into the
test rats: relatively low-dose 2 mg (n = 2) or 20 mg
(n = 6), and relatively high-dose 40 mg (n = 5) or
80 mg (n = 1). In the mIgGNMO groups, we also
injected different doses of E5415A into the Lewis
rats: relatively low-dose 0.01 mg (n = 3), and relatively
high-dose 0.1 mg (n = 5) or 1 mg (n = 7). In the
0.01 mg E5415A group, a rat was removed because
no clinical exacerbation was noted. In the 1 mg
E5415A group, two of the seven rats died, and these
data were removed from the statistical analysis. The
difference of the injection volume between hIgGNMO

and E5415A must be due to the affinity of each
antibody against rat astrocytes (Supplement 2). We
studied the blood kinetics of IP-injected NMO-IgG
by antibody titration using an ELISA and a cell-based
assay. This demonstrated that 12–24 h were required
to attain a maximum blood concentration of
NMO-IgG (Additional file 3).

c) Clinical evaluation
The bodyweight was measured daily in all rats and
clinical disability scores were measured as follows.
0: No symptoms, 1: Flaccid tail, 2: Hindlimb paresis
with gait abnormality, 3: Hindlimb plegia, complete
dragging of the hindlimb, 4: Forelimb paresis, 5:
Forelimb plegia or moribund (continuous hypopnea
or bradycardia), 6: Dead.

d) Immunohistochemistry
Two days after the final injection of IgG, all the
CNS tissues, including the brain, brain stem, optic
nerves, and spinal cords were dissected from the
rats, fixed for another 24 h in 4 % of
paraformaldehyde (PFA), and embedded in paraffin
according to standard procedures. Then, 4-μm-thick
paraffin sections were cut and mounted serially onto
numbered slides so that the distribution of molecules,
such as AQP4 and GFAP, could be compared in
adjacent serial sections. We stained all sections with
hematoxylin and eosin (HE) and Klüver-Barrera (KB)
staining. We used the avidin-biotinylated enzyme
complex (ABC; Vectastain, Vector, CA, USA) or
EnVision (Dako, Carpinteria, CA, USA). Briefly, at
first, the paraffin sections on slides were immersed in
xylene for 5 min three times, and then they were
immersed in 100 % ethanol, 95 % ethanol, and then
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in 90 % ethanol for 5 min. After washing with
distilled water, we washed the slides three times with
PBS. Non-specific binding was blocked with 10 %
goat serum or 10 % rabbit serum for 15 min at room
temperature, and the slides were covered with a
solution containing primary antibodies, and incubated
for 1–24 h at the appropriate temperature. The slides
were washed with PBS and incubated with PBS
containing 30 % methanol and 1 ml of 30 % H2O2 for
20 min followed by three washes with PBS. The
primary antibody was omitted in the control study.
Then, secondary antibodies were applied and the
slides incubated for 40 min to 1 h at room
temperature, according to the manufacturer’s
protocols. For staining, we used diaminobenzidine
hydrochloride (DAB; brown) for the horseradish
peroxidase (HRP) system, and fuchsin (Dako,
Carpinteria, CA, USA) or Vector blue (Vector,
Burlingame, CA) for the alkaline phosphatase (AP)
system. Selected sections were counterstained with a
filtered solution of hematoxylin (blue), methyl green
(Vector, Burlingame, CA; green), or fast nuclear red
(Vector, Burlingame, CA; red). In the present study,
we used several primary antibodies: AQP4 (1:200;
Santa Cruz, Texas, USA), EAAT2 (1:200; Abcam,
Tokyo, Japan), GFAP (1:500; Proteintech, Chicago,
USA), Iba-1 (1:200; Abcam, Tokyo, Japan),
anti-mouse IgG Fc fragment specific (1:2000;
Thermo Scientific, St. Louis, MO, USA), anti-rat
C5b-9 (1:500; Hycult Biotech, Uden, Netherlands),
MBP (1:500, Dako, Glostrup, Denmark), MAG (1:50;
Sigma-Aldrich, St. Louis, MO, USA), and NF
(1:1000; Calbiochem, San Diego, CA, USA).

Statistical analysis
We compared the measurements in samples by the
Mann–Whitney U test and 2-tailed p-values < 0.05 were
considered significant. Results of measurements are
shown in median and interquartile range—the top value
represents the upper 25 % percentile, and the bottom
value represents the lower 25 % percentile, unless other-
wise indicated. Significance is indicated as *p < 0.05,
**p < 0.005, ***p < 0.0005, and ****p < 0.00005.

Results
Clinical exacerbation of NMO/EAE models with E5415A
and hIgGNMO in dose-dependent manner
In the high-dose E5415A groups (0.1–1 mg), clinical ex-
acerbation was readily observed in an NMO-IgG dose
dependent manner. The clinical course in this experi-
ment is shown in Fig. 1. Ascending paresis developed in
all EAE groups, however, the symptoms were temporary,
and relatively mild, with flaccid tail (in 6/6 rats) and
hindlimb paresis (4/6) being observed, but tetraparesis
(1/6) was rare in EAE groups without antibody injection.
The clinical exacerbation was not significantly different
in the hIgGcont, hIgGNMO, and 0.01 mg E5415A groups
(Fig. 1a)
In contrast, the clinical disability score in 1 mg E5415A

models were statistically significant compared with those
in 0.1 mg (p = 0.0413), 0.01 mg (p = 0.0272), normal EAE
(p = 0.0101), and hIgGcont model (p = 0.0038).
In addition, the score in 0.1 mg E5415A is also signifi-

cantly higher than in hIgGcont (p = 0.0280). The degree
of clinical manifestations is as follows. At 48 h after IgG
injection, the tetraparesis was found mostly in the
groups receiving the higher amounts of E5415A; three of
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Fig. 1 Clinically intensive exacerbation in the E5415A model. No significant (NS) clinical exacerbation occurred in the hIgGNMO model (a). In
contrast, acute and severe exacerbation was observed in rats receiving 0.1–1 mg E5415A, in an IgG-dose-dependent manner (b). Within 48 h after
the IgG injection, the clinical disability score in the 1 mg E5415A models was statistically significant compared with those in the 0.1 mg
(p = 0.0413), 0.01 mg (p = 0.0272), normal EAE (p = 0.0101), and hIgGcont groups (p = 0.0038). In addition, the score in the 0.1 mg E5415A rats was
also significantly higher than that in the hIgGcont rats (p = 0.0280). These changes strikingly occurred at 6–12 h after the NMO-IgG injection. Within
6–12 h, the disability score in the 1 mg E5415A model was statistically significantly different to those in the 0.1 mg (p = 0.0209), 0.01 mg
(p = 0.0376), normal EAE (p = 0.0160), and hIgGcont groups (p = 0.0057), and the score in the 0.1 mg group was significantly higher than that in the
hIgGcont group (p = 0.0284)

Kurosawa et al. Acta Neuropathologica Communications  (2015) 3:82 Page 5 of 15



five rats in the 0.1 mg group, and all (5/5) rats in the
1 mg group. Two of five rats in the 1 mg group were
tetraplegic or moribund, with continuous hypopnea and
bradycardia. Two of seven rats in the 1 mg group were
dead at this time-point, and were excluded from this
analysis because of poor pathological examination. Inter-
estingly, such intensive clinical exacerbation was marked
at the hyper-acute phase ranging from 6 h to 12 h after
E5415A injection (Fig. 1b), which coincided with a not-
able elevation of the E5415A concentration in the blood
(Additional file 3).
In rats injecting E5415A or hIgGNMO without

immunization, there is no clinical exacerbation and we
could not observe asymptomatic lesion with loss of
AQP4 in the obex and area postrema in the present
study.

Lesion volume in the NMO/EAE model with dose
dependent manner
In autopsies of typical NMO cases, large lesions with
astrocytopathy are observed, with predominant involve-
ment of gray matter and diffuse expansion over areas
containing multi-vessels, and necrotic changes are occa-
sionally seen (Fig. 2a). In the hIgGcont group after EAE
induction, there was no AQP4 loss (Fig. 2b). In contrast,
injection of hIgGNMO could induce some small multi-
vessel lesions in a dose-dependent manner (Fig. 2c−e).
However, the size of these lesions was markedly smaller
than those seen in the typical NMO-postmortem cases
(Fig. 2a). In an experiment of a single 80 mg hIgGNMO

injection, we observed diffuse lesions comparable in size
to the lesions in the 0.1 mg E5415A group (data not
shown), with neutrophil infiltration.
Using the high-affinity anti-AQP4 mAb E5415A, a

dose-dependent loss of AQP4 was observed particularly
in the peri-vascular areas (Fig. 2f−h) to a much greater
extent than the AQP4 loss observed in the hIgGNMO

model (Fig. 2i). The maximum size of these lesions
exceeded half the size of the entire cross section of the
spinal cord (Fig. 2h). Some lesions of myelitis extended
longitudinally and transversely (LETM) as usually ob-
served in NMO cases. We examined 1 mg D15107
NMO/EAE model, but lesions are quite smaller than the
same dose of E5415A model, with few neutrophil infil-
trations (data not shown).

In vivo model of primary astrocytopathy
In the MBP-EAE model without antibody injection,
lymphocyte and microglia infiltration was clearly ob-
served, particularly in the white matter in the peri-
vascular and subpial areas, mostly in the form of peri-
vascular cuffing. However, AQP4 loss, demyelination,
axonal injury, and neutrophil infiltration were not ob-
served in the MBP-EAE model.

In contrast, in the 0.01–1 mg E5415A group, loss of
AQP4, EAAT2, and GFAP was marked in the Iba1-
positive perivascular areas, especially in 1 mg E5415A
(Fig. 3a−f ), in which multiple perivascular localization
of lesions have previously been reported in autopsied
NMO cases and in some experimental NMO models
[17, 19]. In contrast, the staining for KB, MBP, MAG,
and NF remained relatively preserved (Fig. 3e, g−i),
suggesting a primary astrocytopathy. Neutrophils were
often observed in lesion sites with tissue vacuolation
(Fig. 3j).
These perivascular lesions were often stained by anti-

mouse IgG and anti-rat C5b-9 Ab, suggesting the involve-
ment of antibody- and complement-dependent cytotoxicity
in this model (Fig. 3k, l). The IgG and complement depos-
ition formed a rosette-like pattern or a rim-pattern, as pre-
viously reported in NMO [18].
The staining of MBP was mostly intact (Fig. 3h). In

contrast, MAG staining was generally pale and large
amounts of small myelin debris were observed around
the inflamed vessels (Fig. 3i), suggesting that the lesions
were caused by dying-back of oligodendrocytes, termed
“distal oligodendrocytopathy” [39].

Massive neutrophil infiltration precedes tissue
vacuolation
The infiltration of neutrophils was not observed in the
EAE without injection, EAE with hIgGcont, hIgGNMO,
and E5415A (0.01 mg) groups, but was present in the
E5415A-injected groups (0.1–1 mg), i.e. in 52 of 84
spinal cord axial sections (62 %) in five rats in the
0.1 mg group and 83 out of 83 sections (100 %) in five
rats in the 1 mg group. In these sections, more than 500
neutrophils/mm2 were observed in 10.7 % sections in
the 0.1 mg and 43.4 % in the 1 mg groups. Many more
neutrophils were observed in the gray matter than in the
white matter in the spinal cord lesions at 48 h after the
injection of NMO-IgG (Fig. 4a). When we examined 30
spinal cord sections well observed neutrophil in 1 mg
E5415A model, in the gray matter, neutrophil counts
were significantly higher in the lesion border (LB) than
in the lesion core (LC) and normal appearance area
(NAA) (Fig. 4c). Furthermore, there was a marked differ-
ence in tissue vacuolation in areas lacking AQP4 expres-
sion (Fig. 4d), especially in the LC (Fig. 4b). Given that
NMO shows a vasculocentric pathology that spreads
outward, these findings show that the neutrophils tend
to be localized at the lesion edge where there is high
AQP4 expression.
In the lesions in the E5415A injection (0.1–1 mg)

groups, tissue vacuolation was diffusely present in areas
lacking AQP4 and GFAP, along with infiltration of nu-
merous neutrophils. In contrast, such tissue destructive
changes were not observed in the hIgGNMO or E5415A

Kurosawa et al. Acta Neuropathologica Communications  (2015) 3:82 Page 6 of 15



(0.01 mg) groups. The morphology of the vacuoles was
spherical or oval, but vacuoles frequently fused with
each other and took on a larger, irregular shape, particu-
larly in the lesion area. The edge of these vacuoles was
sometimes stained with KB (Fig. 4f ), MBP (Fig. 4g), or
NF (Fig. 4h). KB staining was weak around the peri-
vascular lesions, where bubble-like vacuoles were found
along with myelin debris; in contrast, neutrophils were
seen at the lesion border (Fig. 4f ). Furthermore, only in
E5415A (1 mg), some vacuoles included eosinophilic fine

structures with or without densely NF-positive debris,
suggesting axonal swelling and damage (Fig. 4e, h). In 83
lesion-expanded sections of 5 rats with E5415A (1 mg)
injection, which have no diffuse loss of neurofilament
staining, the morphology of axon is not intact in 23 le-
sions (27.7 %) and is relatively severely damaged such as
axonal swelling or debris in 8 lesions (9.6 %), suggesting
focal or central core damage and the existence of diverse
pathology. In contrast there is no marked abnormality in
rat groups of E5415A (0.1 mg, 0.01 mg) and hIgGNMO.
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Fig. 2 Loss of AQP4 in spinal cord legions occurs in a dose-dependent manner. The comparison of lesion size in response to doses of anti-AQP4
antibody is shown. Initial photograph (a) is a typical case of NMO patient for better understanding, showing extensive loss of AQP4 in the entire
spinal cord. There are multiple rosette-like depositions of complement C9neo especially evident in the gray matter and perivascular areas of white
matter, where vasculocentric loss of AQP4 is relatively enriched (a), especially in the gray matter and perivascular polarized expression of normal
AQP4 staining (b). In hIgGNMO rats (c−e) and in E5415A rats (f−h), loss of AQP4 was observed particularly at the corticomedullary junctions. The
lesions gradually enlarged in a hIgGNMO dose-dependent manner, from 2 mg (c), 20 mg (d), to 40 mg (e). Similarly, the lesion enlarged in E5415A
rats, from 0.01 mg (f), 0.1 mg (g), to 1 mg (h), in a dose-dependent manner. The region showing AQP4 loss in the 0.1 mg and 1 mg E5415A
groups (g−h) was markedly greater than that observed in the hIgGNMO group (c−e). The maximum size of the region of AQP4 loss in the 1 mg
E5415A group (h) was comparable to that seen in an NMO postmortem case (a). The percentage of AQP4 loss in spinal cord sections was
calculated in each group (i). The ratio in the higher IgG group of hIgGNMO or E5415A was significantly higher than that in the lower IgG groups.
Scale bar = 300 μm
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These findings suggest an early active lesion with intra-
myelin edema and axonal injury. Vacuolation was dif-
fusely present in lesion areas lacking AQP4 and GFAP
(Fig. 4d); it was observed only at the peri-vascular areas
in early lesions (Fig. 4b) with disintegrated GFAP-
positive foot processes, suggesting that the lesions of this
model are of vasculocentric origin, with BBB disruption,
followed by secondary extension of neutrophil infiltra-
tion and tissue vacuolation.

Lesion localization in NMO/EAE models
We detected some NMO-like lesions in the optic chi-
asma (Och), optic tract (OT), hypothalamus (Hyp), peri-
3rd ventricles (3 V), peri-lateral ventricles (LV), and cor-
pus callosum (CC) at the optic nerve and brain in the
NMO-EAE models. Fig. 5 shows the schema and the

pathology of an optic nerve axial section and brain cor-
onal section in these rats. As shown in Fig. 5a and d,
Och and OT embraced the Hyp in the axial sections.
The NMO-like lesions were observed at the perivascular
areas of the OT (Fig. 5c) and Och, particularly in the
border zone between the Och-OT and the Hyp (Fig. 5d).
Throughout the lesions, the loss of AQP4, EAAT2, and
GFAP could be observed in the Iba1-positive perivascu-
lar areas, surrounded by AQP4- and GFAP-positive re-
active astrocytes. Furthermore, periventricular lesions
were clearly observed in the NMO/EAE models and
Hyp lesions adjacent to 3 V are shown in Fig. 5b.
In the brain stem, we found lesions in the area post-

rema (AP) and medulla oblongata in the 1 mg E5415A
group. Immunostaining for AQP4 in the sagittal section
of a hIgGcont rat is shown in Fig. 6a, and a schema of
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i

Fig. 3 IgG and complement mediates extensive astrocytopathy in E5415A model. Extensive loss of AQP4 (a), EAAT2 (b), and GFAP (c) were
observed particularly in the inflamed peri-vascular areas (d) positive for Iba1 (f); in contrast, myelin fibers and neurofilament (NF) staining was
relatively preserved (e), suggesting a primary astrocytopathy. (g) Myelin pallor was particularly noticeable in the gray matter upon KB staining. (h)
MBP staining was virtually intact, but KB and MAG staining was weak, particularly in the cortico-medullary junctions (g−i), and myelin debris could
be observed mildly around inflamed sites with KB, MBP, and MAG staining (upper right corner: g−i). These findings suggest insidious early demyelination.
(j) Abundant neutrophils were present especially at the lesion border of AQP4-lacking lesions with numerous tissue vacuolations. (k−l) Anti-mouse IgG
(k) and anti-rat C5b-9 (l) deposition were observed in the peri-vascular areas. Scale bar = 100 μm (a−l), 40 μm (j), and 20 μm (k−l)
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the sagittal rat brainstem is shown in Fig. 6b. At the AP
in the 1 mg E5415A group, AQP4 loss was obvious and
GFAP staining was weak (Fig. 6c, d). In contrast, in
Iba1-positive perivascular lesions around the AP, GFAP
and AQP4 loss was clear (Fig. 6c−e). Interestingly, a row
of lesions was seen along the obex (Fig. 6c−e). Similar to
spinal cord lesions [15], the medulla oblongata lesion
showed features of extensive primary astrocytopathy, in
which large areas showing loss of AQP4, EAAT2, and
GFAP were observed, but MBP and NF expression was
relatively preserved (Fig. 6f−k).
We examined the pathology of sagittal sections in the

spinal cord in the 1 mg E5415A group. Multiple perivascu-
lar regions with AQP4 loss coalesced to form longitudinally

extensive spinal cord lesions, suggesting an LETM-like le-
sion (Fig. 7a). Most of the infiltrating cells were granulo-
cytes (Fig. 7b), and the density of the infiltrated cells was
more marked in the gray matter than in the white matter,
as previously mentioned. These findings suggest that
LETM formation is based on the fusion of neighboring
vasculocentric astrocytopathic lesions as previously re-
ported [33].

Discussion
Several in-vivo NMO models, previously reported, were
insufficient to reproduce the diffuse and large edematous
lesions with astrocytopathy and necrotic tissue damage
typically seen in NMO patients. Several reasons may
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Fig. 4 Pathology of neutrophils and vacuolations in the E5415A model. Neutrophils and tissue vacuolation was strongly observed in the E5415A
groups (0.1–1 mg), but never observed in the normal EAE, EAE with hIgGcont, hIgGNMO, and E5415A (0.01 mg) groups. Lesions were typically
observed in a linear arrangement along radiating vessels and were diffusely present in the gray matter (a). The localization of neutrophils in the
E5415A model (1 mg) is shown (b). The neutrophils were more abundantly present in the gray matter (GM) than in the white matter (WM) at
spinal cord lesions (a, c), particularly at the lesion border (LB) (b). In the gray matter, the counts of neutrophils were significantly higher in the LB,
than in the lesion core (LC) and normal appearance area (NAA) (c). Furthermore, there was a marked difference in tissue vacuolation in areas
lacking AQP4 expression compared with NAA, statistically significant (d), particularly in the LC (b). The edges of these vacuoles were sometimes
stained upon KB (f), MBP (g), or NF staining (h). KB staining was weak around the peri-vascular lesions, where foam-like vacuoles were found
along with myelin debris (arrowhead) (f). Furthermore, some vacuoles included eosinophilic (e, arrowhead) and/or densely NF-positive distorted
structures (h, arrowhead), suggesting degenerated and/or swollen fibers. These findings suggested the early active lesions with intra-myelinic
edema and axonal injury. Scale bar = 100 μm (a), 40 μm (b), and 10 μm (e−h)
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underlie, but one possibility is due to the gap of specific
epitope of human anti-AQP4 antibody and its affinity
against rodent AQP4 because of different species. The
other is the possible existence of diverse mechanisms in-
fluenced on the tissue damage observed in NMO such as
antibody-dominant (ADCC) and complement-dominant
cytotoxic (CDC) tissue damage [40, 41], that knockdown
of complement inhibitory protein CD59 [31, 32] has influ-
enced on the lesion expansion in murine NMO models.
In the present study, it is unique that we successfully in-
duced extensive primary astrocytopathy only by a single
intraperitoneal injection of a high-affinity anti-AQP4 mAb
which had severe clinical exacerbation and typical NMO-
like lesions extending longitudinally from the medulla
oblongata to spinal cord.

The merits of the NMO model with MBP-EAE have
already been reported [42]. Normal MBP-EAE takes a
monophasic course without causing marked demyelin-
ation and axonal injury with full recovery. In addition, it
is difficult to find infiltrations of neutrophil or eosino-
phils in Lewis rat EAE, induced by emulsion of guinea
pig MBP and CFA without administrating pertussis toxin
additionally [42-44]. In contrast, in the present model,
the clinical severity and the lesion size of astrocytopathy
is clearly dependent on the dose of the anti-AQP4 anti-
body and marked neutrophil infiltration and tissue vacu-
olation was only seen with high amounts of IgG (80 mg
of hIgGNMO or 0.1–1 mg of E5415A). Therefore, we
consider that the marked infiltration of neutrophils in
this model is not due to the characteristics of EAE but
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Fig. 5 Pathology of optic neuritis and brain lesions. The localization of AQP4 loss in the optic nerve, peri-ventricles, and hypothalamus in the
1 mg E5415A injection (red in schema) and hIgGNMO (yellow in schema) (a). Peri-3rd ventricle lesions were bilaterally and diffusely extended along
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observed in Iba1-positive peri-vascular areas. Optic chiasma lesions were located in the perivascular areas of the anatomical border between the
optic chiasma and hypothalamus (d). Scale bar = 300 μm
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to the administration of a high dose of NMO-IgG and
changes in the lesion milieu, and we speculate that
neutrophil-mediated cytotoxicity against astrocytes is in-
duced by the pathogenic IgG itself. After multivalent
binding of C1q to the Fc portion of NMO-IgG, the latter
could bind to the orthogonal arrays of particle (OAP),
where the assembled AQP4 could strongly activate the
complement cascade [45] through the classical pathway
[46]. Such activation could induce the secretion of anaphy-
latoxins, such as C3a and C5a, as a powerful chemoattract-
ant for neutrophils [47, 48] and macrophages [48, 49]. IL-8
is also released by macrophages [50], and actually, the
C5b-9 and IL-8 levels are elevated in the CSF of NMO pa-
tients [11, 51]. These findings imply that the deposition of

a large amount of NMO-IgG at the borders of lesions
could trigger potent complement activation or microglio-
sis, resulting in mobilizing neutrophils to the leading edges
of lesions.
The neutrophils were mainly localized at the leading

edges of AQP4 loss, and more so in the gray matter than
in the white matter. It is well known that protoplasmic
astrocytes, mainly localized at the gray matter, have nu-
merous foot processes that are positive for AQP4, as
compared with fibrous astrocytes that are mainly local-
ized at the white matter [52, 53]. In the border area, the
expression of AQP4 was relatively high at the outside of
the border areas because of the presence of reactive
astrogliosis with strong expression of AQP4, probably
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Fig. 6 Pathology of the area postrema and medulla oblongata. Immunostaining of AQP4 in a sagittal section of the brain of a rat that had
received an injection of hIgGcont (a) and a schema of the sagittal rat brainstem (b). In the 1 mg E5415A group, there were several AQP4-lacking
lesions with a longitudinally extended moniliform appearance, from the obex and the area postrema to the upper cervical cord (c). Compared
with injection of hIgGcont (a), the marked loss of AQP4 was observed in the area postrema and the obex (b). Immunostaining for GFAP was weak
at the area postrema and in multiple perivascular lesions (d) around Iba1-positive vessels (e). Furthermore, medulla oblongata lesions demonstrated
typical NMO pathology, including extensive loss of AQP4 (f), EAAT2 (g), and GFAP (h) at Iba1-positive perivascular regions (i), but the myelin sheath (j)
and neurofilament (k) were relatively preserved. Scale bar = 300 μm
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inducing the deposition of NMO-IgG and IgG-related
immune cells, such as neutrophils. It is noted that neu-
trophils, eosinophils, and macrophages are the main in-
filtrating cells found in the lesions of human NMO,
while infiltrated T lymphocytes [18] and natural killer
cells [54] are rare. In our model, there was no infiltration
of natural killer cells or eosinophils, thus neutrophils
may have contributed to ADCC and promoted lesion ex-
pansion by secreting several kinds of cytokines, protein-
ases, and oxygen free radicals by activation of NADPH
oxidase and neutrophil extracellular traps. Furthermore,
the dominance of neutrophil involvement in the patho-
genesis of NMO is supported by another previous study
that most neutrophils are degranulated in a mouse
model [55]. Moreover, it has been reported that a severe
case of NMO occurred soon after the mistaken adminis-
tration of G-CSF, a stimulator of granulocytes [56]. In
the mouse DI model, the neutrophilia stimulated by G-
CSF causes enlargement of the brain lesions; in contrast,
the neutropenia induced by anti-neutrophil IgG reduced
the size of these lesions [56]. In addition, a neutrophil
protease inhibitor reduced loss of AQP4 in in vivo and
ex vivo mouse models in the acute phase [56]. There-
fore, in the present study, neutrophils were probably as-
sociated with development of NMO-like lesions via
ADCC- and CDC-targeting astrocytes, and may repre-
sent a promising therapeutic target for antibody blocking
reagents or blockers of neutrophil activation such as
sivelestat sodium hydrate.
In our study, marked tissue vacuolation was seen at

the lesion core in vasculocentric pathology, in contrast
infiltrating neutrophils were found at the periphery of le-
sions in outward-spreading lesions. Like the localization
of macrophage at the periphery in slowly expanding

demyelinating lesions in MS [57, 58], the localization of
neutrophil infiltration in the present study suggested
that the neutrophil probably preceded tissue vacuolation
in this model. In these lesions, loss of AQP4 and GFAP
was observed along with the disintegration of perivascu-
lar GFAP-positive foot processes, and thus such tissue
vacuolation may be derived from the lysis of perivascular
astrocytes per se or the dysfunction of foot processes,
inhibiting water circulation or absorption from the le-
sion to the subarachnoid space. Another possibility is
intra-cellular edema; in the present study, some vacuola-
tions were surrounded by MBP-stained fine structures,
suggesting intra-myelin edema. Such tissue vacuolation
has been reported in a double-knockout model of con-
nexin 47 and connexin 30 [59]. Regardless, the tissue
change is derived from astrocytopathy and may be spe-
cific to human NMO and rodent NMO models, in which
some tissue vacuolations may develop into cavities as
seen in autopsied cases of human NMO.
Epitopes of NMO-IgG that effectively induce clinical

manifestation of the disease are unknown. NMO-IgG
recognizes conformational epitopes of extracellular
AQP4 loops and the lesions are never observed when re-
combinant unfolded protein is used as antigen in
immunization [5]. Baculovirus display technology is a re-
cently established method for generating mAbs to mem-
brane proteins, preserving the conformational structure.
E5415A made here using the baculovirus display method
is an mAb against the extracellular domain of the M23
isoform of mouse AQP4, and could strongly bind to the
rat extracellular AQP4 domains, with more than 256 −
fold higher affinity as compared with the same dose of
D15107 (supplement 3). In fact, in NMO/EAE model,
we confirmed 1 mg E5415A model showed larger lesions

b

WM WMGM

a

Fig. 7 Pathology of longitudinally extensive transvers myelitis-like lesions. Sagittal section of the spinal cord lesion in a 1 mg E5415A rat is shown
(a) Multiple perivascular lesions, which were diffusely extended, coalesced with each to form lesions similar to longitudinally extensive transverse
myelitis (LETM) lesions. Most of the infiltrating cells were polymorphonuclear leukocytes, and were markedly more present in the gray matter than
in the white matter (b). These findings suggested that the mechanism underlying LETM is based on fusion of individual vasculocentric astrocytopathy
lesions. Scale bar = 300 μm (Fig. 7a) and 40 μm (Fig. 7b)
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than the same dose of D15107 model (data not shown).
Therefore, strong binding properties with this mAb
probably contributed to the strongly representative
models of NMO produced here. However, further exam-
ination about E5415A will be needed to explain suffi-
ciently why our model can reproduce such severe,
extensive NMO-like lesions. There are some limitations
in the present study. For instance, some differences in
the amino acid sequences of extracellular AQP4 loops
among human, rat, and mouse may influence the pheno-
type seen in our NMO model. It is still unknown why
the optic lesions are relatively mild even in in vivo injec-
tion model with high amounts of pathogenic IgG in the
present study, which needs further strict studies. Further-
more, we have observed the trend of typical AQP4-lacked
lesions in gray matter and corticomedullary junctions with
dominant infiltration of neutrophils likely independent
from white matter perivascular cuffings, probably suggest-
ing the involvement of neutrophils in addition to pioneer-
ing T cells for lesion expansion, but needs further detailed
studies for understanding the pathomechanisms of NMO.

Conclusion
In the present study, we established a severe and acute
experimental NMO rat model clinically and pathologically
extremely close to human NMO in the point of lesion
size, clinical exacerbation course, and lesion localization,
by high-affinity IgG against AQP4 made by baculovirus
display method. Our data suggest that the pathogenic
antibodies can induce the typical astrocytopathy with loss
of AQP4 and GFAP, and mobilize neutrophils especially at
AQP4 abundant lesion edge in dose dependent manner,
resulting in early lesion expansion of NMO lesion with
tissue vacuolation, secondary demyelination and axonal
injury. Our model is likely to be useful in evaluating candi-
date drugs for NMO as well as in studying the pathome-
chanism of NMO.
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injected intraperitoneally reach maximum blood concentration within 12 h in
the context of EAE. (PDF 1251 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KK assisted in design of experiments, performed most experiments and
composed the manuscript. TM designed experiments, interpreted results and
composed the manuscript. YT, DKS, TT, YA, RO assisted on data collection
and specific experiments. YI and TH contributed to the material. IN, KF, MY,
and MA contributed to the composition of the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
We thank Dr. Hiroshi Sakuma and Dr. Kuniko Kohyama, Tokyo Metropolitan
Institute of Medical Science for excellent technical support in EAE, and Ms.
Kayoko Hayashi, Tohoku University, for excellent technical support for
pathological section and staining. This work was supported by Grants-in-Aid
from Japan Society for the Promotion of Science KAKENHI (Grant number
24591247, 22229008, 26293205 and 22590940) and the Grants-in-Aid from
the Ministry of Health, Labor and Welfare of Japan, and by Grants-in-Aid from
New Energy and Industrial Technology Development Organisation of Japan
(Grant number P06009).

Disclosures
Dr. Kazuhiro Kurosawa has no disclosure to report.
Dr. Tatsuro Misu has received speaker honoraria from Bayer Schering Pharma,
Biogen Idec Japan, Mitsubishi Tanabe Pharma Corporation, and Grants-in-Aid
for Scientific Research from the Ministry of Education, Science and Technology,
and the Ministry of Health, Labor and Welfare of Japan (No. 24591247).
Dr. Yoshiki Takai has no disclosure to report.
Dr. Douglas Kazutoshi Sato has received scholarship from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT) of Japan, grant-in-
aid for scientific research from the Japan Society for the Promotion of Science

Kurosawa et al. Acta Neuropathologica Communications  (2015) 3:82 Page 13 of 15

dx.doi.org/10.1186/s40478-015-0259-2
dx.doi.org/10.1186/s40478-015-0259-2
dx.doi.org/10.1186/s40478-015-0259-2


(KAKENHI 15 K19472), research support from CAPES/Brasil (CSF-PAJT -
88887.091277/2014-00) and speaker honoraria from Novartis.
Dr. Toshiyuki Takahashi has nothing to disclose.
Dr. Yoichiro Abe has nothing to disclose.
Dr. Hiroko Iwanari has nothing to disclose.
Dr. Ryo Ogawa has nothing to disclose.
Dr. Ichiro Nakashima has received funding for travel and received speaker
honoraria from Bayer Schering Pharma and Biogen Idec and has received
research funding from Mitsubishi Chemical Medicine Corporation and the
Grants-in-Aid for Scientific Research from the Ministry of Education, Science
and Technology of Japan.
Prof. Kazuo Fujihara serves on scientific advisory boards for Bayer Schering
Pharma, Biogen Idec, Mitsubishi Tanabe Pharma Corporation, Novartis
Pharma, Chugai Pharmaceutical, Ono Pharmaceutical, Nihon Pharmaceutical,
Merck Serono, Alexion Pharmaceuticals, Medimmune and Medical Review;
has received funding for travel and speaker honoraria from Bayer Schering
Pharma, Biogen Idec, Eisai Inc., Mitsubishi Tanabe Pharma Corporation,
Novartis Pharma, Astellas Pharma Inc., Takeda Pharmaceutical Company
Limited, Asahi Kasei Medical Co., Daiichi Sankyo, and Nihon Pharmaceutical;
serve as an editorial board member of Clinical and Experimental
Neuroimmunology (2009-present) and an advisory board member of Sri
Lanka journal of Neurology; has received research support from Bayer
Schering Pharma, Biogen Idec Japan, Asahi Kasei Medical, The Chemo-Sero-
Therapeutic Research Institute, Teva Pharmaceutical, Mitsubishi Tanabe
Pharma, Teijin Pharma, Chugai Pharmaceutical, Ono Pharmaceutical, Nihon
Pharmaceutical, and Genzyme Japan; is funded by the Grants-in-Aid for
Scientific Research from the Ministry of Education, Science and Technology
of Japan (#22229008, 2010–2015;#26293205, 2014–2016) and by the Grants-
in-Aid for Scientific Research from the Ministry of Health, Welfare and Labor
of Japan (2010-present).
Prof. Takao Hamakubo serves on an outside board member for Perseus
Proteomics. Inc. and has supported by Grants-in Aid for Scientific Research
from the Ministry of Education, Science and Technology of Japan.
Prof. Masato Yasui has nothing to disclose.
Prof. Masashi Aoki has received research support from Grants-in-Aid for
Scientific Research from the Ministry of Education, Science and Technology,
and the Ministry of Health, Labor and Welfare of Japan.

Author details
1Department of Neurology, Tohoku University Graduate School of Medicine,
Sendai, Japan. 2Department of Multiple Sclerosis Therapeutics, Tohoku
University Graduate School of Medicine, Sendai, Japan. 3Department of
Neurology, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
4Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil. 5Department of Neurology, Yonezawa National Hospital,
Yamagata, Japan. 6Keio Advanced Research Center for Water Biology and
Medicine, Keio University, Tokyo, Japan. 7Department of Pharmacology,
School of Medicine, Keio University, Tokyo, Japan. 8Department of
Quantitative Biology and Medicine, Research Center for Advanced Science
and Technology, The University of Tokyo, Tokyo, Japan.

Received: 14 October 2015 Accepted: 20 November 2015

References
1. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al.

International consensus diagnostic criteria for neuromyelitis optica spectrum
disorders. Neurology. 2015;85(2):177–89.

2. Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, Nakamura M, et al.
Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study
on antibody titre. Brain. 2007;130(Pt 5):1235–43.

3. Ruiz-Gaviria R, Baracaldo I, Castaneda C, Ruiz-Patino A, Acosta-Hernandez A,
Rosselli D. Specificity and sensitivity of aquaporin 4 antibody detection tests
in patients with neuromyelitis optica: a meta-analysis. Mult Scler Relat
Disord. 2015;4(4):345–9.

4. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K,
et al. A serum autoantibody marker of neuromyelitis optica: distinction from
multiple sclerosis. Lancet. 2004;364(9451):2106–12.

5. Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, et al.
Pathogenic potential of IgG binding to water channel extracellular domain
in neuromyelitis optica. Neurology. 2007;69(24):2221–31.

6. Tait MJ, Saadoun S, Bell BA, Papadopoulos MC. Water movements in the
brain: role of aquaporins. Trends Neurosci. 2008;31(1):37–43.

7. Ghezzi A, Bergamaschi R, Martinelli V, Trojano M, Tola MR, Merelli E, et al.
Clinical characteristics, course and prognosis of relapsing Devic’s
Neuromyelitis Optica. Journal of neurology. 2004;251(1):47–52.

8. Pittock SJ, Lucchinetti CF. Neuromyelitis optica and the evolving spectrum
of autoimmune aquaporin-4 channelopathies: a decade later. Ann N Y Acad
Sci. 2015. Epub ahead of print.

9. Takano R, Misu T, Takahashi T, Sato S, Fujihara K, Itoyama Y. Astrocytic
damage is far more severe than demyelination in NMO: a clinical CSF
biomarker study. Neurology. 2010;75(3):208–16.

10. Pittock SJ, Lennon VA, Krecke K, Wingerchuk DM, Lucchinetti CF,
Weinshenker BG. Brain abnormalities in neuromyelitis optica. Archives of
neurology. 2006;63(3):390–6.

11. Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S, et al. Cytokine and
chemokine profiles in neuromyelitis optica: significance of interleukin-6.
Multiple sclerosis (Houndmills, Basingstoke, England). 2010;16(12):1443–52.

12. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG.
Revised diagnostic criteria for neuromyelitis optica. Neurology.
2006;66(10):1485–9.

13. Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG. The
clinical course of neuromyelitis optica (Devic’s syndrome). Neurology.
1999;53(5):1107–14.

14. Nagaishi A, Takagi M, Umemura A, Tanaka M, Kitagawa Y, Matsui M, et al.
Clinical features of neuromyelitis optica in a large Japanese cohort:
comparison between phenotypes. J Neurol Neurosurg Psychiatry.
2011;82(12):1360–4.

15. Misu T, Fujihara K, Nakashima I, Sato S, Itoyama Y. Intractable hiccup and
nausea with periaqueductal lesions in neuromyelitis optica. Neurology.
2005;65(9):1479–82.

16. Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR,
Lennon VA. Neuromyelitis optica brain lesions localized at sites of high
aquaporin 4 expression. Arch Neurol. 2006;63(7):964–8.

17. Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, et al. Loss
of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple
sclerosis. Brain. 2007;130(Pt 5):1224–1234.

18. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM,
et al. A role for humoral mechanisms in the pathogenesis of Devic’s
neuromyelitis optica. Brain. 2002;125(Pt 7):1450–61.

19. Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, et al.
Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann
Neurol. 2009;66(5):630–43.

20. Ratelade J, Bennett JL, Verkman AS. Intravenous neuromyelitis optica
autoantibody in mice targets aquaporin-4 in peripheral organs and area
postrema. PloS one. 2011;6(11):e27412.

21. Pohl M, Kawakami N, Kitic M, Bauer J, Martins R, Fischer MT, et al. T
cell-activation in neuromyelitis optica lesions plays a role in their formation.
Acta Neuropathol Commun. 2013;1:85.

22. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al.
Neuromyelitis optica: Passive transfer to rats by human immunoglobulin.
Biochem Biophys Res Commun. 2009;386(4):623–7.

23. Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, et al. Intrathecal
pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann
Neurol. 2009;66(5):617–29.

24. Kitic M, Hochmeister S, Wimmer I, Bauer J, Misu T, Mader S, et al. Intrastriatal
injection of interleukin-1 beta triggers the formation of neuromyelitis
optica-like lesions in NMO-IgG seropositive rats. Acta Neuropathol Commun.
2013;1:5.

25. Geis C, Ritter C, Ruschil C, Weishaupt A, Grunewald B, Stoll G, et al. The
intrinsic pathogenic role of autoantibodies to aquaporin 4 mediating spinal
cord disease in a rat passive-transfer model. Exp Neurol. 2015;265:8–21.

26. Chihara N, Aranami T, Sato W, Miyazaki Y, Miyake S, Okamoto T, et al.
Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production
from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci U S A.
2011;108(9):3701–6.

27. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al.
Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence
of CNS antigen-specific T cells. Biochem Biophys Res Commun.
2010;394(1):205–10.

28. Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC.
Intra-cerebral injection of neuromyelitis optica immunoglobulin G and

Kurosawa et al. Acta Neuropathologica Communications  (2015) 3:82 Page 14 of 15



human complement produces neuromyelitis optica lesions in mice. Brain.
2010;133(Pt 2):349–61.

29. Saadoun S, Waters P, Macdonald C, Bridges LR, Bell BA, Vincent A, et al. T cell
deficiency does not reduce lesions in mice produced by intracerebral injection
of NMO-IgG and complement. J Neuroimmunol. 2011;235(1–2):27–32.

30. Asavapanumas N, Verkman AS. Neuromyelitis optica pathology in rats
following intraperitoneal injection of NMO-IgG and intracerebral needle
injury. Acta Neuropathol Commun. 2014;2:48.

31. Asavapanumas N, Ratelade J, Papadopoulos MC, Bennett JL, Levin MH,
Verkman AS. Experimental mouse model of optic neuritis with inflammatory
demyelination produced by passive transfer of neuromyelitis optica-
immunoglobulin G. J Neuroinflammation. 2014;11:16.

32. Zhang H, Verkman AS. Longitudinally extensive NMO spinal cord pathology
produced by passive transfer of NMO-IgG in mice lacking complement
inhibitor CD59. J Autoimmun. 2014;53:67–77.

33. Misu T, Fujihara K, Nakamura M, Murakami K, Endo M, Konno H, et al. Loss
of aquaporin-4 in active perivascular lesions in neuromyelitis optica: a case
report. Tohoku J Exp Med. 2006;209(3):269–75.

34. Saitoh R, Ohtomo T, Yamada Y, Kamada N, Nezu J, Kimura N, et al. Viral
envelope protein gp64 transgenic mouse facilitates the generation of
monoclonal antibodies against exogenous membrane proteins displayed
on baculovirus. J Immunol Methods. 2007;322(1–2):104–17.

35. Ramadhanti J, Huang P, Kusano-Arai O, Iwanari H, Sakihama T, Misu T, et al.
A novel monoclonal antibody against the C-terminal region of aquaporin-4.
Monoclon Antib Immunodiagn Immunother. 2013;32(4):270–6.

36. Miyazaki K, Abe Y, Iwanari H, Suzuki Y, Kikuchi T, Ito T, et al. Establishment of
monoclonal antibodies against the extracellular domain that block binding
of NMO-IgG to AQP4. Journal of neuroimmunology. 2013;260(1–2):107–16.

37. Ikeshima-Kataoka H, Abe Y, Abe T, Yasui M. Immunological function of
aquaporin-4 in stab-wounded mouse brain in concert with a
pro-inflammatory cytokine inducer, osteopontin. Mol Cell Neurosci.
2013;56:65–75.

38. Miyazaki K, Takai Y, Huang P, Kusano O, Iwanari H, Misu T, et al. High avidity
chimeric monoclonal antibodies against the extracellular domains of human
aquaporin-4 competing with NMO-IgG. Br J Pharmacol. 2015. in press

39. Itoyama Y, Sternberger NH, Webster HD, Quarles RH, Cohen SR, Richardson
Jr EP. Immunocytochemical observations on the distribution of myelin-
associated glycoprotein and myelin basic protein in multiple sclerosis
lesions. Ann Neurol. 1980;7(2):167–77.

40. Misu T, Hoftberger R, Fujihara K, Wimmer I, Takai Y, Nishiyama S, et al.
Presence of six different lesion types suggests diverse mechanisms of tissue
injury in neuromyelitis optica. Acta Neuropathol. 2013;125(6):815–27.

41. Wrzos C, Winkler A, Metz I, Kayser DM, Thal DR, Wegner C, et al. Early loss of
oligodendrocytes in human and Experimental neuromyelitis optica lesions.
Acta Neuropathol. 2014;127(4):523–38.

42. Jones MV, Collongues N, de Seze J, Kinoshita M, Nakatsuji Y, Levy M.
Review of Animal Models of Neuromyelitis Optica. Mult Scler Relat
Disord. 2012;1(4):174–9.

43. Mannie M, Swanborg RH, Stepaniak JA. Experimental autoimmune
encephalomyelitis in the rat. Curr Protoc Immunol. 2009;Chapter
15:Unit 15.2.

44. Kibler RF, Fritz RB, Chou F, Jen Chou CH, Peacocke NY, Brown NM, et al.
Immune response of Lewis rats to peptide C1 (residues 68–88) of guinea
pig and rat myelin basic proteins. J Exp Med. 1977;146(5):1323–31.

45. Phuan PW, Ratelade J, Rossi A, Tradtrantip L, Verkman AS. Complement-
dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein
assembly in orthogonal arrays. The Journal of biological chemistry. 2012;
287(17):13829–39.

46. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system
for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.

47. Ehrengruber MU, Geiser T, Deranleau DA. Activation of human neutrophils
by C3a and C5A. Comparison of the effects on shape changes, chemotaxis,
secretion, and respiratory burst. FEBS Lett. 1994;346(2–3):181–4.

48. Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Kohl J. The role of the
anaphylatoxins in health and disease. Mol Immunol. 2009;46(14):2753–66.

49. Aksamit RR, Falk W, Leonard EJ. Chemotaxis by mouse macrophage cell
lines. J Immunol. 1981;126(6):2194–9.

50. Hammond ME, Lapointe GR, Feucht PH, Hilt S, Gallegos CA, Gordon CA,
et al. IL-8 induces neutrophil chemotaxis predominantly via type I IL-8
receptors. J Immunol. 1995;155(3):1428–33.

51. Pittock SJ, Lennon VA, McKeon A, Mandrekar J, Weinshenker BG,
Lucchinetti CF, et al. Eculizmab in AQP4-IgG-positive relapsing
neuromyelitis optica spectrum disorders: an open-label pilot study.
Lanncet Neurol. 2013;12:554–62.

52. Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity
distinguishes the human brain. Trends in neurosciences. 2006;29(10):547–53.

53. Bradl M, Lassmann H. Experimental models of neuromyelitis optica. Brain
pathology (Zurich, Switzerland). 2014;24(1):74–82.

54. Papadopoulos MC, Verkman AS. Aquaporin 4 and neuromyelitis optica. The
Lancet Neurol. 2012;11(6):535–44.

55. Herges K, de Jong BA, Kolkowitz I, Dunn C, Mandelbaum G, Ko RM, et al.
Protective effect of an elastase inhibitor in a neuromyelitis optica-like
disease driven by a peptide of myelin oligodendroglial glycoprotein.
Multiple sclerosis (Houndmills, Basingstoke, England). 2012;18(4):398–408.

56. Saadoun S, Waters P, MacDonald C, Bell BA, Vincent A, Verkman AS, et al.
Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin
G-induced damage in mouse brain. Ann Neurol. 2012;71(3):323–33.

57. Lucchinetti CF, Parisi J, Bruck W. The pathology of multiple sclerosis. Neurol
Clin. 2005;23(1):77–105. vi.

58. Young NP, Weinshenker BG, Lucchinetti CF. Acute disseminated
encephalomyelitis: current understanding and controversies. Semin
Neurol. 2008;28(1):84–94.

59. Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF. Deletion of
astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and
hippocampal CA1 vacuolation. J Neurosci. 2009;29(24):7743–52.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Kurosawa et al. Acta Neuropathologica Communications  (2015) 3:82 Page 15 of 15


	Abstract
	Introduction
	Results
	Conclusions

	Introduction
	Materials and methods
	Animals
	A NMO postmortem case
	Antibodies
	Cell-based affinity assay to assess binding of NMO-IgGs to rat AQP4
	NMO/EAE experiment—an experimental NMO rat model
	Statistical analysis

	Results
	Clinical exacerbation of NMO/EAE models with E5415A and hIgGNMO in dose-dependent manner
	Lesion volume in the NMO/EAE model with dose dependent manner
	In vivo model of primary astrocytopathy
	Massive neutrophil infiltration precedes tissue vacuolation
	Lesion localization in NMO/EAE models

	Discussion
	Conclusion
	Ethical approval
	Availability of supporting data
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Disclosures
	Author details
	References



