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Abstract
This paper presents a new concept of uncertain matrix that is a measurable function
from an uncertainty space to the set of real matrices. It is proved that an uncertain
matrix is a matrix all of whose elements are uncertain variables. The independence of
uncertain matrices is also investigated.
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Introduction
In order to rationally model belief degrees, uncertainty theory was founded by Liu [1] in
2007 and perfected by Liu [2] in 2009 with the fundamental concept of uncertainmeasure.
Following that, uncertainty theory has been developed steadily and applied in science and
engineering.
Roughly speaking, an uncertain element (Liu [1]) is a measurable function from an

uncertainty space to a collection of some objects. The uncertain element is an uncertain
variable when the collection consists of real numbers, an uncertain vector when the col-
lection consists of real vectors, an uncertain sequence when the collection consists of
infinite-dimensional real vector, an uncertain process (Liu [3]) when the collection con-
sists of functions of time or space, and an uncertain set (Liu [4]) when the collection
consists of sets of real numbers.
As a new subtopic of uncertain element, this paper will present a concept of uncertain

matrix that is a measurable function from an uncertainty space to the set of real matrices.
We will prove that an uncertain matrix is a matrix all of whose elements are uncertain
variables. The independence of uncertain matrices will also be investigated.

Preliminaries
Let � be a nonempty set andL a σ -algebra over �. Each element� inL is called an event.
Liu [1] defined an uncertain measure by the following axioms:
Axiom 1. (Normality axiom)M{�} = 1 for the universal set �;
Axiom 2. (Duality axiom)M{�} + M{�c} = 1 for any event �;
Axiom 3. (Subadditivity axiom) For every countable sequence of events �1,�2, · · · , we

have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}. (1)
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The triplet (�,L,M) is called an uncertainty space. Furthermore, Liu [2] defined a
product uncertain measure by the fourth axiom:
Axiom 4. (Product axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, · · · The

product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k} (2)

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
An uncertain variable is defined by Liu [1] as a function ξ from an uncertainty space

(�,L,M) to the set of real numbers such that {ξ ∈ B} is an event for any Borel set B. In
order to describe an uncertain variable in practice, uncertainty distribution is defined by
Liu [1] as

�(x) = M {ξ ≤ x} , ∀x ∈ �. (3)

Peng and Iwamura [5] verified that a function � : � →[ 0, 1] is an uncertainty distribu-
tion if and only if it is a monotone increasing function except �(x) ≡ 0 and �(x) ≡ 1.
An uncertainty distribution �(x) is said to be regular if it is a continuous and strictly
increasing function with respect to x at which 0 < �(x) < 1, and

lim
x→−∞ �(x) = 0, lim

x→+∞ �(x) = 1. (4)

Let ξ be an uncertain variable with regular uncertainty distribution �(x). Then, the
inverse function �−1(α) is called the inverse uncertainty distribution of ξ (Liu [6]). It is
also verified that a function �−1(α) : (0, 1) → � is an inverse uncertainty distribution if
and only if it is a continuous and strictly increasing function with respect to α. Indepen-
dence is an extremely important concept in uncertainty theory. The uncertain variables
ξ1, ξ2, · · · , ξn are said to be independent (Liu [2]) if

M

{ n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi} (5)

for any Borel sets B1,B2, · · · ,Bn of real numbers. Equivalently, those uncertain variables
are independent if and only if

M

{ n⋃
i=1

(ξi ∈ Bi)

}
=

n∨
i=1

M {ξi ∈ Bi} . (6)

A k-dimensional uncertain vector (Liu [1]) is a function ξ from an uncertainty space
(�,L,M) to the set of k-dimensional real vectors such that {ξ ∈ B} is an event for any
Borel set B of k-dimensional real vectors. It is showed that the vector (ξ1, ξ2, · · · , ξk) is
an uncertain vector if and only if ξ1, ξ2, · · · , ξk are uncertain variables. The k-dimensional
uncertain vectors ξ1, ξ2, · · · , ξn are said to be independent (Liu [7]) if for any Borel sets
B1,B2, · · · , Bn of k-dimensional real vectors, we have

M

{ n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi}. (7)

It is proved that the k-dimensional uncertain vectors ξ1, ξ2, · · · , ξn are independent if
and only if

M

{ n⋃
i=1

(ξi ∈ Bi)

}
=

n∨
i=1

M {ξi ∈ Bi} (8)
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for any Borel sets B1,B2, · · · ,Bn of k-dimensional real vectors.

Uncertain Matrix
This section introduces a new concept of uncertain matrix and proves that an uncertain
matrix is a matrix all of whose elements are uncertain variables.

Definition 1 A p × q uncertain matrix is a function ξ from an uncertainty space
(�,L,M) to the set of p × q real matrices such that {ξ ∈ B} is an event for any Borel set B
of p × q real matrices.

Theorem 1 The p × q matrix ξ is an uncertain matrix if and only if

ξ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ11 ξ12 · · · ξ1q

ξ21 ξ22 · · · ξ2q

...
...

. . .
...

ξp1 ξp2 · · · ξpq

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

where ξij, i = 1, 2, · · · , p, j = 1, 2, · · · , q are uncertain variables.

Proof Suppose that ξ is defined on the uncertainty space (�,L,M). For any Borel set B
of real numbers, the set

B∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

B � · · · �
� � · · · �
...

...
. . .

...

� � · · · �

⎞
⎟⎟⎟⎟⎟⎟⎠

is a Borel set of p× q real matrices. Thus, the set {ξ11 ∈ B} = {ξ ∈ B∗} is an event. Hence,
ξ11 is an uncertain variable. A similar process may prove that other ξijs are uncertain
variables.

Conversely, suppose that all ξijs are uncertain variables on the uncertainty space
(�,L,M). We define

B = {
B ⊂ �p×q ∣∣ {ξ ∈ B}is an event

}
.

The matrix ξ = (ξij)p×q is proved to be an uncertain matrix if we can prove that B con-
tains all Borel sets of p × q real matrices. First, the class B contains all open intervals of
�p×q because⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
ξ ∈

⎛
⎜⎜⎜⎜⎜⎜⎝

(a11, b11) (a12, b12) · · · (a1q, b1q)

(a21, b21) (a22, b22) · · · (a2q, b2q)
...

...
. . .

...

(ap1, bp1) (ap2, bp2) · · · (apq, bpq)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
p⋂

i=1

q⋂
j=1

{
ξij ∈ (aij, bij)

}

is an event. Next, the classB is a σ -algebra over �p×q because (i) we have �p×q ∈ B since
{ξ ∈ �p×q} = �; (ii) if B ∈ B, then {ξ ∈ B} is an event, and

{ξ ∈ Bc} = {ξ ∈ B}c
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is an event. This means that Bc ∈ B; (iii) if Bi ∈ B for i = 1, 2, · · · , then {ξ ∈ Bi} are events
and

{
ξ ∈

∞⋃
i=1

Bi

}
=

∞⋃
i=1

{ξ ∈ Bi}

is an event. This means that ∪iBi ∈ B. Since the smallest σ -algebra containing all open
intervals of �p×q is just the Borel algebra over �p×q, the class B contains all Borel sets of
p × q real matrices. The theorem is proved.

Definition 2 The p×q uncertain matrices ξ1, ξ2, · · · , ξn are said to be independent if for
any Borel sets B1,B2, · · · , Bn of p × q real matrices, we have

M

{ n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi} . (10)

Example 1 Let (ξij)3×3 and (ηij)3×3 be independent uncertain matrices. Then, (ξ11, ξ12)
and (η31, η32, η33) are independent uncertain vectors.

Example 2 Let (ξij)3×3 and (ηij)3×3 be independent uncertain matrices. Then,

(
ξ11 ξ12 ξ13

ξ21 ξ22 ξ23

)
and

⎛
⎜⎜⎝

η11 η12

η21 η22

η31 η32

⎞
⎟⎟⎠

are independent uncertain matrices.

Theorem 2 The p × q uncertain matrices ξ1, ξ2, · · · , ξn are independent if and only if

M

{ n⋃
i=1

(ξi ∈ Bi)

}
=

n∨
i=1

M {ξi ∈ Bi} (11)

for any Borel sets B1,B2, · · · ,Bn of p × q real matrices.

Proof It follows from the duality of uncertain measure that ξ1, ξ2, · · · , ξn are indepen-
dent if and only if

M

{ n⋃
i=1

(ξi ∈ Bi)

}
= 1 − M

{ n⋂
i=1

(
ξi ∈ Bc

i
)}

= 1 −
n∧

i=1
M

{
ξi ∈ Bc

i
} =

n∨
i=1

M {ξi ∈ Bi} .

The theorem is thus proved.

Theorem 3 Let ξ1, ξ2, · · · , ξn be independent uncertain matrices, and let f1, f2, · · · , fn be
matrix-valued measurable functions. Then, f1(ξ1), f2(ξ2), · · · , fn(ξn) are also independent
uncertain matrices.
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Proof For any Borel sets B1,B2, · · · ,Bn of real matrices, it follows from the definition of
independence that

M

{ n⋂
i=1

(
fi(ξi) ∈ Bi

)} = M

{ n⋂
i=1

(
ξi ∈ f −1

i (Bi)
)}

=
n∧

i=1
M

{
ξi ∈ f −1

i (Bi)
}

=
n∧

i=1
M

{
fi(ξi) ∈ Bi

}
.

Thus, f1(ξ1), f2(ξ2), · · · , fn(ξn) are independent uncertain variables.

Conclusion
This paper presented a concept of uncertain matrix that is a measurable function from
an uncertainty space to the set of real matrices. It was proved that an uncertain matrix
is a matrix all of whose elements are uncertain variables. The independence of uncertain
matrices was also investigated.
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