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Abstract

This article focuses on an imperfect production inventory model considering product
reliability and reworking of imperfect items in three-layer supply chain under fuzzy
rough environment. In the model, the supplier receives the raw materials, all are not of
perfect quality, in a lot and delivers the items of superior quality to the manufacturer
and the inferior quality items are sold at a reduced price in a single batch by the end of
the cent percent screening process. The manufacturer produces a mixture of perfect
and imperfect quality items. A portion of the imperfect items is transformed into
perfect quality items after rework. Another portion of imperfect items, termed as ‘less
perfect quality items,’ is sold at a reduced price to the retailer, and the portion which
cannot be either transformed to the perfect quality items or sold at a reduce price is
being rejected. Here, retailer purchases both the perfect and imperfect quality items
from the manufacturer to sell the items to the customers through his/her respective
showrooms of finite capacities. A secondary warehouse of infinite capacity is hired by
the retailer on rental basis to store the excess quantity of perfect quality items. This
model considers the impact of business strategies such as optimal order size of raw
materials, production rate, and unit production cost in different sectors in a
collaborating marketing system that can be used in the industry, like textile, footwear,
and electronics goods. An analytical method has been used to optimize the
production rate and raw material order size for maximization of the average profit of
the integrated model. Finally, a numerical example is given to illustrate the model.

Keywords: Inventory; Three-layer supply chain; Imperfect production;
Two-warehouse; Stock-dependent demand; Fuzzy rough parameters

Introduction
Business organizations all over the world are striving hard to evolve strategies to survive
in the era of competition ushered in by globalization. Supply chain management (SCM)
is one such strategy. It is an effective methodology and presents an integrated approach
to resolve issues in sourcing customer service, demand flow, and distribution. The focus
is on the customer. The results are in the form of reduced operational costs, improved
flow of supplies, reduction in delays of production, and increased customer satisfaction.
While the goal of supply chain management is to reduce cost of producing and reach-
ing the finished products to the customers, inventory control is the means to achieve the
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goal. Researchers as well as practitioners in manufacturing industries have given impor-
tance to develop inventory control problems in supply chain management. All steps from
supply of rawmaterials to finished products can be included into a supply chain, connect-
ing raw materials supplier, manufacturer, retailer, and finally, customers. Recent reviews
on supply chain management are provided by Weng [1], Munson and Rosenblatt [2],
Yang and Wee [3], Khouja [4], Yao et al. [5], Chaharsooghi et al. [6], Wang et al. [7],
and others.
Nowadays, it is common to all industries that a certain percentage of produced or

ordered items are a mixture of perfect and imperfect quality. It is also important to a
supply manager of any organization to control and maintain the inventories of perfect
and imperfect quality items. Salameh and Jaber [8] developed an inventory model for
imperfect quality items using the economic production quantity (EPQ)/economic order
quantity (EOQ) formulae and assumed that inferior quality items are sold as a single
batch at the end of the total screening process. Thereafter, Goyal and Cardenas-Barron
[9] extended the idea of Salameh and Jaber’s [8] model and proposed a practical approach
to determine EPQ for items with imperfect quality. Yu et al. [10] generalized the models
of Salameh and Jaber [8], incorporating deterioration and partial back ordering. Liu and
Yang [11] investigated a single-stage production system with imperfect process deliver-
ing two types of defects: reworkable and non-reworkable items. The reworkable items are
sent for reworking, whereas non-reworkable items are immediately discarded from the
system. They determined the optimal lot size that maximized the expected total profit
over the expected time length of the production cycle. Panda andMaiti [12] represented a
geometric programming approach for multi-item inventory models with price-dependent
demand under flexibility and reliability with imprecise space constraint. Ma et al. [13]
considered the effects of imperfect production processes and the decision on whether
and when to implement a screening process for defective items generated during a pro-
duction run. Sana [14] develops two inventory models in an imperfect production system
and showed that the inferior quality items could be reworked at a cost where overall pro-
duction inventory costs could be reduced significantly. Sana [15] extended the idea of
imperfect production process in three-layer supply chain management system.
Inventory management is generally attracted for large stock for several reasons: an

attractive price discount for bulk purchase, the replenishment cost including transporta-
tion cost is higher than the inventory related cost, the demand of an item is very high, and
so on. Therefore, due to space limitation of showroom, one (or sometimes more than one)
warehouse(s) is hired on rental basis to store the excess items. The secondary warehouse
(SW) may be located away from the showroom or nearer to the showroom. The actual
service to the customer is done at the showroom only. Hartely [16] first introduced the
basic two warehouses problem in his bookOperations Research - AManagerial Emphasis.
After Hartely [16], a number of research papers have been published by different authors.
Among them, the work done by Sarma [17], Dave [18], Goswami and Chaudhuri [19],
Pakkala and Achary [20], Bhunia and Maiti [21], Benkherouf [22], Zhou [23], Kar et al.
[24], and Chung and Huang [25] are worth mentioning. Dey et al. [26] considered a finite-
time horizon inventory problem for a deteriorating item having two separate warehouses
with interval-valued lead time under inflation and a time value of money. Liang and
Zhou [27] investigated a two-warehouse inventory model for deteriorating items under
conditionally permissible delay in payments. Hariga [28] proposed an EOQ model with
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multiple storage facilities where both owned and rented warehouses had limited stock
capacity. They assumed the rented warehouse had higher unit holding costs than the own
warehouse but offered better preservation resulting in a lower rate of deterioration for the
goods than in the own warehouse.
Dubois and Prade [29] first studied the fuzzification problem of rough sets. Further-

more, Morsi and Yakout [30] defined the upper and lower approximations of the fuzzy
sets with respect to a fuzzy min-similarity relation. Additionally, Radzikowska and Kerre
[31], Xu and Zhou [32], Liu and Sai [33], Chen [34], and others generalized the above def-
initions of the fuzzy rough set to a more general case. Different types of uncertainty such
as randomness, fuzziness, and roughness are common factors in any production inven-
tory problem. But in some problems in production inventory system, both fuzziness and
roughness occur simultaneously. In many cases, it is found that some inventory param-
eters involve both the fuzzy and rough uncertainties. For example, the inventory related
costs holding cost, set-up cost, idle costs, etc. depend on several factors such as bank
interest, inflation, etc. which are uncertain in fuzzy rough sense. To be more specific,
inventory holding cost is sometimes represented by a fuzzy number and it depends on the
storage amount which may be imprecise and range within an interval due to several fac-
tors such as scarcity of storage space, market fluctuation, and human estimation thought
process, i.e., it may be represented by a rough set.
In this paper, a supply chain model consisting of supplier, manufacturer, and retailer has

been considered. Here supplier receives the raw materials in a lot and then the superior
quality items of the raw materials are sold at a higher price to the manufacturer after the
screening the imperfect raw materials as well as inferior quality items of the raw materi-
als are also sold to another manufacturer at a reduced price in a single batch by the end
of cent percent screening process. A mixture of perfect and imperfect quality items is
produced by the manufacturer. After some rework, some repairable portion of imperfect
quality items are transformed into perfect quality items and some of non-repairable por-
tion of imperfect items are sold with reduced price to the retailer. Retailer purchases both
perfect and imperfect quality items and sells both items to the customers through his/her
respective showrooms of finite capacities at a market place.
It is assumed that the customers’ demand is stock dependent and selling price depen-

dent for the perfect quality items and less perfect items, respectively. Since the storage
space of the showroom for perfect quality items is limited due to space problem and the
demand of the corresponding items is stock dependent, hence a secondary warehouse is
hired by the retailer on rental basis to store the excess amount of perfect quality items
and these items are continuously transferred to the showroom concerned. The literature
suggests that the holding cost of secondary warehouse per unit item per unit time is more
than the holding cost of the showroom due to the preservation cost for maintaining the
quality of the product and other costs related to holding large quantity of the product in
the secondary warehouse. But in this paper, it has been considered that the holding cost of
perfect quality items in the secondary warehouse is less than the holding cost of the show-
room as the nature of the items are non-deteriorating and so having no preservation cost.
The perfect quality items are transported to the showroom via secondary warehouse, and
the less perfect quality items are directly transported to the related showroom. For this
purpose, transportation cost is incurred to transport both quality items at the respective
showrooms from the production center. Due to complexity of environment, inventory
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holding costs, idle costs, set-up costs, and transportation costs are considered as fuzzy
rough type and these are reduced to crisp ones using fuzzy rough expectation. In order
to optimize the production rate and raw material order size (the decision variables), the
average profit function of the manufacturer is maximized as the manufacturer acts as a
leader (Stakelberg approach), and the supplier as well as retailer are the followers of that
chain. The decision variables are also optimized by maximizing the integrated average
profit function of the chain. Finally, a comparative study has been made between both
Stakelberg and integrated approaches. A numerical example is provided to illustrate the
feasibility of the model.

Necessary knowledge about fuzzy-rough (Fu-Ro) set
In this section, we discuss some basic concepts, theorems, and lemmas on fuzzy rough
theory by Xu and Zhou [32]. These results are crucial for the remainder of this paper.

Definition 1. Xu and Zhou [32] proposed some definitions and discussed some impor-
tant properties of fuzzy rough variable. Let U be a universe, and X be a set representing a
concept. Then, its lower and upper approximation is defined by

X = {x ∈ U |R(x) ⊂ X} and X = ⋃
x∈X R(x) respectively.

Definition 2. The collection of all sets having the same lower and upper approxima-
tions is called a rough set, denoted by (X,X). The figure of the rough set is depicted in
Figure 1.

Example 1. Let ξ focus on the continuous set in the one dimension real space R. There
are still some vague sets which cannot be directly fixed and need to be described by
the rough approximation. Let set R be the universe, a similarity relation ! is defined as
a ˜̄ b if and only if |a − b| ≤ 10. Let us define for the set [20, 50], its lower approx-
imation [20, 50] = [30, 40] and its upper approximation [20, 50] = [10, 60]. Then the
upper and lower approximations of the set [20, 50] make up a rough set ([30, 40] , [10, 60])
which is the collection of all sets having the same lower approximation [30, 40] and upper
approximation [10, 60].

Definition 3. A fuzzy rough variable ξ is a fuzzy variable with uncertain parameter
ρ ∈ X, where X is approximated by (X,X) according to the similarity relation R, namely,
X ⊆ X ⊆ X.

Figure 1 A rough set.
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For convenience, we usually denote ρ � (X,X)R expressing that ρ is in some setAwhich
is approximated by (X,X) according to the similarity relation R, namely, X ⊆ A ⊆ X.

Example 2. Let us consider the LR fuzzy variable ξ with the following membership
function:

μξ (x) =

⎧⎪⎪⎨⎪⎪⎩
L
(

ρ−x
α

)
if ρ − α < x < ρ

1 if x = ρ

L
(
x−ρ
β

)
if ρ < x < ρ + β

where L(x) = 1 − x and ρ � ([1, 2] , [0, 3]), then ξ is a fuzzy rough variable.

Theorem 1. If fuzzy rough variables ˜̄cij are defined as ˜̄cij(λ) = (
cij1, cij2, cij3, cij4

)
with

cijt � ([
cijt2, cijt3

]
,
[
cijt1, cijt4

])
, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, t = 1, 2, 3, 4, x =

(x1, x2, . . . , xm), 0 ≤ cijt1 ≤ cijt2 < cijt3 ≤ cijt4, then E
[˜̄cT1 x] ,E [˜̄cT2 x] , . . . ,E[˜̄cTn x] is

respectively equivalent to

1
16

n∑
j=1

4∑
t=1

4∑
k=1

c1jtkxj,
1
16

n∑
j=1

4∑
t=1

4∑
k=1

c2jtkxj, ....,
1
16

n∑
j=1

4∑
t=1

4∑
k=1

cnjtkxj.

Proof. The proof of the theorem is in reference Xu and Zhou [32] in page 308.

Theorem 2. If fuzzy rough variables ˜̄arj, ˜̄br defined as follows, ˜̄arj(λ) =(
arj1, arj2, arj3, arj4

)
with arjt � ([

arjt2, arjt3
]
,
[
arjt1, arjt4

])
, ˜̄br(λ) =

(
br1, br2, br3, br4

)
with brt � ([

brt2, brjt3
]
, [brt1, brt4]

)
, for r = 1, 2, . . . , p, j = 1, 2, . . . , n, t = 1, 2, 3, 4,

0 ≤ art1 ≤ art2 < art3 ≤ art4, 0 ≤ brt1 ≤ brt2 < brt3 ≤ brt4. Then
E
[ ˜̄aTrjx

]
≤ E

[ ˜̄brj
]
, r = 1, 2, . . . , p is equivalent to

1
16

n∑
j=1

4∑
t=1

4∑
k=1

arjtkxj ≤ 1
16

4∑
t=1

4∑
k=1

brtk , r = 1, 2, . . . , p

Proof. The proof of the theorem is in reference Xu and Zhou [32] in page 316.

Lemma 1. Assume that ξ and η are the introduction of variables with finite expected
values. Then for any real numbers a and b, we have

E[aξ + bη] = aE[ξ ] + bE[η] .

Proof. The proof of the Lemma is in reference Xu and Zhou [32] in page 313.

Single-objective Fu-Romodel
Let us consider the following single-objective decision-making model with fuzzy rough
coefficients:⎧⎪⎨⎪⎩

max
{
f (x, ξ)

}
s.t.

{
gr(x, ξ) ≤ 0, r = 1, 2, . . . , p
x ∈ X

(1)
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where x is a n-dimensional decision vector, ξ = (ξ1, ξ2, ξ3, . . . , ξn) is a Fu-Ro vector, and
f (x, ξ) is objective function. Because of the existence of Fu-Ro vector ξ , problem (3) is
not well-defined, that is, the meaning of maximizing f (x, ξ) is not clear and constraints
gr(x, ξ) ≤ 0, r = 1, 2, . . . , p do not define a deterministic feasible set.

Equivalent crisp model for single-objective problemwith Fu-Ro parameters

For the single-objective model with Fu-Ro parameters, we cannot deal with it directly,
we should use some tools to make it have mathematical meaning, we then can solve it.
In this subsection, we employ the expected value operator to transform the fuzzy rough
model into Fu-Ro EVM, i.e., crisp model. Based on the definition of the expected value of
fuzzy rough events f (x, ξ), gr(x, ξ) and Theorems 1 and 2, the Fu-Ro EVM is proposed as
follows:⎧⎪⎨⎪⎩

max E
[
f (x, ξ)

]
s.t.

{
E
[
gr (x, ξ)

] ≤ 0, r = 1, 2, . . . , p
x ∈ X

(2)

where x is the n-dimensional decision vector and ξ is the n-dimensional fuzzy rough
variable.

Assumptions and notations
The following notations and assumptions has been used in develop the proposed models.

Notations

For convenience, the following notations are used throughout the entire paper:

R Replenishment lot size of the supplier
P Production rate for the manufacturer which is also the demand rate of supplier
x Screening rate of supplier
θ Percentage of inferior quality items in each lot received by the supplier
t1 Cycle length of supplier
t′ Total screening time of R units order per cycle
As Set-up cost of supplier
cs Purchase cost per unit item of supplier
hs Holding cost per unit item for per unit time for supplier
Ics Cost per unit idle time of supplier
sc Screening cost per unit item
ws Selling price per unit of superior quality item for supplier
w′
s Selling price per unit of inferior quality item for supplier
β Percentage of imperfect quality items suitable for rework to make perfect items
γ Percentage of imperfect items which are suitable for sale through reduction

q1m(t) Inventory level of perfect quality items for the manufacturer at any time t
q2m(t) Inventory level of less perfect quality items for the manufacturer at any time t

Dr Demand rate of the retailer for perfect quality items
D′
r Demand rate of the retailer for less perfect quality items

Am Set-up cost of manufacturer
hm Holding cost per unit item for per unit time for perfect item in manufacturer
h′
m Holding cost per unit item for per unit time for imperfect item in manufacturer
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Icm Cost per unit idle time of manufacturer
Ism Inspection cost per unit item for manufacturer
rcm Reworking cost per unit item for manufacturer

C(P) Production cost per unit item
sm Selling price per unit of perfect quality items for manufacturer
s′m Selling price per unit less perfect quality items for manufacturer

q1r(t) Inventory level of perfect quality items for the retailer at any time t
q2r(t) Inventory level of less perfect quality items for the retailer at any time t

Ar Set-up cost for perfect quality items of retailer
A′
r Set-up cost for less perfect quality items of retailer

hr Holding cost per unit item for per unit time of perfect quality items in PW1 for
retailer

hrs Holding cost per unit item for per unit time of perfect quality items for the
retailer in secondary ware house

h′
r Holding cost per unit item for per unit time of less perfect quality items in PW2

for retailer
sr Selling price per unit of perfect quality items for retailer PW1
s′r Selling price per unit of less perfect quality items for retailer PW2
ctr Transportation cost perfect item for retailer
c′tr Transportation cost of less perfect quality items for retailer
S Capacity of secondary warehouse

Wj Capacity of PWj(j = 1, 2).
Dc Demand rate of customer for perfect quality items PW1
D′
c Demand rate of customer for less perfect quality items PW2

� Denotes the fuzzy rough parameters.

Assumptions

The following assumptions are used throughout the entire paper.

(i) Joint effect of supplier, manufacturer, and retailer is considered in a supply chain
management.

(ii) Model is developed for single-item products and lead time is negligible.
(iii) Production rate is a decision variable.
(iv) Demand for perfect quality items is deterministic and function of current stock

level.
(v) Replenishment rate of manufacture is instantaneously infinite but its size is finite.
(vi) Unit production cost is a function of production rate.
(vii) The manufacturer has ignored the machine breakdown.
(viii) Cost of idle times of supplier and manufacturer is taken into account.
(ix) Showrooms PW1 and PW2 of the retailer are adjacent.

Formulation of three-layer supply chain production inventorymodel
Block diagram and pictorial representation of the proposed supply chain production
inventory model are respectively depicted in Figures 2 and 3. Formulation of the model
for supplier, manufacturer, and retailer are given in the subsections ‘Formulation of the
supplier,’ ‘Formulation of the manufacturer,’ and ‘Formulation of the retailer,’ respectively.
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Figure 2 Block diagram of the model.

Formulation of the supplier

Here, let R be the lot-size received by the supplier at t = 0. A screening process of the
lot is conducted at a rate of x units per unit time and t′ be the total screening time of R
units. Defective items are kept in stock and sold prior to receiving the next shipment as
a single batch at a discounted price of w′

s per unit. Rθ is the number of inferior quality
items withdrawn from inventory, and t1 is the cycle length of the supplier. The number of
superior quality items in each lot, denoted by N(R, θ), is given by

N(R, θ) = (R − Rθ) (3)

Supplier supplies the superior quality items as raw materials to the manufacturer at a rate
P up to the time t1 and to avoid shortages; it is assumed that the number of superior
quality items N(r, θ) is at least equal to the demand during screening time t′, i.e.,

N(R, θ) ≥ Pt′ (4)

Figure 3 Pictorial representation of inventory situation of the integrated model.
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Substituting Equation 3 in Equation 4 and replacing t′ by R
x , the value of R is restricted to

R ≤ 1 − P
x .

Sales revenue from superior quality items per cycle = ws(R − Rθ).
Sales revenue from inferior quality items per cycle = w′

sRθ .
Procurement cost for the supplier per cycle = (Set-up cost + Purchasing cost) = As +

csR.
Screening cost per cycle = scR.
Holding cost during (0, t1) = hs

[
(R−Rθ)t1

2 + R2θ
x

]
.

Idle time cost per cycle = Ics (T − t1).
Therefore, the average profit (APS) of the supplier during (0,T) is given by

APS = 1
T
[
(Sales revenue of superior quality items) + (Sales revenue of inferior quality items)

−(Procurement cost) − (screening cost) − (Holding cost) − (Idle time cost)
]

= 1
T

[
ws(R − Rθ) + w′

sRθ − (As + csR) − scR − hs
{

(R − Rθ)t1
2

+ R2θ

x

}
− Ics (T − t1)

]
= 1

T

[
−Z0s + Z1sR + Z2s

R
P

− Z3s
R2

2P
− Z4sR2

]
. (5)

where t1 = (R−Rθ)
P and Zis, i = 0, 1, 2, 3, 4 are independent of R and P. (See Appendix 1).

Formulation of the manufacturer

It is considered that a manufacturer produces some perfect and imperfect quality items at
the rate of P units during the period (0, t1), receiving the raw material from the supplier
at the same rate P during the period (0, t1). Pe−αt and P

(
1 − e−αt) are respectively the

expected quantity of perfect and imperfect quality items at any time t, where α be the
reliability parameter given by α = Number of failures

Total units of operating hours . Among the imperfect quality
items, only βP

(
1 − e−αt) units per unit time become perfect quality after reworking and

the portion γ (1 − β)P
(
1 − e−αt) are less perfect quality which are sold at a reduced price

to the retailer. Here Dr and D′
r denote the demand rates of a retailer for perfect quality

and less perfect quality items which are met by manufacturer during (0, t2) and
(
0, t′2

)
,

respectively. The production costC(P) per unit item is considered as C(P) = L+G
P +HP,

where G be the total labor cost for manufacturing the items, L and H are respectively the
material cost and tool/die cost per unit item.

For perfect quality items ofmanufacturer

The rate of change of inventory level of the manufacturer for perfect quality items can be
represented by the following differential equations:

dq1m
dt

=
{
Pe−αt + βP

(
1 − e−αt) − Dr, 0 ≤ t ≤ t1

−Dr, t1 ≤ t ≤ t2
(6)

with boundary conditions q1m(t) = 0 at t = 0 and t = t2.
The solution of above differential equations are given by

q1m(t) =
{

P
α
(1 − β)

(
1 − e−αt) + (Pβ − Dr) t, 0 ≤ t ≤ t1

Dr (t2 − t) , t1 ≤ t ≤ t2
(7)
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From continuity at t = t1, following condition is obtained:
P
α

(1 − β)
(
1 − e−αt1) + (Pβ − Dr) t1 = Dr (t2 − t1)

which implies t2 = P
Dr

[
1
α

(1 − β)
(
1 − e−αt1) + βt1

]
. (8)

Now holding cost (HCM1) for perfect quality items for manufacture is given by

HCM1 = hm
∫ t1

0
q1m(t) dt + hm

∫ t2

t1
q1m(t) dt

= hm
∫ t1

0

P
α

(1 − β)
(
1 − e−αt) dt + hm

∫ t1

0
(Pβ − Dr) tdt − Drhm

∫ t2

t1
t dt

= hmP
α

(1 − β)t1 − Phm
α2 (1 − β)

(
1 − e−αt1) + hmPβ

t21
2

− Drhm
t22
2
.

and reworking cost (RCM) for manufacture:

RCM = rcm
∫ t1

0
Pβ

(
1 − e−αt) dt

= rcmPβ

[
t1 − 1

α

{
1 − e−αt1}] .

For less perfect quality items ofmanufacturer

The rate of change of inventory level of less perfect quality items for manufacturer can be
represented by the following differential equations:

dq2m
dt

=
{

γ (1 − β)P
(
1 − e−αt) − D′

r, 0 ≤ t ≤ t1
−D′

r, t1 ≤ t ≤ t′2
(9)

with boundary conditions q2m(t) = 0 at t = 0 and t = t′2.
The solution of above differential equations are given by

q2m(t) =
{

− P
α
γ (1 − β)

(
1 − e−tα) + [

γ (1 − β)P − D′
r
]
t, 0 ≤ t ≤ t1

D′
r
(
t′2 − t

)
, t1 ≤ t ≤ t′2

(10)

From continuity at t = t1, following condition is obtained:

t′2 = 1
D′
r

[
−P

α
γ (1 − β)

(
1 − e−αt1) + γ (1 − β)Pt1

]
. (11)

Now holding cost (HCM2) for less perfect quality items for manufacture

HCM2 = h′
m

∫ t1

0
q2m(t) dt + h′

m

∫ t′2

t1
q2m(t) dt

= −h′
m

∫ t1

0

P
α

γ (1−β)
(
1−e−αt) dt+h′

m

∫ t1

0
γ
{
P(1−β) − D′

r
}
t dt + D′

rh
′
m

∫ t′2

t1

(
t′2−t

)
dt

= h′
m
Pγ

α2 (1−β)
[
1−e−t1α] − h′

m Pγ
α

(1−β)t1+h′
m
[
Pγ (1−β) − D′

r
] t12

2
+h′

m
D′
r
2
(
t′2−t1

)2 .
Production cost for the manufacturer = C(P)Pt1.
Inspection cost = IsmPt1.
Holding cost for the manufacturer = [HCM1 + HCM2].
Set-up cost of the manufacturer = Am.
Idle time cost for the manufacturer = Icm(T − t2) .
Revenue of perfect quality items for the manufacturer = sm

∫ t2
0 Drdt = smDrt2.

Revenue of less perfect quality items for the manufacturer = s′m
∫ t′2
0 D′

rdt,= s′mD′
rt′2.
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Average profit of manufacturer
Average profit (APM) of the manufacturer during the period (0,T) is given by

APM = 1
T
[
(Revenue of perfect and less perfect quality items for the manufacturer) − wsPt1

−(Production cost +Inspection cost +Holding cost +Reworking cost +Idle time cost)
− Set-up cost

]
= 1

T
[(
smDrt2 + s′mD′

rt
′
2
) − wsPt1 − C(P)Pt1 − IsmPt1 − HCM1 − HCM2 − RCM

−Am − Icm (T − t2)]

= 1
T

[ (
smDrt2 + s′mD′

rt
′
2
) − {ws + C(P) + Ism}Pt1 − rcm

{
−Pβ

α

(
1 − e−αt1) + Pβt1

}

−Am − hm

{
P
α

(1 − β)t1 − P
α2 (1 − β)

(
1 − e−αt1) + Pβ

t21
2

− Dr
t22
2

}
− Icm (T − t2)

−h′
m

{
P
α2 γ (1−β)

(
1 − e−αt1) − γ

α
(1−β)Pt1 + (

γ (1−β)P−D′
r
) t21
2

+ D′
r
2
(
t1 − t′2

)2}]

= 1
T

[
−Z0m − Z1m

R
P

+ Z2mR + Z3m
R2

P2
+ Z4m

R2

P
+ Z5mR2 − Z6mPR2

]
.

where Zim, i = 0, 1, 2, . . . , 6, are independent of R and P. (See Appendix 1).

Formulation of the retailer

The customers’ demand for both perfect and less perfect quality items are met by the
retailer through the adjacent showrooms PW1 and PW2, respectively. Retailer has a sec-
ondary warehouse SW to store the excess perfect quality items which are continuously
transferred to the showroom PW1. Less perfect quality items are directly transferred to
the showroom PW2. Transportation cost is taken into account to transfer each items from
production center to the showrooms.

For perfect quality items of retailer

In this case the demand rate (Dc) of customers at PW1 has consider as stock dependent
as the following form:

Dc =

⎧⎪⎨⎪⎩
α1 + β1q1r , 0 ≤ t ≤ t3
α1 + β1W1, t3 ≤ t ≤ t4
α1 + β1q1r , t4 ≤ t ≤ T

Now, the corresponding rate of change of on hand inventory of perfect quality items are
given by

dq1r
dt

=
{
Dr − Dc, 0 ≤ t ≤ t2
−Dc, t2 ≤ t ≤ T

with boundary conditions

q1r(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, at t = 0
W1, at t = t3
S, at t = t2
W1, at t = t4
0, at t = T
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Therefore, the solutions of above differential equations are given by

q1r(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dr−α1

β1

(
1 − e−β1t

)
, 0 ≤ t ≤ t3

W1 + [Dr − (α1 + β1W1)] (t − t3) , t3 ≤ t ≤ t2
S − [(α1 + β1W1)] (t − t2) , t2 ≤ t ≤ t4
−α1

β1

[
1 − e−β1(t−T)

]
, t4 ≤ t ≤ T

(12)

Now, q1r (t3) = W1 implies t3 = − 1
β1

log
(
1 − W1β1

Dr − α1

)
(12a)

q1r (t2) = S gives t4 = t2 + S − W1
α1 + β1W1

and W1 + [Dr − (α1 + β1W1)] (t2 − t3) = S

(12b)

q1r (t4) = W1 implies T = t4 + 1
β1

log
[(

1 − Dr
α1

) (
1 − e−β1t3)] (12c)

Holding cost (HCRW) of the secondary warehouse SW is given by

HCRW = hrs
∫ t2

t3

{
q1r(t) − W1

}
dt + hrs

∫ t4

t2

{
q1r(t) − W1

}
dt

= hrs
∫ t2

t3
[Dr − (α1 + β1W1)] (t − t3) dt − hrs

∫ t4

t2
[α1 + β1W1] (t − t4) dt

= hrs
2

[
(Dr − (α1 + β1W1)) (t2 − t3)2 − (α1 + β1W1) (t2 − t4)2

]
.

Holding cost (HCRS1) of the showroom PW1 is given by

HCRS1 = hr
∫ t3

0
q1r(t) dt + hr

∫ t4

t3
W1 dt +

∫ T

t4
q1r(t) dt

= hr
∫ t3

0

Dr − α1
β1

(1 − e−β1t) dt + hr
∫ t4

t3
W1 dt +

∫ T

t4
−α1

β1

[
1 − e−β1(t−T)

]
dt

= hr
Dr−α1

β1

[
t3+ e−β1t3

β1
− 1

β1

]
+W1h

]
r
(t4−t3)−hr

α1
β1

[
(T − t4)+ 1

β1
− e−β1(t4−T)

β1

]
.

Transportation cost (TCPR) for perfect quality items of retailer is given by

TCPR = ctr
∫ T

0
DC dt

= ctr

[∫ t3

0
(α1 + β1q1r) dt +

∫ t4

t3
(α1 + β1W1) dt +

∫ T

t4
(α1 + β1q1r) dt

]

= ctr
[
(α1 + β1W1) (t4 − t3) + Drt3 − Dr

β1
+ Dr − α1

β1
e−β1t3 + α1

β1
e−β1(t4−T)

]
.
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Revenue from selling perfect quality items is given by

REPR = sr
∫ T

0
Dc dt

= sr
[
(α1 + β1W1) (t4 − t3) + Drt3 − Dr

β1
+ Dr − α1

β1
e−β1t3 + α1

β1
e−β1(t4−T)

]
.

Hence, the total profit of the retailer from the perfect quality items is given by

TPR1 = Revenue from selling perfect quality items − Transportation cost for perfect quality items
−Holding cost of SW − Holding cost of PW1 − Set-up cost − sm(PA)m

= sr
[
(α1 + β1W1) (t4 − t3) + Drt3 − Dr

β1
+ Dr − α1

β1
e−β1t3 + α1

β1
e−β1(t4−T)

]
−ctr

[
(α1 + β1W1) (t4 − t3) + Drt3 − Dr

β1
+ Dr − α1

β1
e−β1t3 + α1

β1
e−β1(t4−T)

]
−hrs

2
[
(Dr − (α1 + β1W1)) (t2 − t3)2 − (α1 + β1W1) (t2 − t4)2

]
−hr

[
Dr−α1

β1

(
t3 + e−β1t3

β1
− 1

β1

)
+ W1 (t4 − t3) − α1

β1

{
(T−t4) + 1

β1
− e−β1(t4−T)

β1

}]

−Ar − sm

[
P
α

(1 − β)t1 − P
α2 (1 − β)

(
1 − e−αt1) + Pβ

t21
2

− Dr
t22
2

]
.

For less perfect quality items of retailer

In this case demand rate
(
D′
c
)
of customers at PW2 is assumed as selling price dependent

defined as D′
c = (

a − bs′r
)
and corresponding change of on hand inventory of less perfect

quality items are given by

dq2r
dt

=
{
D′
r − D′

c, 0 ≤ t ≤ t′2
−D′

c, t′2 ≤ t ≤ T ′

with boundary conditions q2r(t) = 0 at t = 0 and t = T ′.
The solution of above differential equations is given by

q2r(t) =
{ (

D′
r − D′

c
)
t, 0 ≤ t ≤ t′2

−D′
c
(
t − T ′) , t′2 ≤ t ≤ T ′ (13)

From continuity condition at t = t′2, T ′ = 1
D′
c

[
γ (1 − β)Pt1 − P

α2 γ (1 − β)
(
1 − e−αt1

)]
.

Also q2r
(
t′2
) = W2, i.e., W2 =

(
1 − D′

c
D′
r

) [− P
α
γ (1 − β)

(
1 − e−αt1

) + γ (1 − β)Pt1
]
.

Holding cost (HCRS2) of the showroom PW2 is given by

HCRS2 = h′
r

∫ t′2

0
q2r(t) dt + h′

r

∫ T ′

t′2
q2r(t) dt

= h′
r

∫ t′2

0

{
D′
r − D′

c
}
t dt + h′

r

∫ T ′

t′2

{−D′
c
(
t − T ′)} dt

= h′
r
2

[(
D′
r − D′

c
)
t′2
2 + D′

c
(
t′2 − T ′)2] .
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Transportation cost (TCIR) for less perfect quality items of retailer is given by

TCIR = c′tr
∫ T ′

0
D′
c dt = c′trD′

cT
′.

Revenue (REIR) from selling less perfect quality items of retailer is given by

REIR = s′r
∫ T ′

0
D′
c dt = s′rD′

cT
′.

Total profit (TPR2) of retailer for less perfect quality items is given by

TPR2 = Revenue from selling less perfect quality items − (Transportation cost for

less perfect quality items) − (Holding cost of PW2) − Set-up cost-s′m(DA)m

= {
s′r−c′tr

}
D′
cT

′ − h′
r
2

[(
D′
r−D′

c
)
t′2
2+D′

c
(
t′2 − T ′)2] − s′m

[
Pγ

α2 (1 − β)
(
1−e−t1α)

−Pγ

α
(1 − β)t1 + (

Pγ (1 − β) − D′
r
) t12

2
+ D′

r
2
(
t1 − t′2

)2] − A′
r.

Average profit of retailer

Average profit (APR) of the retailer during (0,T) is

APR = 1
T

[TPR1 + TPR2]

= 1
T

[
sr
{
(α1 + β1W1) (t4 − t3) + Drt3 − Dr

β1
+ Dr − α1

β1
e−β1t3 + α1

β1
e−β1(t4−T)

}
−ctr

{
(α1 + β1W1) (t4 − t3) + Drt3 − Dr

β1
+ Dr − α1

β1
e−β1t3 + α1

β1
e−β1(t4−T)

}
−hrs

2
{
(Dr − (α1 + β1W1)) (t2 − t3)2 − (α1 + β1W1) (t2 − t4)2

} + s′rD′
cT

′

−c′trD′
cT

′ − h′
r
2

{(
D′
r − D′

c
)
t′2
2 + D′

c
(
t′2 − T ′)2} − hr

{
Dr − α1

β1

(
t3 + e−β1t3

β1

− 1
β1

)
+ W1 (t4 − t3) − α1

β1

{
(T − t4) + 1

β1
− e−β1(t4−T)

β1

}}
− sm

{
P
α

(1 − β)t1

− P
α2 (1 − β)

(
1 − e−αt1) + Pβ

t21
2

− Dr
t22
2

}
− s′m

{
Pγ

α2 (1 − β)
(
1 − e−t1α)

−Pγ

α
(1 − β)t1 + (

Pγ (1 − β) − D′
r
) t12

2
+ D′

r
2
(
t1 − t′2

)2}] − Ar − A′
r

= 1
T

[
Z0r + Z1rR + Z2r

R2

2P
+ Z3rR2 + Z4r

R3

P
+ Z5r

R4

P2

]
.

where Zir , i = 0, 1, . . . , 5 are independent of R and P. (See Appendix 1).
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Integrated average profit

Average profit (IAP) for the Integrated Model during (0,T) is

IAP = [APS + APM + APR]

= 1
T

[
Z0 + Z1

R
P

+ Z2R − Z3
R2

2P
+ Z4

R2

P2
− Z5PR2 − Z6R2 + Z7

R3

P
+ Z8

R4

P2

]
where Zi, i = 0, 1, . . . , 8 are independent of R and P. (See Appendix 1).

In fuzzy rough environment

In this environment, all holding cost, idle cost, set-up cost, and transportation cost have
been considered fuzzy-rough parameters. Then the corresponding fuzzy-rough objective
functions for supplier, manufacturer, and retailer are given by

˜̄APS = 1
T

[
− ˜̄Z0s + ˜̄Z1sR + ˜̄Z2s

R
P

− ˜̄Z3s
R2

2P
− ˜̄Z4sR2

]
˜̄APM = 1

T

[
− ˜̄Z0m − ˜̄Z1m

R
P

+ ˜̄Z2mR + ˜̄Z3m
R2

P2
+ ˜̄Z4m

R2

P
+ ˜̄Z5mR2 − ˜̄Z6mPR2

]
and ˜̄APR = 1

T

[
˜̄Z0r + ˜̄Z1rR + ˜̄Z2r

R2

2P
+ ˜̄Z3rR2 + ˜̄Z4r

R3

P
+ ˜̄Z5r

R4

P2

]
Also, the fuzzy-rough objective functions for integrated model is given by

˜̄IAP =
[ ˜̄APS + ˜̄APM + ˜̄APR

]
= 1

T

[
˜̄Z0 + ˜̄Z1

R
P

+ ˜̄Z2R − ˜̄Z3
R2

2P
+ ˜̄Z4

R2

P2
− ˜̄Z5PR2 − ˜̄Z6R2 + ˜̄Z7

R3

P
+ ˜̄Z8

R4

P2

]

where fuzzy rough parameters ˜̄hs, ˜̄hm, ˜̄h′
m,

˜̄hr, ˜̄h′
r,

˜̄hrs, ˜̄As, ˜̄Am, ˜̄Ar, ˜̄Ics, ˜̄Icm, ˜̄ctp, ˜̄c′tp are defined
as follows:

˜̄hs =
(
hs1, hs2, hs3, hs4

)
with hst � ([hst2, hst3] , [hst1, hst4]), 0 ≤ hst1 ≤ hst2 <

hst3 ≤ hst4, ˜̄hm =
(
hm1, hm2, hm3, hm4

)
with hmt � ([hmt2, hmt3] , [hmt1, hmt4]), 0 ≤

hmt1 ≤ hmt2 < hmt3 ≤ hmt4. ˜̄h′
m =

(
h′m1, h′m2, h′m3, h′m4

)
with h′mt � ([

h′
mt2, h′

mt3
]
,[

h′
mt1, h′

mt4
])
, 0 ≤ h′

mt1 ≤ h′
mt2 < h′

mt3 ≤ h′
mt4.

˜̄hr =
(
hr1, hr2, hr3, hr4

)
with hrt �

([hrt2, hrt3] , [hrt1, hrt4]), 0 ≤ hrt1 ≤ hrt2 < hrt3 ≤ hrt4. ˜̄h′
r =

(
h′r1, h′r2, h′r3, h′r4

)
with

h′rt � ([
h′
rt2, h′

rt3
]
,
[
h′
rt1, h′

rt4
])
, 0 ≤ h′

rt1 ≤ h′
rt2 < h′

rt3 ≤ h′
rt4.

˜̄hrs =
(
hrs1, hrs2, hrs3, hrs4

)
with hrst � ([hrst2, hrst3] , [hrst1, hrst4]), 0 ≤ hrst1 ≤ hrst2 < hrst3 ≤ hrst4. ˜̄As =(
As1,As2,As3,As4

)
with Ast � ([Ast2,Ast3] , [Ast1,Ast4]), 0 ≤ Ast1 ≤ Ast2 < Ast3 ≤ Ast4.

˜̄Am = (
Am1,Am2,Am3,Am4

)
with Amt � ([Amt2,Amt3] , [Amt1,Amt4]), 0 ≤ Amt1 ≤ Amt2 <

Amt3 ≤ Amt4. ˜̄Ar = (
Ar1,Ar2,Ar3,Ar4

)
with Art � ([Art2,Art3] , [Art1,Art4]), 0 ≤ Art1 ≤

Art2 < Art3 ≤ Art4. ˜̄Ics = (
Ics1, Ics2, Ics3, Ics4

)
with Icst � ([Icst2, Icst3] , [Icst1, Icst4]),

0 ≤ Icst1 ≤ Icst2 < Icst3 ≤ Icst4. ˜̄Icm = (
Icm1, Icm2, Icm3, Icm4

)
with Icmt �

([Icmt2, Icst3] , [Icmt1, Icmt4]), 0 ≤ Icmt1 ≤ Icmt2 < Icmt3 ≤ Icmt4. ˜̄ctp = (
ctp1, ctp2, ctp3, ctp4

)
with ctpt � ([

ctpt2, ctpt3
]
,
[
ctpt1, ctpt4

])
, 0 ≤ ctpt1 ≤ ctpt2 < ctpt3 ≤ ctpt4. ˜̄c′tp =(

c′tp1, c′tp2, c′tp3, c′tp4
)
with c′tpt �

([
c′tpt2, c′tpt3

]
,
[
c′tpt1, c′tpt4

])
, 0 ≤ c′tpt1 ≤ c′tpt2 < c′tpt3 ≤

c′tpt4.
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In equivalent crisp environment

In this environment, using Lemma 1 and Theorems 1 and 2, the fuzzy rough objective
functions for supplier, manufacturer, and retailer are given by

EAPS = E
[ ˜̄APS

]
= 1

T

[
−E

[ ˜̄Z0s
]

+ E
[ ˜̄Z1s

]
R + E

[ ˜̄Z2s
] R
P

− E
[ ˜̄Z3s

] R2

2P
− E

[ ˜̄Z4s
]
R2
]

EAPM = E
[ ˜̄APM

]
= 1

T

[
−E

[ ˜̄Z0m
]

− E
[ ˜̄Z1m

] R
P

+ E
[ ˜̄Z2m

]
R + E

[ ˜̄Z3m
] R2

P2
+ E

[ ˜̄Z4m
] R2

P

+E
[ ˜̄Z5m

]
R2 − E

[ ˜̄Z6m
]
PR2

]
and EAPR = E

[ ˜̄APR
]

= 1
T

[
E
[ ˜̄Z0r

]
+ E

[ ˜̄Z1r
]
R + E

[ ˜̄Z2r
] R2

2P
+ E

[ ˜̄Z3r
]
R2 + E

[ ˜̄Z4r
] R3

P

+E
[ ˜̄Z5r

] R4

P2

]
Also, the objective functions for integrated model is given by

EIAP = E
[ ˜̄IAP

]
=
[
E
[ ˜̄APS

]
+ E

[ ˜̄APM
]

+ E
[ ˜̄APR

]]
= 1

T

[
E
[ ˜̄Z0

]
+ E

[ ˜̄Z1
] R
P

+ E
[ ˜̄Z2

]
R − E

[ ˜̄Z3
] R2

2P
+ ˜̄Z4

R2

P2
− E

[ ˜̄Z5
]
PR2

− ˜̄Z6R2 + E
[ ˜̄Z7

] R3

P
+ E

[ ˜̄Z8
] R4

P2

]
where

E
[ ˜̄hs

]
= 1

16

4∑
t=1

4∑
k=1

hstk, E
[ ˜̄hm

]
= 1

16

4∑
t=1

4∑
k=1

hmtk, E
[ ˜̄h′

m

]
= 1

16

4∑
t=1

4∑
k=1

h′
mtk,

E
[ ˜̄hr

]
= 1

16

4∑
t=1

4∑
k=1

hrtk, E
[ ˜̄h′

r

]
= 1

16

4∑
t=1

4∑
k=1

h′
rtk, E

[ ˜̄hrs
]

= 1
16

4∑
t=1

4∑
k=1

hrstk,

E
[ ˜̄As

]
= 1

16

4∑
t=1

4∑
k=1

Astk, E
[ ˜̄Am

]
= 1

16

4∑
t=1

4∑
k=1

Amtk, E
[ ˜̄Ar

]
= 1

16

4∑
t=1

4∑
k=1

Artk,

E
[˜̄Ics] = 1

16

4∑
t=1

4∑
k=1

Icstk, E
[˜̄Icm] = 1

16

4∑
t=1

4∑
k=1

Icmtk, E
[˜̄ctp] = 1

16

4∑
t=1

4∑
k=1

ctptk,

E
[ ˜̄c′tp

]
= 1

16
∑4

t=1
∑4

k=1 c′tptk.

Stakelberg approach (leader-follower relationship)

In this case, the manufacturer is the leader, and the supplier and retailer are the followers.
Also, the optimum values of the average profit of supplier and retailer are obtained by
putting the optimum value of the decision variables, which are obtained by optimizing
the average profit of manufacturer. Using Equations 6, 12a, 12b, and

(
1 − e−αt1

) ≈ αt1, in
Equation 12c, the relation T = 1−θ

Dr
R+ t0 is obtained where t0 is given by t0 = S−W1

α1+β1W1
+

1
β1

log
[(

1 − Dr
α1

) (
1 − e−β1t3

)]
and it is independent of R and P.
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When both R and P are decision variables

The average profit of manufacturer is given by

EAPM(R,P) = 1
T

[
−E

[ ˜̄Z0m
]

− E
[ ˜̄Z1m

] R
P

+ E
[ ˜̄Z2m

]
R + E

[ ˜̄Z3m
] R2

P2
+ E

[ ˜̄Z4m
] R2

P

+E
[ ˜̄Z5m

]
R2 − E

[ ˜̄Z6m
]
PR2

]
where E

[ ˜̄Zim
]
, i = 0, 1, 2, . . . , 6, are independent of R and P. (See Appendix 1).

The necessary conditions for maximum value of EAPM(R,P) are ∂
∂R (EAPM) = 0 and

∂
∂P (EAPM) = 0.
Now, ∂

∂R (EAPM) = 0

i.e.,
(1 − θ)

DrT
E
[ ˜̄Z0m

]
+
{

(1 − θ)R
DrPT

− 1
P

}
E
[ ˜̄Z1m

]
+
{
1 − (1 − θ)R

DrT

}
E
[ ˜̄Z2m

]
+
{
2R
P2

− (1 − θ)R2

DrTP2

}
E
[ ˜̄Z3m

]
+
{
2R
P

− (1 − θ)R2

DrTP

}
E
[ ˜̄Z4m

]
+
{
2R − (1 − θ)R2

DrT

}
E
[ ˜̄Z5m

]
+
{

(1 − θ)R2P
DrT

− 2PR
}
E
[ ˜̄Z6m

]
= 0

(14)

and ∂
∂P (EAPM) = 0

i.e., E
[ ˜̄Z1m

] R
P2

− 2E
[ ˜̄Z3m

] R2

P3
− E

[ ˜̄Z4m
] R2

P2
− E

[ ˜̄Z6m
]
R2 = 0 (15)

Solving (14) and (15), we can obtain the optimum value of R and P, say R∗ and P∗.
If ∂2

∂R2 (EAPM) < 0, ∂2

∂P2 (EAPM) < 0 and
{

∂2

∂R2 (EAPM)
} {

∂2

∂P2 (EAPM)
}

−{
∂2

∂P∂R (EAPM)
}2

> 0 holds for R = R∗ and P = P∗, then EAPM (R∗,P∗) is maximum.

Now, ∂2

∂R2 (EAPM)
]
at (R∗,P∗)

< 0

i.e., − (1 − θ)2

Dr2T∗2 E
[ ˜̄Z0m

]
+
{

(1 − θ)

DrT∗P∗ − (1 − θ)2R∗

Dr2T∗2P∗

}
E
[ ˜̄Z1m

]
+

{
(1 − θ)2R∗

Dr2T∗2 − (1 − θ)

DrT∗

}
E
[ ˜̄Z2m

]
+
{

(1 − θ)2R∗2

Dr2T∗2P∗2 + 1
P∗2 − 2(1 − θ)R∗

DrT∗P∗2

}
E
[ ˜̄Z3m

]
+

{
(1 − θ)2

Dr2T∗2P∗ + 1
P∗ − 2(1 − θ)R∗

DrT∗P∗

}
E
[ ˜̄Z4m

]
+
{
1 − 2(1 − θ)R∗

DrT∗P∗ + (1 − θ)2R∗2

Dr2T∗2

}
E
[ ˜̄Z5m

]
−

{
P∗ − 2(1 − θ)P∗R∗

DrT∗ + (1 − θ)2R∗2P∗

Dr2T∗2

}
E
[ ˜̄Z6m

]
< 0 (16)

and ∂2

∂P2 (EAPM)]at (R∗,P∗) < 0

i.e., −E
[ ˜̄Z1m

] R∗

P∗3 + 3E
[ ˜̄Z3m

] R∗2

P∗4 + E
[ ˜̄Z4m

] R∗2

P∗3 < 0 (17)

and
[{

∂2

∂R2 (EAPM)

}{
∂2

∂P2
(EAPM)

}
−
{

∂2

∂P∂R
(EAPM)

}2]
at (R∗,P∗)

> 0 (18)

Therefore, EAPM (R∗,P∗) is maximum if the relations (16), (17), and (18) hold.
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The corresponding optimum average profit of supplier and retailer is

EAPS
(
R∗,P∗) = 1

T∗

[
−E

[ ˜̄Z0s
]

+ E
[ ˜̄Z1s

]
R∗ + E

[ ˜̄Z2s
] R∗

P∗ − E
[ ˜̄Z3s

] R∗2

2P∗ − E
[ ˜̄Z4s

]
R∗2

]

EAPR
(
R∗,P∗) = 1

T∗

[
E
[ ˜̄Z0r

]
+ E

[ ˜̄Z1r
[
R∗ + E

[ ˜̄Z2r
] R∗2

2P∗ + E
[ ˜̄Z3r

]
R∗2 + E

[ ˜̄Z4r
] R∗3

P∗

+E
[ ˜̄Z5r

] R∗4

P∗2

]
where T∗ = 1−θ

Dr
R∗ + t0.

When P is a decision variable

The necessary conditions for maximum value of EAPM(P) is d
dP (EAPM) = 0

i.e., E
[ ˜̄Z1m

] R
P2

− 2E
[ ˜̄Z3m

] R2

P3
− E

[ ˜̄Z4m
] R2

P2
− E

[ ˜̄Z6m
]
R2 = 0 (18a)

which gives the optimum value of P, say P∗∗. (See Appendix 2).
If d2

dP2 (EAPM) < 0 holds for P = P∗∗, then EAPM (P∗∗) is maximum.

Now
d2

dP2
(EAPM)

]
at P=P∗∗

< 0 gives −E
[ ˜̄Z1m

] R
P∗∗3 +3E

[ ˜̄Z3m
] R2

P∗∗4 +E
[ ˜̄Z4m

] R2

P∗∗3 < 0

(18b)

Therefore, EAPM(P∗∗) is maximum if the relation (18b) holds and the corresponding
optimum average profits of supplier and retailer are respectively

EAPS
(
P∗∗) = 1

T

[
−E

[ ˜̄Z0s
]

+ E
[ ˜̄Z1s

]
R + E

[ ˜̄Z2s
] R
P∗∗ − E

[ ˜̄Z3s
] R2

2P∗∗ − E
[ ˜̄Z4s

]
R2
]

EAPR
(
P∗∗) = 1

T

[
E
[ ˜̄Z0r

]
+ E

[ ˜̄Z1r
]
R + E

[ ˜̄Z2r
] R2

2P∗∗ + E
[ ˜̄Z3r

]
R2 + E

[ ˜̄Z4r
] R3

P∗∗

+E
[ ˜̄Z5r

] R4

P∗∗2

]
where T = 1−θ

Dr
R + t0.

Integrated approach

When both R and P are decision variables

The necessary conditions for maximum value of EIAP(R,P) are ∂
∂R (EIAP) = 0 and

∂
∂P (EIAP) = 0
Now, ∂

∂R (EIAP) = 0

i.e., − (1−θ)

DrT
E
[ ˜̄Z0

]
+
{
1
P

− (1−θ)R
DrTP

}
E
[ ˜̄Z1

]
+
{
1 − (1 − θ)R

DrT

}
E
[ ˜̄Z2

]
−
{
R
P

+ (1−θ)R2

2DrTP

}
× E

[ ˜̄Z3
]

+
{
2R
P2

− (1−θ)R2

DrTP2

}
E
[ ˜̄Z4

]
−
{
2PR + (1−θ)PR2

DrT

}
E
[ ˜̄Z5

]
−
{
2R + (1−θ)R2

DrT

}
× E

[ ˜̄Z6
]

+
{
3R2

P
− (1−θ)R3

DrTP

}
E
[ ˜̄Z7

]
+
{
4R3

P2
− (1−θ)R4

DrTP2

}
E
[ ˜̄Z8

]
= 0 (19)

and ∂
∂P (EIAP) = 0

i.e.,
[
−E

[ ˜̄Z1
] R
P2

− E
[ ˜̄Z3

] R2

2P2
− 2E

[ ˜̄Z4
] R2

P3
− E

[ ˜̄Z5
]
R2 − E

[ ˜̄Z7
] R3

P2
− 2E

[ ˜̄Z8
] R4

P3

]
=0 (20)

Solving (19) and (20), we can obtain the optimum value of R and P, say R∗ and P∗.
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Table 1 Collected data for different crisp parameters

Parameters Value Parameter Value Parameter Value

θ 0.11 Cs 40 S 335

x 20 ws 90 W1 45

α 0.10 w′
s 55 W2 16

β 0.44 R1 16 a 51

γ 0.78 H 0.02 b 0.17

α1 20 G 10 D′
r 35

β1 0.2 sr 176 Dr 36

rcm 2 s′r 135 Sc 0.35

sm 158 s′m 108

If ∂2

∂R2 (EIAP) < 0, ∂2

∂P2 (EIAP) < 0 and
{

∂2

∂R2 (EIAP)
} {

∂2

∂P2 (EIAP)
}
−
{

∂2

∂P∂R (EIAP)
}2

> 0
holds for R = R∗ and P = P∗ then EIAP(R∗,P∗) is maximum.
Now, ∂2

∂R2 (EIAP)
]
at(R∗,P∗)

< 0

i.e.,
2(1−θ)2

Dr2T∗2 E
[ ˜̄Z0

]
+
{
2(1−θ)2R∗

Dr2T∗2P∗ − 2(1 − θ)

DrT∗P∗

}
E
[ ˜̄Z1

]
+
{
2(1−θ)2R∗

Dr2T∗2 − 2(1 − θ)

DrT∗

}
E
[ ˜̄Z2

]
−
{
1 + 2(1−θ)2R∗2

Dr2T∗2P∗ − 2(1−θ)R∗

DrT∗P∗

}
E
[ ˜̄Z3

]
+
{

2
P∗2 + 2(1−θ)2R∗2

Dr2T∗

2

P∗2 − 4(1−θ)R∗

DrT∗P∗

}
E
[ ˜̄Z4

]
−
{
2P∗ + 2(1−θ)2P∗R∗2

Dr2T∗2 − 4(1−θ)P∗R∗

DrT∗

}
E
[ ˜̄Z5

]
−
{
2 + 2(1−θ)2R∗2

Dr2T∗2 − 4(1−θ)R∗

DrT

}
E
[ ˜̄Z6

]
+
{
6R∗

P∗ + 2(1−θ)2R∗3

Dr2T∗2P∗ − 6(1−θ)R∗2

DrT∗P∗

}
E
[ ˜̄Z7

]
+
{
12R∗2

P∗2 + 2(1−θ)2R∗4

Dr2T∗2P∗2 − 8(1−θ)R∗3

D2
rT∗P∗

}
E
[ ˜̄Z8

]
<0

(21)

Table 2 Collected data for different fuzzy-rough parameters

Fu-Ro Fu-Ro Input Expected Value
parameters value values value
˜̄hs Near roughly (0.5) (0.49, 0.50, 0.51, 0.52) with ([−0.04, 0.04] , [−0.08, 0.08]) E[ ˜̄hs] 5.05
˜̄hm Near roughly (1.7) (1.5, 1.6, 1.7, 1.8) with ([−0.2, 0.2] , [−0.4, 0.4]) E[ ˜̄hm] 1.65
˜̄h′
m Near roughly (1.5) (1.35, 1.40, 1.50, 1.55) with ([−0.18, 0.18] , [−0.36, 0.36]) E[ ˜̄h′

m] 1.45
˜̄hr Near roughly (1.6) (1.54, 1.6, 1.63, 1.67) with ([−0.12, 0.12] , [−0.24, 0.24]) E[ ˜̄hr] 1.61
˜̄h′
r Near roughly (1.3) (1.15, 1.22, 1.3, 1.37) with ([−0.11, 0.11] , [−0.22, 0.22]) E[ ˜̄h′

r] 1.26
˜̄hrs Near roughly (1.8) (1.67, 1.72, 1.80, 1.85) with ([−0.13, 0.13] , [−0.26, 0.26]) E[ ˜̄hrs] 1.78
˜̄As Near roughly (420) (416, 420, 425, 428) with ([−0.30, 0.30] , [−0.60, 0.60]) E[ ˜̄As] 422.25
˜̄Am Near roughly (500) (486, 495, 500, 510) with ([−0.29, 0.29] , [−0.58, 0.58]) E[ ˜̄Am] 491.50
˜̄Ar Near roughly (400) (395, 400, 408, 410) with ([−0.35, 0.35] , [−0.70, 0.70]) E[ ˜̄Ar] 403.25
˜̄Ics Near roughly (3) (2.5, 2.8, 3.0, 3.15) with ([−0.3, 0.3] , [−0.6, 0.6]) E [̃̄Ics] 2.86
˜̄Icm Near roughly (2) (1.9, 1.96, 2.0, 2.04) with ([−0.21, 0.21] , [−0.42, 0.42]) E [̃̄Icm] 1.97
˜̄ctp Near roughly (1.4) (1.36, 1.40, 1.43, 1.47) with ([−0.14, 0.14] , [−0.28, 0.28]) E[˜̄ctp] 1.42
˜̄c′tp Near roughly (1.0) (0.90, 0.97, 1.0, 1.06) with ([−0.01, 0.01] , [−0.02, 0.02]) E[ ˜̄c′tp] 0.98

The value of ˜̄hs is near roughly (0.5) = (0.49, 0.50, 0.51, .52) with oscillation ([−0.04, 0.04] , [−0.08, 0.08])means that
0.49 � ([0.45, 0.53] , [0.41, 0.57]), 0.50 � ([0.46, 0.54] , [0.42, 0.58]), 0.51 � ([0.47, 0.55] , [0.43, 0.59]) and
0.52 � ([0.48, 0.56] , [0.44, 0.60]).
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Table 3 Optimal result when P and R are decision variables

Approach Total profit EAPS EAPM EAPR R P

Stakelberg 5, 126.616 1,43.341 1,814.635 1,656.160 3,217.589 64.9821

Integrated 5, 176.606 1,596.751 1,872.695 1,707.160 3,189.629 69.8521

and ∂2

∂P2 (EIAP)
]
at(R∗,P∗)

i.e.,
[
2E

[ ˜̄Z1
] R∗

P∗3 + E
[ ˜̄Z3

] R∗2

P∗3 + 6E
[ ˜̄Z4

] R∗2

P∗4 + 2E
[ ˜̄Z7

] R∗3

P∗3 + 6E
[ ˜̄Z8

] R∗4

P∗4

]
< 0 (22)

and
[{

∂2

∂R2 (EIAP)

}{
∂2

∂P2
(EIAP)

}
−
{

∂2

∂P∂R
(EIAP)

}2]
at(R∗,P∗)

> 0 (23)

Therefore, IAP(R∗,P∗) is maximum if the relations (21), (22), and (23) hold and the
corresponding optimum integrated average profit of the supply chain is

EIAP
(
R∗,P∗) = 1

T∗

[
E
[ ˜̄Z0

]
+ E

[ ˜̄Z1
] R∗

P∗ + E
[ ˜̄Z2

]
R∗ − Z3

R∗2

2P∗ + E
[ ˜̄Z4

] R∗2

P∗2

−E
[ ˜̄Z5

]
P∗R∗2 − E

[ ˜̄Z6
]
R∗2 + E

[ ˜̄Z7
] R∗3

P∗ + E
[ ˜̄Z8

] R∗4

P∗2

]
.

where T∗ = 1−θ
Dr

R∗ + t0.

When P is a decision variable

The necessary conditions for maximum value of EIAP(P) is d
dP (EIAP) = 0 i.e., E

[ ˜̄Z1
]

R
P2 − E

[ ˜̄Z3
]

R2
2P2 + 2E

[ ˜̄Z4
]
R2
P3 + E

[ ˜̄Z5
]
R2 − E

[ ˜̄Z7
]
R3
P2 + 2E

[ ˜̄Z8
]
R4
P3 = 0 which gives the

optimum value of P, say P∗∗.
If d2

dP2 (EIAP) < 0 hold for P = P∗∗ then EIAP (P∗∗) is maximum.
Now d2

dP2 (EIAP)
]
at P=P∗∗ < 0 gives

− 2E
[ ˜̄Z1

] R
P∗∗3 + E

[ ˜̄Z3
] R2

P∗∗3 − 6E
[ ˜̄Z4

] R2

P∗∗4 − 2E
[ ˜̄Z7

] R3

P∗∗3 − 6E
[ ˜̄Z8

] R4

P∗∗4 < 0(24)

Therefore, EIAP(P∗∗) is maximum if the relation (24) holds and the corresponding
maximum integrated average profit of the supply chain is

EIAP
(
P∗∗) = 1

T

[
E
[ ˜̄Z0

]
+ E

[ ˜̄Z1
] R
P∗∗ + Z2R − Z3

R2

2P∗∗ + E
[ ˜̄Z4

] R2

P∗∗2

−Z5P2R2 − E
[ ˜̄Z6

]
R2 + E

[ ˜̄Z7
] R3

P∗∗ + E
[ ˜̄Z8

] R4

P∗∗2

]
.

Table 4 Optimal result when P is decision variable when R = 3, 225

Approach Total profit EAPS EAPM EAPR P

Stakelberg 5,012.614 1,512.752 1,714.346 1, 751.426 63.64570

Integrated 5,049.634 1,582.912 1,759.146 1, 707.576 67.37870
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Figure 4 Graphical representation of change the optimum value of Pwith alpha.

Figure 5 Graphical representation of change the optimum value of Rwith alpha.
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Figure 6 Graphical representation of change the optimum value of profits with alpha.

Numerical examples
To illustrate the proposed production inventory model, we consider the following numer-
ical data in Tables 1 and 2.
The optimal values of the decision variables and corresponding profits are given in

Tables 3 and 4. Also, sensitivity analysis has been performed of the profits, production

Figure 7 Graphical representation of change the optimum value of IAP with alpha.
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Figure 8 Graphical representation of change the optimum value of Rwith theta.

rate (P), and inventory level (R) of supplier with respect to different parameters which are
shown in Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.

Discussion
From Tables 1 and 2, it is observed that profits under the integrated approach is greater
than the Stakelberg approach and hence the former approach is better than the later

Figure 9 Graphical representation of change the optimum value of APS with theta.
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Figure 10 Graphical representation of change the optimum value of IAP with theta.

approach. The sensitivity analysis in ‘Numerical examples’ section shows that with
increase of the reliability parameter α, (i) the profits of the supplier and retailer are slightly
increasing (Figure 6), (ii) the values of P and R are gradually increasing (Figures 4 and 5)
but (iii) both profits of the manufacturer (APM) and the integrated profit (IAP) are grad-
ually decreasing (Figures 6 and 7). From Figures 8, 9, 10, 11, it is also seen that the values
of APS and IAP are decreasing, but the initial amount of inventory level of supplier is

Figure 11 Graphical representation of change the optimum value of profits with theta.
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Figure 12 Graphical representation of change the optimum value of APS with x.

increasing with increase of θ . It is also noted that the values of APS and IAP increase with
the screening rate of the supplier (x).

Conclusions
This paper develops a three-layer supply chain production inventory model involv-
ing supplier, manufacturer, and retailer as the members of the chain who are

Figure 13 Graphical representation of change the optimum value of IAP with x.
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responsible for performing the raw materials into finished product and make them
available to satisfy customers’ demand in time. In comparing with the existing liter-
ature on the supply chain, the following are the main contributions in the proposed
model:
Inspection cost is incurred during the production run time, and the manufacturer con-

tinuously inspects as well as separates the perfect quality items, less perfect quality items,
repairable items which are transformed into perfect quality items after some rework, and
reject items. Reworked cost is considered by the manufacturer to repair a certain percent-
age of imperfect quality items. The demand rate of the customers for perfect quality items
and less perfect quality items are respectively assumed as stock dependent and selling
price dependent. Here retailer have two showrooms PW1 and PW2 of finite capacities at
a busy market place, and the market demands of perfect and less perfect quality items are
respectively met through the showrooms PW1 and PW2. Retailer has a secondary ware-
house SW of infinite capacity, away from busy market place, to store the excess amount
perfect quality items fromwhere the items are continuously transferred to the showroom.
It is considered that the holding cost per unit per unit time at SW is less than the hold-
ing cost at PW1 per unit per unit time. The repairing costs of corrective and preventive
maintenance should also be considered, as these costs increase the unit production cost.
Inventory and production decisions are made at the supplier, manufacturer, and retailer
levels. Actually in this paper, the coordination between production and inventory deci-
sions has been established across the supply chain so that the integrated average profit of
the chain is maximum.

Appendix 1

T = t4 + 1
β1

log
[(

1 − Dr
α1

) (
1 − e−β1t3)]

= t2 + S − W1
α1 + β1W1

+ 1
β1

log
[(

1 − Dr
α1

) (
1 − e−β1t3)]

= P
Dr

[
1
α

(1−β)
(
1 − e−αt1) + βt1 + S − W1

α1 + β1W1
+ 1

β1
log

[(
1 − Dr

α1

) (
1 − e−β1t3)]

= P
Dr

t1 + S − W1
α1 + β1W1

+ 1
β1

log
[(

1 − Dr
α1

) (
1 − e−β1t3)]

= 1 − θ

Dr
R + t0. [using, (6), (12a), (12b) and 1 − e−αt1 ≈ αt1]

APS(R,P) = 1
T

[
ws(R−Rθ) + w′

sRθ − (As+csR) − scR − hs
[

(R−Rθ)t1
2

+ R2θ

x

]
− Ics (T−t1)

]
= 1

T

[
− (As + Icst0) +

[
ws(1 − θ) + w′

s − cs − sc − Ics(1 − θ)

Dr

]
R + Ics(1 − θ)

R
P

−hs(1 − θ)2
R2

2P
− hsθ

x
R2
]

= 1
T

[
−Z0s + Z1sR + Z2s

R
P

− Z3s
R2

2P
− Z4sR2

]
.

where Z0s = (As + Icst0) Z1s =
[
ws(1 − θ) + w′

s − cs − sc − Ics(1−θ)
Dr

]
Z2s = Ics(1 − θ), Z3s = hs(1 − θ)2, Z4s = hsθ

x .
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APM(R,P) = 1
T

[(
smDrt2+s′mD′

rt
′
2
) − {ws+C(P)+Ism}Pt1−rcm

{
−Pβ

α

(
1−e−αt1)+Pβt1

}

− Am − hm

{
P
α

(1 − β)t1 − P
α2 (1 − β)

(
1 − e−αt1) + Pβ

t21
2

− Dr
t22
2

}

− Icm(T − t2) − h′
m

{
P
α2 γ (1 − β)

(
1 − e−αt1) − γ

α
(1 − β)Pt1

+(γ (1 − β)P − D′
r)
t21
2

+ D′
r
2
(
t1 − t′2

)2}]

= 1
T

[(
sm+ Icm

Dr

){
P
α

(1−β)
(
1−e−αt1) + Pβt1

}
−{ws + C(P)+Ism}Pt1−Am

+ s′m
{−Pγ

α
(1 − β)

(
1−e−αt1) + Pγ(1−β)t1

}
−rcm

[
−Pβ

α

(
1−e−αt1)+Pβt1

]
− IcmT−hm

{
P
α

(1−β)t1− P
α2 (1−β)(1−e−αt1)+Pβ

t21
2

−Dr
t22
2

}

− h′
m

{
P
α2 γ (1 − β)

(
1 − e−αt1) − γ

α
(1 − β)Pt1 + (γ (1 − β)P − D′

r)
t21
2

+ D′
r
2

(t1 − t′2)2
}]

= 1
T

[(
sm + Icm

Dr
− ws − Ism − R1

)
Pt1 − IcmT − Am − Gt1 − HP2t1

+
[
s′m(1 − β)αγ −

(
sm + Icm

Dr

)
(1 − β)α − hm − rcmαβ

]
Pt12

2

+ hm
2Dr

P2t12 + h′
mD

′
rt1

2
]
, [using 1 − e−αt1 ≈ αt1]

= 1
T

[
−Icmt0 − G(1 − θ)

R
P

+ (sm + Icm
Dr

− ws − Ism − R1 − Icm
Dr

)(1 − θ)R

−H(1 − θ)PR2 +
{
s′m(1 − β)αγ − (sm + Icm

Dr
)(1 − β)α − hm − rcmαβ

}
(1 − θ)2

R2

2P

+ hm
2Dr

(1 − θ)2R2 + h′
mD

′
r(1 − θ)2

R2

P2

]
, [using (3)]

= 1
T

[
−Z0m − Z1m

R
P

+ Z2mR + Z3m
R2

P2
+ Z4m

R2

P
+ Z5mR2 − Z6mPR2

]
.

where Z0m = Icmt0 − Am Z1m = G(1 − θ)

Z2m = (sm − ws − Ism − R1) (1 − θ), Z3m = h′
mD

′
r(1 − θ)2

Z4m =
[
s′m(1 − β)αγ −

(
sm + Icm

Dr

)
(1 − β)α − hm − rcmαβ

]
(1 − θ)2

2

Z5m = hm
2Dr

(1 − θ)2, Z6m = H(1 − θ).
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APR(R,P) = 1
T

[
(sr−ctp)

[
(α1+β1W1) (t4−t3)+Drt3−Dr

β1
+ Dr − α1

β1
e−β1t3 + α1

β1
e−β1(t4−T)

]
+
(
s′r−c′tp

)
D′
rt

′
2−

hrs
2

[
(Dr−(α1+β1W1)) (t2−t3)2+(α1 + β1W1) (t2−t4)2

]
−hr

{
Dr − α1

β1

(
t3+ e−β1t3

β1
− 1

β1

)
+W1(t4−t3) − α1

β1

{
(T−t4)+ 1

β1
− e−β1(t4−T)

β1

}}

−h′
r
2

{(
D′
r − D′

c
)
t′2

2 + D′
c(t

′
2 − T ′)2

}
− Ar − A′

r

−sm

{
P
α

(1 − β)t1 − P
α2 (1 − β)

(
1 − e−αt1) + (Pβ)

t21
2

− D′
r
t22
2

}

−s′m

{
Pγ

α2 (1−β)
(
1−e−αt1)− Pγ

α
(1 − β)t1+D′

r
2
(
t1−t′2

)2+(
Pγ (1−β)−D′

r
) t21
2

}]

= 1
T

[
Z0r + Z1rR + Z2r

R2

2P
+ Z3rR2 + Z4r

R3

P
+ Z5r

R4

P2

]
.[

using (3), (7), (15) and 1 − e−αt1 ≈ αt1
]

where Z0r = −hrs
[

(s−W1)2

2(Dr−(α1+β1W1))
+ (s−W1)2

2(α1+β1W1)

]
− Ar − A′

r

−hr
[
− α1

β2
1
log

(
1 + β1W1

α1

)
− 1

β1

(
Dr−α1

β1
− DrW1

α1+β1W1

)
log

(
1 − W1β1

Dr−α1

)]
Z1r = (sr − ctp − hrW1

α1+β1W1
)(1 − θ)

Z2r =
[(

s′r − c′tp
)

γα(1 − β) +
(
sr − ctp − hrW1

α1+β1W1

)
α(1 − β) − Wm

2

]
(1 − θ)2

Z3r = sm
2Dr

(1 − θ)2, Z4r =
[
s′mγα

2 (1 − β) − smγ
2Dr

(1 − β)
]
(1 − θ)3

Z5r =
[
sm γ 2

4Dr
(1 − β)2 − s′m

γ 2α2

8Dr
(1 − β)2 − h′

r
8D′

r

{
(D′

r − D′
c) + (D′

r−D′
c)

2

D′2
c

}
γ 2α2(1 − β)2

]
.

IAP(R,P) = [APS + APM + APR]

= 1
T

[
(Z0r−Z0m−Z0s)+(Z2s−Z1m)

R
P

+(Z1s+Z1r+Z2m)R−(Z3s+2Z4m+Z2r)
R2

2P

+Z3m
R2

P2
− Z6mPR2 − (Z4s − Z3r − Z5m)R2 + Z4r

R3

P
+ Z5r

R4

P2

]
= 1

T

[
Z0 + Z1

R
P

+ Z2R − Z3
R2

2P
+ Z4

R2

P2
− Z5PR2 − Z6R2 + Z7

R3

P
+ Z8

R4

P2

]
.

where Z0 = (Z0r −Z0m −Z0s), Z1 = (Z2s −Z1m), Z2 = (Z1s +Z1r +Z2m) Z3 = (Z3s +
2Z4m + Z2r), Z4 = Z3m, Z5 = Z6m, Z7 = Z4R, Z8 = Z5R, Z6 = (Z4s − Z3r − Z5m).

∂

∂R
(APM) = 1

T

[
−Z1m

1
P

+ Z2m + 2Z3m
R
P2

+ 2Z4m
R
P

+ 2Z5mR − 2PRZ6m

]
− (1 − θ)

DrT2

[
−Z0m − Z1m

R
P

+ Z2mR + Z3m
R2

P2
+ Z4m

R2

P
+ Z5mR2 − Z6mPR2

]
= (1 − θ)

DrT
Z0m+

[
(1−θ)R
DrTP

− 1
P

]
Z1m +

[
1− (1−θ)R

DrT

]
Z2m +

[
2R
P2

− (1−θ)R2

DrTP2

]
Z3m

+
[
2R
P

− (1 − θ)R2

DrTP

]
Z4m +

[
2R − (1 − θ)R2

DrT
]Z5m+[

(1 − θ)R2P
DrT

− 2PR
]
Z6m.
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∂

∂P
(APM) = 1

T

[
Z1m

R
P2

− 2Z3m
R2

P3
− Z4m

R2

P2
− Z6mR2

]
.

∂2

∂P2
(APM) = 2

[
−Z1m

R
P3

+ 3Z3m
R2

P4
+ Z4m

R2

P3

]
∂2

∂R∂P
(APM) = 1

T

[
Z1m

1
P2

− 4Z3m
R
P3

− 2Z4m
R
P2

− 2Z6mR
]

∂2

∂R2 (APM) = 2
T

[
Z3m

1
P2

+ Z4m
1
P

+ Z5m − Z6mP
]

−2(1 − θ)

DrT2

[
−Z1m

1
P

+ Z2m + 2Z3m
R
P2

+ 2Z4m
R
P

+ 2Z5mR − Z6m2PR
]

+2(1 − θ)2

D2
r T3

[
−Z0m − Z1m

R
P

+ Z2mR + Z3m
R2

P2
+ Z4m

R2

P
+ Z5mR2 − Z6mPR2

]
= 1

T

[
− (1−θ)2

Dr2T2 Z0m +
{

(1−θ)

DrPT
− (1−θ)2R

Dr2T2P

}
Z1m +

{
(1−θ)2R
Dr2T2 − (1−θ)

DrT

}
Z2m

+
{

(1 − θ)2R2

Dr2T2P2
+ 1

P2
− 2(1 − θ)R

DrTP2

}
Z3m +

{
(1 − θ)2

Dr2T2P
+ 1

P
− 2(1 − θ)R

DrTP

}
Z4m

+
{
1 − 2(1−θ)R

DrPT
+ (1−θ)2R2

Dr2T2

}
Z5m−

{
P − 2(1−θ)PR

DrT
+ (1−θ)2R2P

Dr2T2

}
Z6m

]
.

∂

∂R
(IAP) = 1

T

[
Z1

1
P

+ Z2 − Z3
R
P

+ 2Z4
R
P2

− 2Z5PR − 2Z6R + 3Z7
R2

P
+ 4Z8

R3

P2

]
− (1−θ)

DrT2

[
Z0+Z1

R
P

+Z2R − Z3
R2

2P
+Z4

R2

P2
−Z5PR2−Z6R2 + Z7

R3

P
+ Z8

R4

P2

]
∂2

∂R2 (IAP) = 1
T

[
−Z3

1
P

+ 2Z4
1
P2

− 2Z5P − 2Z6 + 6Z7
R
P

+ 12Z8
R2

P2

]
−2(1 − θ)

DrT2

[
Z1

1
P

+ Z2 − Z3
R
P

+ 2Z4
R
P2

− 2Z5PR − 2Z6R + 3Z7
R2

P
+ 4Z8

R3

P2

]
+2(1−θ)2

Dr2T3

[
Z0+Z1

R
P

+Z2R − Z3
R2

2P
+Z4

R2

P2
− Z5PR2 − Z6R2+Z7

R3

P
+ Z8

R4

P2

]
= 1

T

[
2(1−θ)2

Dr2T2 Z0 +
{
2(1−θ)2R
Dr2T2P

− 2(1−θ)

DrTP

}
Z1 +

{
2(1−θ)2R
Dr2T2 − 2(1−θ)

DrT

}
Z2

−
{
1 + 2(1 − θ)2R2

Dr2T2P
− 2(1 − θ)R

DrTP

}
Z3 +

{
2
P2

+ 2(1 − θ)2R2

Dr2T2P2
− 4(1 − θ)R

DrTP

}
Z4

−
{
2P + 2(1−θ)2PR2

Dr2T2 − 4(1−θ)PR
DrT

}
Z5 −

{
2 + 2(1 − θ)2R2

Dr2T2 − 4(1 − θ)R
DrT

}
Z6

+
{
6R
P

+ 2(1−θ)2R3

Dr2T2P
− 6(1−θ)R2

DrTP

}
Z7+

{
12R2

P2
+ 2(1−θ)2R4

Dr2T2P2
− 8(1−θ)R3

DrTP2

}
Z8

]
.

∂

∂P
(IAP) = 1

T

[
−Z1

R
P2

+ Z3
R2

2P2
− 2Z4

R2

P3
− Z5R2 − Z7

R3

P2
− 2Z8

R4

P3

]
.

∂2

∂P2
(IAP) = 1

T

[
2Z1

R
P3

− Z3
R2

P3
+ 6Z4

R2

P4
+ 2Z7

R3

P3
+ 6Z8

R4

P4

]
.

∂2

∂R∂P
(IAP) = 1

T

[
−Z1

1
P2

+ Z3
R
P2

− 4Z4
R
P3

− 2Z5R − 3Z7
R2

P2
− 8Z8

R3

P3

]
− (1 − θ)

DrT2

[
−Z1

R
P2

+ Z3
R2

2P2
− 2Z4

R2

P3
− Z5R2 − Z7

R3

P2
− 2Z8

R4

P3

]
= 1

T

[{
(1 − θ)R
DrTP2

− 1
P2

}
Z1 +

{
R
P2

− (1 − θ)R2

2DrTP2

}
Z3 +

{
2(1 − θ)R2

DrTP3
− 4R

P3

}
Z4

+
{

(1−θ)R2

DrT
− 2R

}
Z5 +

{
(1−θ)R2

DrTP2
− 3R2

P2

}
Z7 +

{
2(1−θ)R2

DrTP3
− 8R3

P3

}
Z8

]
.
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Appendix 2

d
dP

(APM) = 1
T

[
Z1m

R
P2

− 2Z3m
R2

P3
− Z4m

R2

P2
− Z6mR2

]
.

d2

dP2
(APM) = 1

T

[
−Z1m

R
P3

+ 3Z3m
R2

P4
+ Z4m

R2

P3

]
.

d
dP

(IAP) = 1
T

[
−Z1

R
P2

+ Z3
R2

2P2
− 2Z4

R2

P3
− Z5R2 − Z7

R3

P2
− 2Z8

R4

P3

]
.

d2

dP2
(IAP) = 1

T

[
2Z1

R
P3

− Z3
R2

P3
+ 6Z4

R2

P4
+ 2Z7

R3

P3
+ 6Z8

R4

P4

]
.

Acknowledgements
The authors thanks to the reviewers and members of the editorial board for their valuable comments and constructive
suggestions to improve the content of this research work.

Author details
1Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore,
West Bengal 721102, India. 2Department of Mathematics, Mahishadal Raj College, Mahishadal, West Bengal, 721628, India.

Received: 27 March 2014 Accepted: 17 June 2014
Published: 23 August 2014

References
1. Weng, ZK: Channel coordination and quantity discounts. Manag. Sci. 41, 1509–1522 (1999)
2. Munson, LC, Rosenblatt, JM: Coordinating a three level supply chain with quantity discounts. IIE Trans. 33, 371–384

(2001)
3. Yang, CP, Wee, MH: An arborescent inventory model in a supply chain system. Prod. Plann. Control. 12, 728–735

(2001)
4. Khouja, M: Optimizing inventory decisions in a multistage multi customer supply chain. Trans. Res. Part E.

39, 193–208 (2003)
5. Yao, Y, Evers, PT, Dresner, ME: Supply chain integration in vendor-managed inventory. Decis. Support Syst.

43, 663–674 (2007)
6. Chaharsooghi, SK, Heydari, J, Zegordi, SH: A reinforcement learning model for supply chain ordering management:

an application to the beer game. Decis. Support Syst. 45, 949–959 (2008)
7. Wang, WT, Wee, HM, Tsao, HSJ: Revisiting the note on supply chain integration in vendor-managed inventory.

Decis. Support Syst. 48, 419–420 (2010)
8. Salameh, MK, Jaber, MY: Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ.

64, 59–64 (2000)
9. Goyal, SK, Cardenas-Barron, LE: Note on: economic production quantity model for items with imperfect quality—a

practical approach. Int. J. Prod. Econ. 77, 85–87 (2002)
10. Yu, JCP, Wee, HM, Chen, JM: Optimal ordering policy for a deteriorating item with imperfect quality and partial back

ordering. J. Chin. Inst. Ind. Eng. 22, 509–520 (2005)
11. Liu, JJ, Yang, P: Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs.

Eur. J. Oper. Res. 91, 517–527 (1996)
12. Panda, D, Maiti, M: Multi-item inventory models with price dependent demand under flexibility and reliability

consideration and imprecise space constraint: a geometric programming approach. Math. Comput. Model.
49, 1733–1749 (2009)

13. Ma, W-N, Gong, D-C, Lin, GC: An optimal production cycle time for imperfect production process with scrap.
Math. Comput. Model. 52, 724–737 (2010)

14. Sana, SS: An economic production lot size model in an imperfect production system. Eur. J. Oper. Res. 201, 158–170
(2010)

15. Sana, SS: A production-inventory model of imperfect quality products in a three-layer supply chain. Decis. Support
Syst. 50, 539–547 (2011)

16. Hartely, RV: Operations Research - a Managerial Emphasis, Good Year Publishing Company, California, pp. 315–317
(1976)

17. Sarma, KVS: A deterministic inventory model with two levels of storage and an optimum release rule. Opsearch
20, 175–180 (1983)

18. Dave, U: On the EOQ models with two levels of storage. Opsearch. 25, 190–196 (1988)
19. Goswami, A, Chaudhuri, KS: An economic order quantity model for items with two level of storage for a linear trend

in demand. J. Oper. Res. Soc. 43, 157–167 (1992)
20. Pakkala, TPM, Achary, KK: Discrete time inventory model for deteriorating items with two warehouses. Opsearch

29, 90–103 (1992)
21. Bhunia, AK, Maiti, M: A two warehouses inventory model for deteriorating items with a linear trend in demand and

shortages. Journal of Operational Research society. 49, 287–292 (2007)



Manna et al. Journal of Uncertainty Analysis and Applications 2014, 2:17 Page 31 of 31
http://www.juaa-journal.com/content/2/1/17

22. Benkherouf, L: A deterministic order level inventory model for deteriorating items with two storage facilities. Int. J.
Prod. Econ. 48, 167–175 (1997)

23. Zhou, YW: An optimal EOQ model for deteriorating items with two warehouses and time varying demand.
Mathematica Applicata. 10, 19–23 (1998)

24. Kar, SK, Bhunia, AK, Maiti, M: Deterministic inventory model with levels of storage, a linear trend in demand and a
fixed time horizon. Comp. Oper. Res. 28, 1315–1331 (2001)

25. Chung, K, Huang, T: The optimal retailer’s ordering policies for deteriorating items with limited storage capacity
under trade credit financing. Int. J. Prod. Econ. 106, 127–146 (2007)

26. Dey, JK, Mondal, SK, Maiti, M: Two storage inventory problem with dynamic demand and interval valued lead-time
over finite time horizon under inflation and time-value of money. Eur. J. Oper. Res. 185, 170–194 (2008)

27. Liang, Y, Zhou, F: A two-warehouse inventory model for deteriorating items under conditionally permissible delay in
payment. Appl. Math. Model. 35, 2221–2231 (2011)

28. Hariga, M: Inventory models for multi-warehouse systems under fixed and flexible space leasing contracts.
Comput. Ind. Eng. 61, 744–751 (2011)

29. Dubois, D, Prade, H: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 91–208 (1990)
30. Morsi, NN, Yakout, MM: Axiomatics for fuzzy rough sets. Fuzzy Set. Syst. 100, 327–342 (1998)
31. Radzikowska, AM, Kerre, EE: A comparative study of rough sets. Fuzzy Set. Syst. 126, 137–155 (2002)
32. Xu, J, Zhou, X: Fuzzy-Like Multiple Objective Decision Making. Springer, Berlin (2009)
33. Liu, G, Sai, Y: Invertible approximation operators of generalized rough sets and fuzzy rough sets. Inf. Sci.

180, 2221–2229 (2010)
34. Chen, D, Kwong, S, He, Q, Wang, H: Geometrical interpretation and applications of membership functions with fuzzy

rough set. Fuzzy Set and Syst. 193, 122–135 (2012)

doi:10.1186/s40467-014-0017-1
Cite this article as:Manna et al.: Three-layer supply chain in an imperfect production inventory model with two
storage facilities under fuzzy rough environment. Journal of Uncertainty Analysis and Applications 2014 2:17.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Necessary knowledge about fuzzy-rough (Fu-Ro) set
	Single-objective Fu-Ro model
	Equivalent crisp model for single-objective problem with Fu-Ro parameters

	Assumptions and notations
	Notations
	Assumptions

	Formulation of three-layer supply chain production inventory model
	Formulation of the supplier
	Formulation of the manufacturer
	For perfect quality items of manufacturer
	For less perfect quality items of manufacturer
	Average profit of manufacturer

	Formulation of the retailer
	For perfect quality items of retailer
	For less perfect quality items of retailer
	Average profit of retailer

	Integrated average profit
	In fuzzy rough environment
	In equivalent crisp environment
	Stakelberg approach (leader-follower relationship)
	When both R and P are decision variables
	When P is a decision variable

	Integrated approach
	When both R and P are decision variables
	When P is a decision variable


	Numerical examples
	Discussion
	Conclusions
	Appendix 1
	Appendix 2
	Acknowledgements
	Author details
	References

