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Abstract 

Context: Asian elephant numbers are declining across much of their range driven largely by serious threats from 
land use change resulting in habitat loss and fragmentation. Myanmar, holding critical range for the species, is under-
going major developments due to recent sociopolitical changes. To effectively manage and conserve the remaining 
populations of endangered elephants in the country, it is crucial to understand their ranging behavior.

Objectives: Our objectives were to (1) estimate the sizes of dry, wet, and annual ranges of wild elephants in Myan-
mar; and quantify the relationship between dry season (the period when human-elephant interactions are the most 
likely to occur) range size and configurations of agriculture and natural vegetation within the range, and (2) evaluate 
how percentage of agriculture within dry core range (50% AKDE range) of elephants relates to their daily distance 
traveled.

Methods: We used autocorrelated kernel density estimator (AKDE) based on a continuous-time movement mod-
eling (ctmm) framework to estimate dry season (26 ranges from 22 different individuals), wet season (12 ranges from 
10 different individuals), and annual range sizes (8 individuals), and reported the 95%, 50% AKDE, and 95% Minimum 
Convex Polygon (MCP) range sizes. We assessed how landscape characteristics influenced range size based on a 
broad array of 48 landscape metrics characterizing aspects of vegetation, water, and human features and their juxta-
position in the study areas. To identify the most relevant landscape metrics and simplify our candidate set of informa-
tive metrics, we relied on exploratory factor analysis and Spearman’s rank correlation coefficient. Based on this analysis 
we adopted a final set of metrics into our regression analysis. In a multiple regression framework, we developed 
candidate models to explain the variation in AKDE dry season range sizes based on the previously identified, salient 
metrics of landscape composition.

Results: Elephant dry season ranges were highly variable averaging 792.0  km2 and 184.2  km2 for the 95% and 50% 
AKDE home ranges, respectively. We found both the shape and spatial configuration of agriculture and natural veg-
etation patches within an individual elephant’s range play a significant role in determining the size of its range. We 
also found that elephants are moving more (larger energy expenditure) in ranges with higher percentages of agricul-
tural area.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  anc4001@gmail.com
1 Conservation Ecology Center, Smithsonian National Zoo 
and Conservation Biology Institute, Front Royal, VA 22630, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2706-6969
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40462-022-00304-x&domain=pdf


Page 2 of 15Chan et al. Movement Ecology            (2022) 10:6 

Introduction
The ability to understand how range size and move-
ment patterns of a species vary in changing landscapes 
is important for informing decision processes and land-
scape planning efforts by resource managers and conser-
vation agencies [1, 2]. Information on space requirements 
across different levels of human presence on a landscape 
can guide planning efforts and ensure success of manage-
ment objectives. The advent of GPS technology in wild-
life telemetry has revolutionized how movement data are 
collected in the field of wildlife science [3, 4]. The abil-
ity to collect large volumes of location data with high 
temporal resolution allows robust inference on spatial 
requirements, including home range size, range shifts by 
season, and movement patterns within the home range. 
When paired with a powerful open-source technology, 
such as Google Earth Engine and R, understanding of the 
spatial context of the movement and space use patterns 
can be determined with relative ease. Such information 
allows scientists to address key conservation challenges, 
advancing ecological knowledge of a species and serving 
to answer applied questions [5–7].

To understand the drivers of an animal’s movements, it 
is critical to appropriately understand the landscape con-
text influencing its movement decisions [8]. Traditionally, 
ecologists have used software, such as FRAGSTATS, to 
quantify landscape metrics [9] and address related eco-
logical questions of interest [10]. However, new analytical 
approaches are providing ecologists with more flexibility 
and unified workflow within one programming environ-
ment such as R [11]. Easy extraction and quantification of 
landscape conditions using such platforms allow ecolo-
gists to carry out further analysis, such as data visualiza-
tion, exploratory factor analysis, and generalized linear 
regression, to make inference on the ecological influence 
of landscape variables [6] with greater ease. Coupling 
such information with data on animal space use can allow 
deeper insight to how landscape characteristics shape 
space-use relationship, such as home range behavior.

The endangered Asian elephant (Elephas maximus) 
is particularly susceptible to habitat loss being the larg-
est terrestrial mammal with large and heterogeneous 
habitat requirements [12–14]. The species is facing 
serious anthropogenic pressure across its geographic 

range [15–18]. Agricultural expansion is driving habi-
tat fragmentation and loss, and is resulting in significant 
increase in human-elephant conflicts (often the killings 
of people and elephants). The combined effects of habi-
tat loss and increased conflict represent a major threat to 
remaining elephant populations across Asia. This is exac-
erbated by the persistent threat of poaching to the sur-
vival of remaining elephant populations [16, 18, 19].

Myanmar, home to approximately 1,400 wild elephants 
[20], has the largest amount of remaining wildlands 
among the species range countries (37.86%) although 
the landscape is changing rapidly [16, 21]. The status of 
Myanmar’s elephants is unclear, but likely elephants are 
declining as they continue to face threats in the wild 
[21, 22]. Recent evidence of increased poaching is a seri-
ous concern [19]. At the same time, range loss, driven 
by rapid development across the country due to recent 
changes in the political system and an increased devel-
opment focus [23], is thought to be the primary driver 
of elephant decline in the country. One study suggested 
that the geographic distribution of elephants in Myanmar 
declined by 5% (~ 15,000  km2) between 1992 and 2006 
[22]. Even within a proposed national park in Myanmar, 
forest cover is declining [24]. There are only a few studies 
that have assessed the space use of wild Asian elephants 
[14, 25–27], and only one study assessing ranging behav-
ior of wild elephants in Myanmar in relation to seed dis-
persal [28] to our knowledge. Therefore, it is crucial to 
obtain information relating space use and ranging behav-
ior of elephants to their landscape context in the country.

Developing tools for assessing elephant space use and 
ranging requirements becomes even more critical with 
continued habitat loss. As human populations continue 
to increase, human encroachment into the remain-
ing “wildlands” within the elephant’s range countries is 
likely to accelerate. This encroachment will inevitably 
lead to increased human-elephant encounters and con-
flicts. Additionally, increased fragmentation due to habi-
tat loss could result in increased range size as elephants 
are forced to move further to meet the resource require-
ments [26, 29]. Elephants are likely to change their rang-
ing pattern (area used and movement rates) in response 
to fragmentation and resource availability, and this is 
particularly relevant in the dry season in Southeast Asia 

Conclusion: Our results provide baseline information on elephant spatial requirements and the factors affecting 
them in Myanmar. This information is important for advancing future land use planning that takes into account space-
use requirements for elephants. Failing to do so may further endanger already declining elephant populations in 
Myanmar and across the species’ range.

Keywords: Asian elephant, Animal movement, GPS tracking, Home range, Ranging behavior, Landscape ecology, 
Myanmar
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when the configuration of resources varies across the 
landscape and availability of high-value food items (and 
resulting conflict) increases during the harvesting period 
[13, 28].

We looked at the relationship between animal space 
use and landscape context, by deriving metrics describing 
shape and configuration of land cover types (agriculture, 
water, and natural vegetation) within individual ranges. 
Our two main objectives of this study were to (1) quan-
tify dry season range sizes in Myanmar and assess how 
ranging behavior during the dry season varies based on 
different configurations of available agriculture and natu-
ral vegetation (including testing for range size thresholds 
relative to percentage of agriculture); and (2) evaluate 
how percentage of agriculture within dry core range (50% 
AKDE range) of elephants relates to their daily distance 
traveled. In addition, we examined wet season ranging 
and annual ranging behaviors where data allowed.

Methods
Study areas
Our study was conducted in three areas of conserva-
tion interest in central, western, and southern Myanmar 
(Fig.  1). Site 1 (Latitude: 17.1013–18.1960, Longitude: 
95.7043–96.4787) is located in the central part of Myan-
mar in the foothills of Bago Yoma mountain ranges. 
Historical unsustainable teak extraction in this site cre-
ated a highly disturbed forest mosaic that is increasingly 
being invaded by other human land uses, including the 
construction of hydroelectric reservoirs, settlements, 
as well as commercial teak, sugarcane, rice, and rubber 
plantations. Site 2 (Latitude: 16.0554–17.0842, Longi-
tude: 94.1860–94.6838) is a mountainous area along the 
west coast of the Ayeyarwaddy state that stretches from 
north to south creating an elongated forest with hard 
boundaries on east and west. Rice plantations dominate 
the matrix between forest patches in this site, where rub-
ber and peppercorn agricultural use is also prevalent. 
Site 3 (Latitude: 10.7141–12.0981, Longitude: 98.3356–
99.4626) is part of the larger Dawna Tanintharyi Land-
scape which extends from mountain ridges along the 
border with Thailand to the coastal plain. Land use at site 
3 is primarily composed of oil palm and betel nut planta-
tions, surrounded by lowland deciduous forests. Threats 
of human encroachment, road development, and agricul-
tural expansion into the remaining forest are rising in the 
area.

The study areas are strongly seasonal, with rainfall 
records demonstrating the extended dry season occurs 
between early December and late March, and the wet 
season between early June and mid-September [30]. Dur-
ing the dry season, human-elephant conflicts (HECs) 
peak in relation to the harvest of rice, sugarcane, and 

other agricultural products [29, 31]. Rainfall is signifi-
cantly higher at site 3, resulting in markedly different 
forest composition. Forests at site 3 are predominantly 
lowland evergreen forests, while at site 1 and 2, they are 
mostly mixed deciduous forests with strong seasonal 
leaf-fall patterns.

Elephant capture for GPS collaring
All capture and animal sedation were performed by vet-
erinarians from Myanmar Timber Enterprise (MTE). 
MTE is the Myanmar government agency responsible 
for the management of logging elephants, and their staff 
have extensive experience in veterinary care of captive 
and wild Asian elephants, including sedation. Individu-
als were independently captured during the collaring 
period, and no collared elephants were found in the same 
social unit. All capture and handling procedures followed 
or exceeded the guidelines provided by the American 
Society of Mammalogists [32]. Elephants were immo-
bilized using Etrophine and Xylaxine for sedation and 
Naltrexone for reversal. The immobilization and collar-
ing process took approximately 30  min per individual 
on average and was carried out early in the morning or 
late in the afternoon when air temperature was relatively 
lower (< 35 °C). All the collars are set to record a GPS fix 
every hour. Due to high collar failure and poaching soon 
after collar deployments [19], telemetry datasets were 
often patchy and covered relatively short periods. Con-
sequently, we only included individuals with (1) > 60 days 
of tracking data and/or (2) that had an established range 
(based on a semi-variogram analysis of range stability 
described below). To assess whether animals established 
ranges during the tracking periods, we used methods 
described by [33] in their continuous-time movement 
modeling package (ctmm) in R. When the semi-vari-
ogram function for the relocation data of an elephant 
approached an asymptote, we classified that dataset as 
capturing an established range [33], which occurred 
within 60 days each season for the elephants in this study.

For dry season range analysis, we analyzed data from 
eight individuals from site 1 (4 females: 4 males), six 
from the site 2 (1 female: 5 males), and eight from site 
3 (2 females: 6 males)—totaling 22 different individu-
als. We performed data analysis on data collected from 
December 2016 through March 2020. Therefore, our 
analysis covers four dry seasons. There were four individ-
uals whose tracking periods covered two dry seasons. To 
avoid problems with pseudo-replication when develop-
ing our regression model set, we excluded the year with 
fewer data points for each of these four individuals such 
that each only supplied one season to the analysis.

For the wet season ranges estimation, we utilized data 
from five individuals from site 1 (1 female: 4 males), 
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three from the site 2 (3 males), and two from site 3 (2 
males). There were two individuals who had data span-
ning two wet seasons, allowing estimation of 12 wet-
season ranges. Because of the relatively small sample 
size, we did not run a regression analysis on wet season 
data.

For annual home range estimation, we included indi-
viduals with > 365  days tracked, which amounted to 
8 individuals: five individuals from site 1 (1 female: 4 

males), one from the site 2 (1 male), and two from site 
3 (2 males).

Range estimation
We employed a ctmm framework [33] to estimate sea-
sonal (dry and wet) and annual range sizes among indi-
viduals. We compared the fit to our data of independent 
and identically distributed (IID), Ornstein–Uhlen-
beck (OU), and Ornstein–Uhlenbeck Foraging (OUF) 

Fig. 1 The location of the three study areas in Myanmar: Site 1 located in the foothills of Bago Yoma Mountain Range, site 2 located within the 
Ayeyarwaddy Delta region, and site 3 which is part of Dawna Tanintharyi Mountain Range. The insert shows the land cover map for site 1 from 
which various landscape metrics were derived for analysis of range conditions
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movement models using an autocorrelation estimation 
method. We picked the best fitting model and applied it 
to fit the autocorrelated density estimator (AKDE) func-
tion to estimate range size. We calculated 95% and 50% 
AKDE percentile level ranges for all individuals. We 
assumed 50% AKDE level as core areas within the respec-
tive ranges where animals spent 50 percent of their time. 
To enable comparison with other studies, we calculated 
and presented 95 percentile Minimum Convex Polygon 
(MCP) ranges.

Predictor variables and candidate models
To assess which landscape conditions were related to dry 
season range size, we applied gamma regression models 
with estimated AKDE range sizes as a response variable 
based on the assumption that our response variable can 
only be a non-zero positive number. Our covariate data-
set of landscape properties was developed by classify-
ing Landsat 8 imageries to develop land cover maps for 
each of our study areas (Chan et  al. unpublished data). 
We used the ‘landscapemetrics’ package in R to derive 
different measures for characterizing landscape metrics 
from our land cover map [11]. To describe the landscape 
of each individual range, we calculated several differ-
ent shape, area, edge, and aggregation metrics for water, 
agriculture, and natural vegetation classes (Table  1). In 
addition, we quantified landscape-level metrics, includ-
ing Shannon’s diversity index, relative patch richness, and 
relative patch density (Table  1). We computed 48 land-
scape metrics in total.

To simplify these 48 metrics for our regression analy-
sis, we relied on exploratory factor analysis with oblique 
minimal rotation of principal factor axes to reduce the 
data dimensionality. This approach relaxes the assump-
tion of normality [34] and allowed us to identify the vari-
ables that best characterized variations in our landscapes 
(Table  1). Specifically, we included the highest positive 
and negative loading variables from the first five principal 
factor axes to reduce the metrics to the primary explana-
tory variables while explaining sufficient variance in the 
data. Afterwards, we compared single variable models 
among metrics belonging to the same land cover class. 
We kept the variables if the AIC corrected for small sam-
ple size (AICc) score was within 8 of the top model and 
excluded variables that did not meet the criteria in our 
candidate model set. AICc is the metric used to rank the 
models in your candidate model set in such a way that 
the most parsimonious model will have the lowest AICc 
value among the model set. This allowed us to eliminate 
variables with relatively low explanatory power. We also 
assessed the Spearman’s rank correlation coefficients 
between all the variables before including them in the 

final candidate model sets (all the variables included in 
the model set were less than 0.6).

From the retained variables (Table  1), we then devel-
oped different biologically meaningful combinations of 
agriculture and natural vegetation indices in the model 
set for both the 95% and 50% AKDE level for dry season 
ranges. We included a model with a quadratic term for 
percentage of agriculture to determine whether we could 
assess the threshold relationship between agriculture and 
range size. We also assessed the effect of sex, site, and 
year by adding these covariates to our best performing 
model and ranked the models using AICc for both 95% 
and 50% AKDE top models. We investigated these effects 
further in 50% AKDE range sizes analysis by dropping 
uninformative parameters in our model sets based on 
model weights and parameter estimates and presented 
the most parsimonious and biologically meaningful 
model since the effect of site/region came out stronger in 
our model set [35].

In addition to our range size models, we developed a 
candidate model set to assess the correlation between 
landscape metrics and average daily distance moved 
by the elephants. We calculated average daily distance 
moved by calculating the sum of hourly distance moved 
(straight-line distance between the two consecutive 
points) and dividing by the total number of days tracked 
for the particular individuals. We did not include days 
where fix success rate was below 80% in our daily dis-
tance traveled calculation. For this particular candidate 
model set, we tested several hypotheses using the most 
informative variables from the 50% AKDE dry season 
analysis. We tested whether sex, site/region, and/or two 
agriculture metrics (percentage of agriculture presence 
and perimeter-area ratio of agriculture patches within the 
range) influenced average daily distance moved by ele-
phants by fitting gamma regression model as described 
above. We set female and study site 2 as a reference cat-
egory for sex and region categorical predictor variables, 
respectively, in the model.

We used AICc to rank models in the candidate model 
set [36]. We selected the model with the lowest AICc as 
the best/top model in respective candidate model set. To 
account for variation in range sizes driven by sampling 
differences, we included the number of days tracked as 
an additional variable in the top model. We retained the 
number of days tracked variable if it was included in a 
model within 2 AICc scores of the top model. All vari-
ables were standardized to a mean of 0 and a standard 
deviation of 1 before fitting the model for easier inter-
pretation of the results and standardize the effect size of 
all covariates. All analyses were conducted in R version 
3.6.3 using ‘ggplot2’ (version 3.3.0), ‘dplyr’ (version 0.8.5), 
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‘ctmm’ (version 0.5.9), ‘landscapemetrics’ (version 1.4.3), 
and ‘AICcmodavg’ (version 2.2.2) [37–41].

Results
Determinants of seasonal home range size
Home range size estimates varied across seasons and 
individuals (Table  2). Elephant dry season ranges were 
highly variable averaging 792  km2 (± 867.6  km2; range 

from 38.4  km2 to 3,166.4  km2) for the 95% AKDE ranges 
while the 50% AKDE range sizes averaging 184.2  km2 
(± 201.5  km2; range 7.4 to 728.5  km2). Despite more lim-
ited sample sizes  (nwet = 12,  nannual = 8), analysis of wet 
season range indicated the average 95% AKDE ranges 
was 1,520  km2 (range 43.5–5362.2  km2), and the aver-
age AKDE 50% ranges was 356.1  km2 (range 12.8–1277.5 
 km2). Considering only full annual ranges, the average 

Table 1 Description of landscape metrics used in this study [11]

Abbreviations Full name Metric type Description

frac_mn_* Mean fractal dimension index Shape Fractal dimension based on the patch perimeter and patch area: 
value (x) approaches 1 if all patches are squared and 2 if all patches 
are irregular

frac_sd_* Standard deviation of fractal dimension index Shape Standard deviation of the fractal dimension index, where x = 0 if 
the fractal dimension index is identical for all patches and increases 
without limit as the variation of the fractal dimension indices 
increases

para_mn_* Mean perimeter to area ratio Shape A patch complexity metric that approaches 0 if the perimeter-to-
area ratio for each patch approaches 0 (i.e. the form approaches a 
rather small square) and increases without limit, as perimeter-to-
area ratio increases (patches become more complex)

para_cv_* Coefficient of variation of perimeter to area ratio Shape Coefficient of variation of perimeter-area ratio where x = 0 if the 
perimeter-area ratio is identical for all patches and increases with-
out limit as the variation of the perimeter-area ratio increases

para_sd_* Standard deviation of perimeter to area ratio Shape Standard deviation of perimeter-area ratio where x = 0 if perimeter-
to-area ratio is identical for all patches and increases without limit 
as the variation of the perimeter-area ratio increases. This is scale 
dependent

area_cv_* Coefficient of variation of patch area Area and edge Summarizes variation in patch area where x = 0 if all the patches 
are identical in size and increases without limit as the variation of 
patch area increases in the landscape

area_mn_* Mean patch area Area and edge This is the simplest metrics—mean patch area of a given class. If 
all patches are small, x = 0 and increases without limit as the patch 
areas increases

pland_* Percentage of landscape Area and edge Characterizes the composition of the landscape as percentage of 
class *. When the proportional class area is decreasing, the value 
approaches 0. The metric is equal to 100 when only one patch is 
present on the landscape

pd_* Patch density Aggregation Describes the fragmentation of the class as patch density where x 
approaches 0 as the proportional class area decreases. It is equal 
to 100 when only one patch is present. It is standardized to 100 
hectares area

dcore_mn_* Mean number of disjunct core area Core area This counts the disjunct core areas, whereby a core area is a patch 
within the patch containing only core cells. If ncore = 0 for all 
patches, x = 0 and increases without limit as the number of disjunct 
core area increases

dcad_* Disjunct core area density Core area This is the number of disjunct core areas per ha relative to the total 
area. When no patch of class * contains a disjunct core area, x = 0, 
and increases without limit as disjunct core areas become more 
present (i.e. patches becoming larger and less complex)

ed_* Edge density Area and edge Describes the configuration of the landscape as the sum of all 
edges of class * in relation to the landscape area. If only one patch 
is present, x = 0, and increases without limit as the landscape 
becomes more patchy

lsi_* Landscape shape index Aggregation Metric based on actual edges and minimum hypothetical edges. 
When only one squared patch is present or all patches are 
maximally aggregated, x = 1, and increases without limit as the 
length of the actual edges increases (i.e. the patches become less 
compact)
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range covered 1093.1  km2 (range 89.6–3057.4  km2) and 
252.9  km2 (range 20.3–777.2  km2) for 95% and 50% 
AKDE home ranges respectively. We did not find differ-
ences in range sizes between males and females, probably 
because of the overall large variation in range size (aver-
age and standard deviation of female 50% AKDE = 153 
 km2 ± 221  km2; average and standard deviation of male 
50% range 196  km2 ± 199  km2). The variation between 
the sites was greater for the 50% AKDE range size 
(including site as a covariate improved the explanatory 
power), but the effect of the site did not add much to the 
explanatory power of the best performing model of our 
95% AKDE range analysis (Site 1: x  = 750.3 ± 892.5  km2; 
Site 2: x = 947.4 ± 945.6  km2; Site 3: x = 713.3 ± 865.9 
 km2).

The variation in 95% AKDE level dry season ranges was 
best explained by metrics characterizing agricultural land 

use rather than those of natural areas (Table 3); whereas 
metrics describing landscape configuration of natural 
vegetation classes explained the difference in 50% AKDE 
range sizes (core range area) (Table  4). The top mod-
els contained four statistically significant variables with 
three agriculture and one natural vegetation metrics in 
the top model for 95% AKDE ranges; and one metric for 
each agriculture and natural vegetation and site variable 
for 50% AKDE ranges (Figs.  2, 3). To assess the effects 
of sex, site, year on ranging behavior, we ran a second-
ary model including these variables in the top model of 
95% AKDE range sizes. These variables did not add any 
significant explanatory power to our top model (δAICc is 
greater than 4).

The top model for 95% AKDE range included signifi-
cant coefficient estimates for percentage of agriculture on 
the landscape, fractal dimension mean and edge density 

Table 3 Candidate model set for 95% AKDE dry season range showing the performance of the top model relative to others in the 
model set

The top model is composed of three landscape metrics describing configuration and composition of agriculture and one regarding natural vegetation composition 
within the range

Model Variables AICc K dAICc AICc weights

M_Ag_Nv_1 (Intercept) + pland_ag + frac_mn_ag + ed_ag + area_cv_natveg 284.93 5 0.00 0.89

M_Ag_Nv_2 (Intercept) + pland_ag + I(pland_ag^2) + frac_mn_ag + ed_ag + area_cv_natveg 289.18 6 4.26 0.11

M_Global (Intercept) + area_cv_natveg + ed_ag + pland_ag + I(pland_ag^2) + dcore_mn_
water + frac_mn_ag + para_mn_natveg + para_mn_water

299.78 9 14.85 0.00

M_Ag_Nv_3 (Intercept) + ed_ag + pland_ag + area_cv_natveg 306.08 4 21.16 0.00

M_Nv_W_2 (Intercept) + area_cv_natveg + para_mn_water 312.09 3 27.17 0.00

M_Nv_W_1 (Intercept) + area_cv_natveg + para_mn_water + dcore_mn_water 315.38 4 30.45 0.00

M_Ag_W_1 (Intercept) + pland_ag + frac_mn_ag + ed_ag + para_mn_water + dcore_mn_water 322.88 6 37.96 0.00

M_Water (Intercept) + para_mn_water + dcore_mn_water 338.71 3 53.79 0.00

M_Null (Intercept) 339.37 1 54.44 0.00

M_Ag_W_2 (Intercept) + pland_ag + frac_mn_ag + ed_ag + para_mn_water 343.15 5 58.23 0.00

M_Ag_1 (Intercept) + pland_ag + frac_mn_ag + ed_ag 346.12 4 61.20 0.00

M_Ag_2 (Intercept) + pland_ag + I(pland_ag^2) + frac_mn_ag + ed_ag 347.80 5 62.87 0.00

Table 4 Candidate model set for 50% AKDE dry season showing the top model carrying the majority of the model set weight 
(85.28%) composed of one metric describing the shape of the agriculture patches and three metrics describing shape and 
configuration of natural vegetation patches within the range

Model Variables AICc K dAICc AICc weights

M_Ag_Nv_2 (Intercept) + lsi_ag + dcad_natveg + dcore_mn_natveg + para_mn_natveg 238.98 5 0 0.88

M_Global (Intercept) + dcad_natveg + dcore_mn_natveg + para_mn_natveg + area_mn_natveg + lsi_ag 243.38 6 4.4 0.10

M_Ag_Nv_3 (Intercept) + lsi_ag + dcore_mn_natveg + dcad_natveg 247.04 4 8.06 0.02

M_Ag_Nv_1 (Intercept) + lsi_ag + dcore_mn_natveg 251.5 3 12.52 0

M_Ag (Intercept) + lsi_ag 253.47 2 14.48 0

M_Nv_4 (Intercept) + dcad_natveg 273.91 2 34.92 0

M_Null (Intercept) 275.17 1 36.19 0

M_Nv_3 (Intercept) + dcad_natveg + dcore_mn_natveg 276.32 3 37.33 0

M_Nv_2 (Intercept) + dcad_natveg + dcore_mn_natveg + para_mn_natveg 278.97 4 39.98 0

M_Nv_1 (Intercept) + dcad_natveg + dcore_mn_natveg + para_mn_natveg + area_mn_natveg 281.11 5 42.13 0
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of agriculture, and the coefficient of variation of patch 
area for natural vegetation (Fig. 2 and Table 3). In general, 
elephants tend to have larger 95% AKDE range when the 

shape of agriculture patches were irregular (higher mean 
fractal dimension) and agriculture land use percentage 
on a landscape increased (Fig.  2). On the other hand, 
more patchy agriculture on a landscape (higher edge den-
sity) corresponded to smaller 95% AKDE range (Fig. 4). 
On average, one unit increase in the metric describing 
variation in natural vegetation patches (1 standard devia-
tion from the mean) resulted in a 3.17  km2 increase in 
potential range size while holding the rest of the variables 
in the model at their mean value (Fig. 4). The likelihood 
ratio based r-squared for our top model was 0.9533.

The top model for 50% AKDE of the estimated dry sea-
son range included significant coefficient estimates for 
disjunct natural vegetation area density, landscape shape 
index of agriculture, and the site variable as a factor (ref-
erence site: site 2) (Fig.  3, Table  5). Smaller core range 
areas corresponded to more complex natural vegetation 
patches (i.e., increase in perimeter-area ratio, Fig.  5). In 
contrast, larger core range sizes corresponded with to 
less compact patches of agriculture (i.e. higher landscape 
shape index, Fig. 5). On average, an increase in 1 unit of 
landscape shape index score of agriculture (1 standard 
deviation from the mean) corresponded to an increase of 
3.13  km2 in core range area. Estimated 50% AKDE ranges 
are smaller in Tanintharyi (Site 3) than in the reference 
site Ayeyarwaddy delta (Site 2) (Fig.  3). The likelihood 
ratio based R-squared for our top model is 0.929.

Daily travel distance
The average daily distance traveled by the elephants in 
the dry season was 3.9 km (range 1.3–7.3 km), with males 
moving 3.8  km (± 1.6  km; n = 19) and females 4.1  km 
(± 1.6 km; n = 7) per day. According to our top model, the 
average daily distance moved was 3.8 km at 13.9 percent 
agriculture within their home range (Table  6). Percent-
age of agriculture on a landscape (pland_ag) was the only 
covariate in our most parsimonious model (top model) to 
explain variation in average daily travel distance by ele-
phants. An approximate increase of 15 percent in agricul-
ture on the landscape resulted in an increase of 1.2 km in 
the daily distance traveled by the elephants. Study sites 
and sex of the individual were not included in the top 
model in our sample (Table 6).

Discussion
This is the first study to report different seasonal ranges 
(primarily dry season) of Asian elephants in Myanmar. 
The results show high variation in ranges sizes and dem-
onstrated that some of this variation can be explained 
by differences in landscape metrics describing the rela-
tionship between natural vegetation and agriculture. We 
note there was greater variation in 95% AKDE range size 
within relative to between the three study sites across the 

Fig. 2 Estimated coefficient values from the top model of dry season 
95% AKDE range showing landscape metrics describing the patterns 
of agriculture and variability in natural vegetation cover were the 
important independent variables in explaining variation in range size

Fig. 3 Estimated coefficient values from the top model of dry season 
50% AKDE range showing landscape shape index for agriculture and 
several metrics representing natural vegetative constitution were 
the covariates explaining variation in range size. Site 2 (Ayeyarwaddy 
Delta region) is set as the reference site when fitting the model



Page 10 of 15Chan et al. Movement Ecology            (2022) 10:6 

country, suggesting strong variability between individual 
space use strategies. We also showed that elephants in 
Site 3 (Tanintharyi) had smaller core ranges. This could 
be the result of a high presence of palm oil plantations 
(plantations providing high-energy food in a relatively 
concentrated area) and the higher degree of fragmenta-
tion in natural vegetation throughout the southern land-
scape of Myanmar. Percentage of agriculture within the 
range positively correlated with average daily distance 

traveled by the elephants (i.e. elephants traveled fur-
ther and faster in areas with higher percentage of agri-
culture). These findings demonstrate that elephants’ 
ranging behavior in Myanmar is influenced by different 
configurations of agriculture and natural vegetation on 
the landscape.

We identified percentage of agriculture, mean fractal 
dimension and edge density of agriculture (i.e., patchi-
ness), and coefficient of variation in natural vegetation 

Fig. 4 Functional relationship between the estimated regression coefficients of the top predictive landscape metrics and the dry season 95% 
AKDE range size. Predicted range size for elephants during the dry season increased as the landscape becomes more irregular and dominated with 
agriculture

Table 5 Evaluating the effect of sex, site, and year on the differences in core range sizes on the best performing model of Table 4

Model Variables AICc K dAICc AICc weights

M_Site_1 (Intercept) + lsi_ag + dcad_natveg + regionBago + regionTanintharyi 229.98 5 0.00 0.85

M_Sex_Site (Intercept) + lsi_ag + dcad_natveg + Sexmale + regionBago + regionTanintharyi 234.16 6 4.18 0.11

M_Site_2 (Intercept) + lsi_ag + dcad_natveg + dcore_mn_natveg + para_mn_natveg + regionBago + region-
Tanintharyi

237.14 7 7.16 0.02

M_Sex (Intercept) + lsi_ag + dcad_natveg + dcore_mn_natveg + para_mn_natveg + Sexmale 238.53 6 8.54 0.01

M_Ag_Nv_2 (Intercept) + lsi_ag + dcad_natveg + dcore_mn_natveg + para_mn_natveg 238.98 5 9.00 0.01

M_year (Intercept) + lsi_ag + dcad_natveg + dcore_mn_natveg + para_mn_natveg + sea-
son2017_2018 + season2018_2019 + season2019_2020

251.77 8 21.79 0
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patches (i.e., differentiation between patch sizes) within 
an elephant’s range as the variables of importance in 
quantifying the level of fragmentation within an indi-
vidual’s potential range (i.e., 95% AKDE range). Within 
the elephant’s core range (i.e., 50% AKDE range), we 
showed that landscape shape index for agriculture (i.e. 
the patch becomes less compact as the index increases) 
is the most important variable in explaining the vari-
ation in range sizes. We also showed that increase in 
agriculture resulting in loss of natural vegetation within 

elephants’ ranges corresponded to an increase in range 
sizes. We did not detect a relationship between range 
size thresholds relative to percentage of agriculture (our 
top model did not include the quadratic variable allow-
ing such inference). However, further investigation on 
a larger data set would be valuable to determine the 
nature of this relationship. Sampling across a broader 
gradient of human agricultural use could provide more 
specific inference on this relationship, though it may be 
difficult to determine such thresholds if it is a gradual 

Fig. 5 Functional relationship between the estimated regression coefficients of the top predictive landscape metrics of the dry season 50% 
AKDE range size. Predicted 50% AKDE range size for elephants during the dry season increased as the index of agriculture shape (i.e., agricultural 
boundary length) increased and decreased where more intact natural vegetation was found

Table 6 Candidate model set for average daily distance moved showing percentage of agriculture present within the 50% AKDE dry 
season range was the best variable examined at explaining the variation in mean average daily distance moved by the elephants 
during the dry season

Model Variables AICc K dAICc AICc weights

M_3 (Intercept) + pland_ag 93.62 2 0.00 0.48

M_Null (Intercept) 96.07 1 2.45 0.19

M_4 (Intercept) + pland_ag + Sexmale 96.20 3 2.58 0.16

M_1 (Intercept) + pland_ag + para_mn_ag 96.43 3 2.81 0.14

M_2 (Intercept) + pland_ag + site1 + site3 98.31 4 4.69 0.02

M_Global (Intercept) + pland_ag + site1 + site3 + para_mn_
ag

98.88 5 5.26 0.01



Page 12 of 15Chan et al. Movement Ecology            (2022) 10:6 

process and the number of elephants living near this 
theoretical threshold are small.

It is inevitable that Asian elephants will face increas-
ing fragmentation and habitat loss due to agricultural 
expansion and urbanization across the range countries 
[16, 22, 42]. There is an evidence in the literature stat-
ing that the level of human footprint on a landscape can 
affect movement of animals [43]. Therefore, it is crucial 
to quantify the structure and magnitude of fragmenta-
tion within the species’ core range and understand the 
impact on animals’ movement behavior as a first step in 
any science-based management and conservation pro-
gram. Previous research indicated that Asian elephants 
benefit from a mixture of natural vegetation and agricul-
ture on a landscape [18, 22, 44]. Our results are in agree-
ment with the existing literature on Asian elephant’s 
movement behavior in fragmented landscape, where 
elephants in more fragmented habitat are likely to move 
further (increased energy expenditure) to meet their 
survival and fitness requirements [26, 28, 29]. Increased 
movement may chiefly be a strategy whereby elephants 
reduce the inherent risk of being in close proximity to 
humans. For example, Evans et al. [45] found that Asian 
elephants on the island of Borneo moved faster in land-
scapes with increased human modification, presumably 
to avoid encounters with humans. However, elevated 
movement rates across human-modified landscapes may 
also be important to reduce poaching risks [46, 47]. This 
may be particularly true in Myanmar, where poaching for 
elephant skin has recently increased sharply across the 
agriculture-wildland interface [19].

Asian elephant range sizes are thought to be strongly 
determined by availability of water on a given landscape 
[13, 14]; however, the variables capturing water land 
cover class were not included in top models of neither 
95% AKDE range nor core range sizes of elephants in our 
analysis for the dry season. This may indicate that water 
is not a limiting factor within these landscapes, possi-
bly because elephants have already adjusted their range 
to meet their water requirement for the dry season or 
because water is relatively widely available. Alternatively, 
it is possible that the land cover map used in this study 
did not adequately capture all aspects of water availability 
on the landscape, or that the grain of our satellite image-
ries used to produce our land cover maps (30 × 30 m) was 
coarse to capture the seasonal variation of smaller water 
sources within our study sites.

To facilitate direct comparison between the results 
from this study and that of others, we reported MCP 
range sizes as well as AKDE. We found that dry season 
95% AKDE range sizes ranged from 38.4 to 3,66.4  km2 
in Myanmar, which is slightly larger compared to ranges 
reported in Sumatra, Indonesia using the same estimator 

(ranges from 275 to 5,179  km2) [27]. We estimated MCP 
annual ranges in Myanmar at 65.8 to 1152  km2 which 
shows more variation in range sizes than other studies 
using the same range estimation method—Sri Lanka: 
51.2–179.2  km2 [14], Malaysia: 122–114  km2 [25], and 
India: 105–320  km2 [13]. All the compared studies were 
conducted either within protected areas or surrounded 
by protected areas; whereas, our study sites were pri-
marily outside of the protected areas. In general, our 
study reported a lot more variations in range sizes since 
we included individuals from three different study sites 
across the country with different landscape configura-
tions. This highlights further that ranging behavior of 
elephants are affected by land use types and their spatial 
configurations.

Our relatively small sample size of individuals and vari-
able fix success across collars influenced our results to 
some extent. We relied on AKDE range estimates given 
they are relatively robust to differential sampling and 
fix success issues (average fix success rate ~ 75% during 
the wet season in this study). Notably, our AKDE analy-
sis yielded larger range sizes for wet season than annual 
ranges, despite the annual range estimates including all 
data used to estimate the wet season range (in addition 
to data from the dry season) for some individuals. The 
larger AKDE wet season estimate was likely a result of 
the small sample size and temporally dispersed reloca-
tion points in the dataset that may result from dispersal 
behavior or a function of poor collar performance during 
the wet season causing more uncertainty in the estimates 
[48]. We calculated 95% minimum convex polygon and 
found annual ranges were larger than wet season ranges 
(Table 2). This is not intended as a comparison between 
the two estimators, but an exploration of the seasonal 
and total differences. Relatedly, we also estimated large 
ranges in the dry season for some individuals (particu-
larly individual 1997) that had relatively lower fix suc-
cess (~ 70 percent fix success rate during the dry season). 
While it is probable that fix success played a role in the 
estimates, these large ranges are likely biologically driven. 
For instance, individual 19,971 was a young male (15–25 
y.o. estimated age) navigating the human-dominated 
landscape of Bago Yoma, and the large range size may be 
driven by physiological demands and reproductive strate-
gies in the highly fragmented landscape [49].

Elephants continue to face habitat loss and fragmenta-
tion across their range due to development [16, 18]. This 
will in turn increase human-elephant encounters [29]. 
Although there are several ways to mitigate human-ele-
phant conflicts particularly at the agriculture-wildland 
interface, such as electric fencing, bee fencing, and chili 
fencing, it is important to identify if we are mitigating the 
problem or simply moving it elsewhere [50, 51]. When 
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deploying temporary or permanent fencing on a land-
scape, we are fragmenting the landscape, which can drive 
behavioral responses from the elephants. For instance, 
increased fragmentation in the study system is related 
to larger ranges. Mitigation approaches could cause the 
elephants to move more broadly, potentially spread-
ing conflict areas across a broader area. Therefore, it is 
important to consider the impact of mitigation methods 
on elephants’ ranging behavior in a larger landscape scale 
although these mitigation methods could prove to be use-
ful for given locations or when implemented strategically 
as part of a broader landscape planning effort. Our study 
provides a useful model to predict the degree to which 
ranging behavior of elephant in Myanmar could change 
based on changes in fragmentation on a landscape. For 
example, in Site 2 (Ayeyarwaddy Delta), an increase in 
1 unit of landscape shape index score of agriculture (1 
standard deviation from the mean, i.e., more patchy) cor-
responded to an increase of 3.13  km2 of core range area. 
Elephants may be able to persist in these heterogeneous 
agriculture-natural-vegetation landscape mosaics for the 
long term if human-elephant conflicts can be managed 
appropriately by targeting actions that keep human and 
elephant casualties low and reduce economic impacts 
on local farmers. To reach this goal, we must pay atten-
tion to changes in elephant space use in relation to land 
use development and human-elephant conflict mitiga-
tion actions to help ensure ecologically sustainable pol-
icy and decisions by mangers and conservationists. It 
is also important to ensure the remaining wildlands for 
elephants are protected, which will provide refuge habi-
tat and could reduce the overall area use by elephants—
range use increased with less natural area (Fig.  5). The 
degradation of remaining natural areas should be pre-
vented at all cost to reduce negative interaction between 
human and elephants in the country.

Our models are evaluated for three study sites in 
Myanmar. We encourage managers and policy mak-
ers to re-evaluate our model using the same approach 
when extrapolating our results outside of the study 
areas. Increasing human footprint as a result of land use 
changes on a landscape will impact ranging and other 
movement behavior of the elephants [43, 45]. Therefore, 
information regarding the potential effect size of change 
on those behavior is taken into account during the deci-
sion making process to ensure elephants can exist in the 
area of concern.

Conclusion
This study provides foundational information on the 
movement ecology and ranging behavior of Asian 
elephant in Myanmar. Although Myanmar has lower 

elephant number than countries such as Sri Lanka and 
India, it has large tracts of suitable habitat for Asian 
elephants, making it a key range country for the spe-
cies [16]. Determining habitat requirements through 
studies of habitat selection and space use, can serve the 
country by providing managers and policy makers with 
concrete information on habitat requirements of this 
endangered species. This study provides such baseline 
information, while also providing insight to how land-
scape structures influence elephant space use. It also 
highlights the importance of assessing elephant use of 
areas outside of protected areas, which have been tradi-
tionally overlooked. Since it was predicted that 41.8% of 
the 256,518  km2 of the available habitat for Asian ele-
phants will be lost by the end of century [52], we expect 
more fragmentation and land use changes within 
elephant’s core ranges which could potentially lead to 
larger ranging behavior increasing both the number 
of and distribution of human-elephant conflicts. We 
showed that increasing agriculture will lead to detri-
mental consequences on elephants, but determining 
the threshold will be difficult and could be the point 
of no return once a population gets there. Therefore, 
monitoring with the help of GPS tracking and high res-
olution satellite imageries, we can provide empirically 
sound information on how elephants are navigating 
in human-dominated landscapes and effectiveness of 
potential mitigation methods for HEC. We believe the 
species could benefit from us applying science-based 
management decisions for future land-use planning.
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