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Abstract

Background: Animal movement expressed through home ranges or space-use can offer insights into spatial and
habitat requirements. However, different classes of estimation methods are currently instinctively applied to answer
home range, space-use or movement-based research questions regardless of their widely varying outputs, directly
impacting conclusions. Recent technological advances in animal tracking (GPS and satellite tags), have enabled new
methods to quantify animal space-use and movement pathways, but so far have primarily targeted mammal and
avian species.

Methods: Most reptile spatial ecology studies only make use of two older home range estimation methods:
Minimum Convex Polygons (MCP) and Kernel Density Estimators (KDE), particularly with the Least Squares Cross
Validation (LSCV) and reference (h,e) bandwidth selection algorithms. These methods are frequently applied to
answer space-use and movement-based questions. Reptile movement patterns are unique (e.g, low movement
frequency, long stop-over periods), prompting investigation into whether newer movement-based methods -such
as dynamic Brownian Bridge Movement Models (dBBMMs)— apply to Very High Frequency (VHF) radio-telemetry
tracking data. We simulated movement data for three archetypical reptile species: a highly mobile active hunter, an
ambush predator with long-distance moves and long-term sheltering periods, and an ambush predator with short-
distance moves and short-term sheltering periods. We compared traditionally used estimators, MCP and KDE, with
dBBMMs, across eight feasible VHF field sampling regimes for reptiles, varying from one data point every four
daylight hours, to once per month.
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comparisons across regimes, individuals, and species.

Bridge Movement Models, Snake, Lizard, Squamate

Results: Although originally designed for GPS tracking studies, dBBMMs outperformed MCPs and KDE h,.r across all
tracking regimes in accurately revealing movement pathways, with only KDE LSCV performing comparably at some
higher frequency sampling regimes. However, the LSCV algorithm failed to converge with these high-frequency
regimes due to high site fidelity, and was unstable across sampling regimes, making its use problematic for species
exhibiting long-term sheltering behaviours. We found that dBBMMs minimized the effect of individual variation,
maintained low error rates balanced between omission (false negative) and commission (false positive), and
performed comparatively well even under low frequency sampling regimes (e.g., once a month).

Conclusions: We recommend dBBMMs as a valuable alternative to MCP and KDE methods for reptile VHF
telemetry data, for research questions associated with space-use and movement behaviours within the study
period: they work under contemporary tracking protocols and provide more stable estimates. We demonstrate for
the first time that dBBMMs can be applied confidently to low-resolution tracking data, while improving

Keywords: Reptile, Simulation, Spatial ecology, Minimum convex polygon, Kernel density, Dynamic Brownian

Introduction
Animal movement is an underlying process in many
ecological systems, and there is a growing understanding
of how individuals behave through space and time [1, 2].
Movement is often conceptualized then presented as a
home range, defined as the area animals move through
during “normal” activities, including resource acquisition
and reproduction [3, 4]. While the utility of the home
range concept has been questioned in recent years [5, 6],
its estimation continues to have a wide range of applica-
tions, such as identifying behavioural adaptations to pre-
dictable environmental features [7] or inferring habitat
use [8—11]. It is clear that different biological questions
have different appropriate estimators [12], but reptile
spatial ecology studies evaluate not only long-term area
requirements, but also movement behaviour and space-
use regardless of the assumptions and applicability of each
estimation method. In this paper, we focus on the concept
on space-use and movement pathways during the sam-
pling period, when “occurrence distribution” methods are
appropriate. This definition is not synonymous with the
stricter definition of home range, that seeks to predict fu-
ture animal space-use beyond the sampling period (“range
distribution”, i.e. the space required for an entire animal’s
life-stage sensu [3]). Applying a space-use approach to
ecological research questions requires careful consider-
ation [13], as any conclusions drawn are profoundly im-
pacted by the natural history of the target species.
Terrestrial reptiles —broadly lizards, snakes, and tor-
toises— have distinct natural histories from mammals
(e.g., ectothermic thermoregulation demands, long pe-
riods of digestion, ecdysis), resulting in distinct move-
ment patterns. Many reptiles move less frequently than
comparatively sized mammals [14], but more import-
antly, many terrestrial reptiles spend prolonged periods
stationary under shelter (1 day to several weeks, see

[15-17]). These inconsistent movement patterns severely
impact inferences drawn from estimation methods.
Traditional home range estimators —Minimum Convex
Polygons (MCP) and Kernel Density Estimators (KDE)—
continue to be mainstream in recent literature but
present major limitations for telemetry-based reptile
studies: MCPs provide only an outline of an individual’s
outer-most movements, including large areas never used
by the animal and ignoring any selection patterns, while
KDEs include parameter choices that severely affect
overall area estimates and assume independence which
is breached by movement data [18, 19]. With the rise of
Global Positioning System (GPS) animal tracking, re-
searchers have developed new statistical approaches for
calculating potential space-use, taking advantage of the
high number of location fixes and explicitly incorporat-
ing the serial autocorrelation of movement data.
Dynamic Brownian Bridge Movement Models (dBBMMs)
are a technique intended for GPS telemetry, allowing for
efficient and repeatable analysis of high-resolution data —par-
ticularly useful for animals with behaviourally distinct move-
ment patterns. Although dBBMMs are not appropriate for
home range estimations, they can be applied to specific re-
search questions, if the data is sampled coarsely or for short
study periods [12]. The method creates a one-dimensional
fix-frequency independent behavioural measure (Brownian
motion variance [20]) that has been employed to elucidate
avian and mammal movement patterns and provides a confi-
dence region of where the movement pathways fall (e.g,
[21-24]). While tracking reptiles with GPS may currently be
limited (see [25-28]) by their natural history [29, 30] —e.g.
weakened signal due to the surgical implantation, attachment
of the tag, limited number of species which can be ethically
attached due to body size [28], reduced fix rates and preci-
sion due to underground sheltering [16, 30]— leveraging
dBBMMs may still benefit reptile VHF studies [31, 32].
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Multiple simulations studies have investigated how different
methods interact with animal movement and space-use de-
lineation (e.g., [18, 33—35]), but none have targeted reptile-
specific movement patterns. In a previous paper [31], we
provided proof of concept for choosing dBBMMs over
MCPs and KDEs for a single study species (Ophiophagus
hannah) with VHF data; note, in [31] we incorrectly refer to
dBBMMs as a home range method. Subsequently, other
studies have adopted dBBMMs to assess reptile spatial ecol-
ogy with VHF data (4 snake species, 1 tortoise); however,
widespread application of dBBMMs remains limited as all
studies originated from a single site in Northeast Thailand.
While these studies have shown that dBBMMs can perform
well with reptile VHF tracking data, the wider application of
the technique requires further exploration. We must tailor
our methodologies to the peculiarities of reptile movement,
and assess the utility of newer methods to properly inform
desperately needed conservation actions [36, 37].

As such, we assess estimation methods of space-use
and movement pathways (specifically those targeting
within-sample interpolation), resulting from variable
study designs common in the reptile spatial ecology lit-
erature: namely temporally low-resolution tracking re-
gimes. We simulate movement data of three archetypal
reptile species, thoroughly examining two common”
range distribution” estimators, MCPs and KDEs. Next,
we compare these traditional estimators to a newer “oc-
currence distribution” method: dBBMMs. Finally, we
discuss the implications of estimator choice regarding
space-use and movement pathways, and present guiding
principles for reptile spatial ecology sampling designs
that wish to address these research questions.

Materials and methods

Simulated animal movement and tracking data

We used the SimData function in the momentuHMM
package [38] to simulate movement data from a Hidden
Markov Model (HMM). HMMs are time-series models
where the movement pattern of an animal is assumed to
depend on the underlying behavioural state of the ani-
mal [39]. We simulated data for 32 individuals from
three archetype reptile movement patterns, to represent
three main groups within reptile movement ecology (for
simplicity, we refer to archetypes as species):

Species 1 corresponds to highly mobile (active
hunters) with long-term shelter sites (e.g., monitor liz-
ards, some skinks, and elapids like mambas and king co-
bras). Highly mobile reptile species are usually active
hunters (i.e., forage by actively searching for prey), as
they show higher values of standard metabolic rates than
ambush predators [40]. Foraging activity can vary widely
among active hunting snake species, depending on the
kind of prey hunted [40], we chose to reflect a
specialization on larger prey as it may be favoured over
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small prey items (e.g., [41, 42]). As such, this will lead to
longer use of sheltering sites (for thermoregulation and
digestion of prey items).

Species 2 represents less mobile reptiles, capable of
moving long distances but are ambush foragers, and will
still shelter for long periods (e.g., pythons). Sedentary,
“sit-and-wait” ambush predators include many snake
species, such as vipers, pythons, boas, as well as some
colubrids and elapids [40, 43]. Snakes with an ambush
foraging strategy consume a wide range of meal sizes
[44]: We chose to model Species 2 after a specialization
on larger prey and thus longer digestion periods. The
main component of an ambush predator is spending
long periods in the same location [45, 46]. “Sit-and-wait”
predators also usually feed less frequently than active
hunters [47].

Species 3 represents smaller ambush predators, infre-
quently moving and sheltering for shorter periods (e.g.,
vipers, some smaller lizard species). In contrast to Spe-
cies 2, we chose to model Species 3 with a smaller body
mass, reflected by short-distance moves and
specialization on smaller prey (resulting in shorter shel-
tering events, as digestion is faster with smaller prey
items). In particular, Species 3 behaves similarly to cer-
tain pit vipers (family Viperidae): ambush predators,
with low energetic requirements, infrequent feeding
events, as well as a reduced movement rate and home
range size compared to larger snake species [48, 49].

We have attempted to capture the diversity of reptile
movements, but not all species will fit within these ar-
chetypes; many species will occur between these types,
and some cases exist where movement closely matches
mammalian patterns (i.e., limited long stationary periods,
with periodic daily movement and foraging bouts). Each
archetype had a unique set of state-dependent parame-
ters and transition probabilities with the same three be-
haviour states: “sheltering” (state 1), “moving” (state 2),
“resting” (state 3). “Sheltering” behaviour includes long
stationary periods, reflecting periods of prolonged diges-
tion. “Moving” includes discrete periods of movement
(species-dependent step lengths), indicative of searching
behaviour for prey, mates, and shelter sites. “Resting”
covers regular, but not prolonged, stationary periods
driven by the circadian rhythm; resting behaviour also
allows for smaller nocturnal movements distinguishing it
further from sheltering. The state-dependent data
streams included step length (I,) and turning angle (6,),
which we generated from Gamma and von Mises distri-
butions, respectively. We selected Gamma parameters to
strictly reflect the monotonically decreasing density
function for state 1 and 3 (“sheltering” and “resting”),
and a density function with mode distinct from zero for
state 2 (“moving”). Then we adjusted Gamma (y, o) for
state 2 between each archetype and set it on a relative



Silva et al. Movement Ecology (2020) 8:43

scale to the simulated landscape to reflect their distinct
movement patterns (e.g., long versus short moves). The
von Mises distribution has its mean centered around
zero (a ~ 0) but with very weak concentration (k ~ 0.01)
to reduce any strong persistence in movement direction.
The simulations included a spatially correlated covariate
for state 2, to reflect habitat preferences, while states 1
and 3 followed a cosinor function, to reflect cyclical pat-
terns of long-term sheltering (state 1) and circadian
rhythms (state 3). To simulate individual variation and
movement in a heterogeneous landscape, we generated a
random neutral landscape with fractal Brownian move-
ment, using the NLMR package [50]. For further details
on these simulated species, as well as their specific step
lengths, turning angles and transitional probabilities, see
Additional File 1.1.

After creating the full simulated data set (regime 1),
we generated six subsets of the data to represent various
field sampling regimes (regime 2—7): four locations per
day, two locations per day, one location per day, two lo-
cations per week, one location per week, and one loca-
tion per month (Fig. 1). For each subset, we assumed a
consistent regularly scheduled sampling protocol limited
to the species’ activity periods.

The autocorrelated nature of tracking data poses diffi-
culties for estimator methods that assume independence
between points, namely KDEs. Attempting to remove
autocorrelation to fit these assumptions can reduce the
biological relevance of the space-use estimates [51], but
it is still advocated in reptile spatial ecology studies [52,
53]. We investigated the temporal autocorrelation
present in our simulated dataset to determine whether
our coarser sampling regimes complied with KDE inde-
pendence assumptions. Other than less frequent track-
ing, autocorrelation may be reduced by removing
repeated locations, a method of particular relevance for
reptiles that exhibit long term sheltering. We considered
this special case —sampling regime 8— where only animal
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relocations are included in the area estimation, by using
the four location per day sampling regime as its starting
point and then removing data points where the animal
was stationary. We described the autocorrelation in the
simulated data using the ctmm package’s variogram
functionality [54], and plotted the minimum number of
days until the autocorrelation became insignificant with
raincloud plot code from Allen et al. [55].

Estimator methods

Minimum convex polygon

We calculated the Minimum Convex Polygon (MCP) for
each simulated individual that created the smallest area
convex polygon containing all animal locations. We used
the 95% MCP, which removes outlying points on the as-
sumption that these represent exploratory movements
and thus not part of the home range (as originally de-
fined by [3]) or, in our case, representative of within-
sample space-use. The MCP method has long been
lauded as a way of maintaining comparability and histor-
ical consistency with previous studies [56], yet has well
documented issues: extreme sensitivity to sampling size
and tracking duration [57], and overestimated boundary
delineation [58], with the inclusion of areas that the ani-
mals never use [59, 60]. However, Row and Blouin-
Demers [18] argued that MCPs are preferable to kernel
density estimators specifically for herpetofauna, and
MCPs’ use persists for comparisons in reptile telemetry
studies [61]. An additional and considerable limitation of
MCPs is that they do not create a probabilistic
utilization distribution.

Fixed kernel home range

Fixed KDE home ranges rely on a smoothing parameter
(bandwidth, /) to generate a utilization distribution.
Bandwidth selection for KDE can dramatically influence
area estimation [62], and thus we included two band-
width selection algorithms, reference bandwidth (4,

-
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and Least-Squares Cross-Validation (LSCV), for our
comparisons. Both bandwidth selection methods are fre-
quently used in reptile VHF studies, but potentially
flawed for herpetofauna [18]. The /,,s method tends to
overestimate areas while LSCV tends to underestimate
[63]. In general, fixed KDE home ranges are not accurate
when using autocorrelated data regardless of bandwidth
selection function [64].

Dynamic Brownian Bridge Movement Model

Dynamic  Brownian Bridge Movement Models
(dBBMMs) provide occurrence distributions based on
animal movement paths [20]; from these occurrence dis-
tribution we can draw confidence regions as estimates of
potential animal movement pathways and space-use dur-
ing the study period. The method accounts for temporal
autocorrelation, so it requires all locations to be time
stamped. In addition, dBBMMs incorporate error associ-
ated with each triangulated location, which we kept con-
sistent across species and regimes (at 5m) for the
following reasons: (1) neither MPCs nor KDEs account
for location error, so the evaluation of the impact of this
metric would be solely on one method and not effective
for comparison purposes; (2) location error associated
with VHF telemetry is extremely variable, dependent on
macro and micro-habitat characteristics as well as track-
ing protocols (which we are not assessing); and (3) we
wanted to account for cases where GPS error can be
greater than step length (e.g., vipers, small lizards). The
dBBMM method also allows calculation of Brownian
motion variance (¢°m), which can help researchers de-
termine how movement trajectories can occur due to a
species’ behaviour and activity [20]. Motion variance can
help detect breeding and foraging behaviour in reptiles,
even with VHF telemetry data [31].

Method comparison

To compare the error generated from each estimator,
we calculated the overlap with the theoretical “true
movement pathway” for each individual (i.e., the true
path the animal used during the study period). We gen-
erated an individual’s “true movement pathway” by cre-
ating a buffer around all the simulated movement points
with a width of two-times the step length intersect from
each simulated species’ movement state (40-m for Spe-
cies 1, 20-m for Species 2, 10-m for Species 3). This pro-
vided a conservative confidence region (excluding the
impact of habitat) around the trajectory, but more gen-
erous and biologically sensible than only using simulated
straight line movement pathways. For each area estima-
tion, we calculated the commission (Type I, false posi-
tive) and omission (Type II error, false negative), using
the 95% contours for MCP, KDE and dBBMMs. We
used the 95% contours, as this is the standard level used
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in most spatial ecology studies, and prevents estimations
from being overly impacted by outlying movements. We
then calculated the F-measure [2/(recall ! + precision” by,
where precision (also known as the positive predictive
value) is the area of true positives over the area of true
negatives and positives, and recall (also known as sensitiv-
ity) is the area of true positives over the area of true posi-
tives and false negatives. F-measures provide a balanced
metric of false positive and false negative, while being in-
sensitive to true negative rates [65]. The values of F-
measures reflect model accuracy; a low F-measure indi-
cates low model accuracy, and an F-measure of 1 indicates
excellent precision and recall.

We explored the relationship between methods, re-
gimes, and F-measures using a Bayesian generalized lin-
ear mixed model with the brms package [66]. We
specified a model set for each species, with F-measure as
our response variable following a beta distribution (as it
is bound between 0 and 1), with individual as a random
effect to account for individual variation, and a varying
slope for the effect of method. We excluded regime 8
(four locations a day, relocations only) as this sampling
regime was not systematic. We ran models with six Mar-
kov Chain Monte Carlo (MCMC) chains, each with
6000 iterations (1000 burn-in iterations, thin =1), and
we set A to 0.99. We fitted each model with half-Cauchy
weakly informative priors [67]. We checked model con-
vergence by inspecting trace plots and R values [66],
assessed model fit visually via posterior predictive diag-
nostic plots, and evaluated model performance using
leave-one-out cross-validation [57] and Bayesian R?. For
further details on model selection and validation, see
Additional File 1.2.

We compared the special case of regime 8 (like regime
2 but only relocation points) to the original regime 2 in
its own Bayesian model set; this allowed us to evaluate
the impact of removing stationary locations as a method
of reducing data autocorrelation. Additionally, for this
special case we only compared the best performing KDE
bandwidth (LSCV) and dBBMMs.

We wrote code for R v.3.5.2 [68] using R studio
v.1.2.1335 [69], and made all data and code available at
https://doi.org/10.5281/zenod0.3660795.

Results

Simulated animal movement and tracking data

The complete dataset for each simulated individual con-
sisted of n=17,521 data points for a full year, with 30-
min time steps (regime 1). Each regime progressively
lowered the available data (1"°® * = 1460 data points, 7"
=730, n'® * =365, n"*® =104, n"® ° =52, n"*¢ 7 =12),
while regime 8 varied for each species and individual
due to the variability in sheltering and resting behaviour
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(n°Pecies 1 — 5189 +204 data points (mean + SD);
n®PeCies 2 = 3501 £1099; n*P'** * = 3873 +573). Vis-
ual validation of movement patterns matched with
reported patterns in the literature (e.g., [11, 28, 31,
70-74]), and the predicted patterns of the three ar-
chetypes (Fig. 2).

As expected, all simulated species and individual data-
sets showed strong autocorrelated structure. Time until
insignificant autocorrelation far exceeded even the
coarsest tracking regime tested (regime 7, i.e., 1/month),
indicating that all tracking regimes breach the assump-
tion of independence required for KDE methods (Fig. 3).

Method comparison: omission vs. commission

Overall, coarser tracking regimes lead to greater % error
when compared to the true movement pathway. How-
ever, the balance between commission (Type I, false
positive) and omission (Type II, false negative) is incon-
sistent and varies between estimation methods (Fig. 4).
There is also a general trend towards commission error
when estimating areas because omission error is
bounded between 0 and 100%.

Minimum convex polygon

Minimum convex polygons were the only method that
showed a constant offset between omission and commis-
sion, as one increases the other decreases nearly 1:1. In
addition, MCPs were the only method that decreased
their commission error as tracking regime became tem-
porally coarser. At frequent tracking regimes, MCPs only
introduced minimal omission error, but their starkest
failure is in their simple shape leading to the greatest
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commission error at highest resolution tracking regime
(Figs. 4, and 5).

Fixed kernel home range

The fixed kernel density estimation using /,.s smoothing fac-
tor was by far the worst estimator for commission error. At
low resolution tracking regimes, the >400% overestimation
leads to near complete loss of area edge fidelity (Fig. 4). Due
to this heavy emphasis on generous area estimation KDE 4,
produced negligible omission error.

By comparison KDE LSCV produced consistently
lower commission error at higher resolution tracking re-
gimes, but once the regime was once a week or coarser
LSCV commission error spikes (up to 300% overesti-
mation). LSCV consistently performed worse in terms of
omission error when applied to tracking regimes with
multiple tracks per day. Additionally, the LSCV algo-
rithm frequently failed to converge, i.e., could not deter-
mine the optimal smoothing value (68.5% of all LSCV
home ranges failed). Only regime 7 converged consist-
ently; the inclusion of more data exacerbated conver-
gence failure (regime 1-4, 100%; regime 5, 43.8%;
regime 6, 33.3%). Using only relocations reduced conver-
gence failures (regime 8, 2.08%) compared to its closest
parallel regime (regime 2, 100%). For both KDE
methods, omission and commission error variability (dis-
played as SE on Fig. 4) increased as tracking regime be-
came coarser.

Dynamic Brownian Bridge Movement Model
Overall dBBMMs performed best by accurately repre-
senting the true movement pathways. The method
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Fig. 2 Example two-month period illustrating how step distance (m) and its frequency differs between our three species archetypes

35 42 49 56
Days




Silva et al. Movement Ecology (2020) 8:43

Minimum days to
insignificant 55
autocorrelation
°
200
°
°
°
1504 [
[ Y Y
° °
0o o
}. % %
o8 ) .
° °
100 o QZg& °F
P o ° & °
o
° O Qo ®
° 3 ® o0
°
[} o [}
[}
501 ° °
°
® o
0
Spec'ies 1 Spec'ies 2 Spec'ies 3

Fig. 3 Minimum number of sampling days until the autocorrelation becomes insignificant and data points can be considered independent

A
Percentage Method
commission , | o 4gaMM
error
KDE href
KDE LSCV
3001 o= MmcP
2001
— s
/
O =" = = = - mm Em EE Em EE o . o o o e . o -
B Of= = = = = e e e e e e e = = = - =
Percentage )¢
omission
error 20+ i —
ol {/ \.
60
801
100
Reg.1 Reg.2 Reg.3 Reg.4 Reg.5 Reg.6 Reg.7
(2/hr) (4/day) (2/day) (1/day) (2/week) (1/week) (1/month)
Regime

Fig. 4 Percentage error from the true m

(Type II, false negative). Error bars represent standard error (SE) of means across species (3) and individuals (96). Note, panels a and b have
different scales for error because omission error cannot exceed 100% of the true movement pathway

ovement pathway using 95% contours. a Commission error (Type |, false positive), and b omission error




Silva et al. Movement Ecology (2020) 8:43 Page 8 of 13
p
Reg.2 (4/day) Reg.4 (1/day) Reg.6 (1/week)
Northing dBBMM
12000
8000 1
4000
KDE
12000 href
8000 1 Error
4000 1 . Commission
KDE . Omission
120001 Lscv True Movement Pathway
8000 1
4000
MCP
12000 A
8000 1
4000 1
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false negative; blue areas), and omission (Type |I, false positive; red areas) error compared to the true movement pathway (grey areas). All
contours shown are produced from the 95% contours. Example individuals from species 2 and 3 are in Additional file 1.3

Easting

produced low commission error levels, matching KDE
LSCV performance (Fig. 4). Unlike LSCV, dBBMMs com-
mission error remained more stable and lower when ap-
plied to coarser tracking regimes. Only MCPs produced a
comparative level of commission error at the coarsest
tracking regimes, but dBBMMs kept some semblance of
shape fidelity and connectivity (Fig. 5). Unlike other
methods, dBBMM error remained low and balanced be-
tween omission and commission, never exceeding 75%.

Special case of regime 8

Tracking regime 8 cannot be directly compared to the
other regimes as the structure of the tracking is differ-
ent. A fairer comparison is between regime 8 (four loca-
tions per day, relocations only) and regime 2 (four
locations per day). Like all other regimes, regime 8 fails
to remove autocorrelation to insignificance (Fig. 3); how-
ever, it did improve the performance of KDE LSCV esti-
mation despite still breaching the fundamental
independence assumption (Figs. 5, 6). The removal of re-
peated stationary points prevented the LSCV smoothing
from grouping too tightly to point concentrations (ie.,
long-term shelter sites), ultimately countering the ten-
dency towards omission error for LSCV. On average,
dBBMMs performed very similarly and balanced the
omission and commission well (Fig. 4). The dBBMMs

had the added advantage of assuming serial dependence
of points and, unlike LSCV, performed well when pro-
vided low or high quantities of data.

Method comparison: F-measures

The Bayesian models converged and performed well for
all three species, with R values ~ 1.00 (Additional File 1.2),
and R® values indicating considerable predictive power
(Species 1: Bayesian R” = 0.960, 95% Crl: 0.958-0.962; Spe-
cies 2: Bayesian R”=0.946, Crl: 0.755-0.786; Species 3:
Bayesian R’ =0.905, Crl: 0.897-0.911). Overall, our best
models showed an interaction effect of methods and re-
gimes on F-measures; all species had a non-zero positive
relationship between F-measures and regimes, with higher
estimates for dBBMM and KDE LSCV, while both MCP
and KDE /. showed considerably worse F-measures
(Fig. 7). However, Species 1 area estimations were associ-
ated with lower F-measures, suggesting that the potential
space-use and movement pathways of species with high
movement and long periods of sheltering are harder to
model than those with more stable movement patterns.

Discussion
Both MCPs and KDEs produced high error rates and
failed to properly reflect simulated reptile movement
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Easting

pathways, which is particularly concerning because of
their widespread use. While originally intended for GPS
telemetry, we found that dBBMMs performed well
across a range of lower fix rates sampling regimes, and
for our three archetypical reptile species. In fact, al-
though Brownian Bridge estimators become singularly
defined upon the observed movement pathway for high-
frequency GPS data [12], they provide a fairly accurate
and stable confidence region for coarse, low-frequency
VHF datasets. Particularly for species without range resi-
dency, or with short duration studies, where newer
methods such as the autocorrelated kernel cannot be ap-
plied [12, 75], or when the chosen research questions
focus only on within-sample interpolation. Both KDE
smoothing parameter selection techniques produced
high error rates with lower frequency fix rates when
compared with dBBMMs, casting doubt on the ability of
KDEs to provide comparable estimates between studies
focusing on within-sample space-use or movement path-
ways; particularly if these studies employ different track-
ing protocols.

Our low-resolution tracking regimes generated a varied
number of data points, ranging from only 12 to at most
1460 fixes, representing 0.07—-8.30% of the initial full data
set of locations (i.e., regime 1; a location every 30 min). The
number of fixes can dramatically impact area estimates,
and thus Seaman et al. [76] suggested a minimum of 30-50
locations before applying KDEs, while Girard et al. [77] sug-
gested an even more stringent criteria, recommending at
least 300 locations. Whereas regime 7 (one location per
month; 7 = 12) failed the first criteria, regimes 5-7 (at least
two locations per week or coarser; n<104) all failed to

meet the stricter requirements, indicating that common
reptile tracking regimes fail to meet the initial assump-
tions of KDEs. Removing non-relocations (regime 8)
also reduced fixes by 70.4—80.0%, worsening area esti-
mates, while ultimately failing to properly address the
additional assumption of independence required for
KDE methods. Furthermore, this fix diverts attention
from what should be the ultimate goal of any estima-
tion method—i.e., obtaining a representative sample of
locations from a targeted individual in accordance to
the chosen research question— instead of simply ensur-
ing data independence [19], for either within-sample
interpolation or beyond-sample extrapolation.

The use of MCP and KDE #/,, produced large com-
mission (false positive) errors, which if carried forward
are liable to impact movement behaviour and space-use
inferences [19, 78]. By comparison, both KDE LSCV and
dBBMM estimations fared better, although LSCV failed
to produce F-measures comparable to dBBMMs under
low-resolution tracking regimes. As a fix-frequency inde-
pendent method [20], dBBMM:s performed most consist-
ently across sampling regimes with the lowest error
rates, even in low-resolution datasets, improving on both
traditional MCP and fixed KDE methods. To match
dBBMM performance at the sparsest regimes (n=12)
KDEs required four times the data. Maximizing per-
formance under low-resolution regimes is critical for
VHF studies because the data are time, effort, and cost
intensive [79]. Furthermore, dBBMMs require no a
priori knowledge of an animal’s movements (necessary
to identify the correct smoothing bandwidth for KDEs),
and can be put to use with current telemetry practices
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or to re-analyse previously collected data. The dBBMM
method is easily compatible with low-resolution data
from herpetofauna spatial ecology studies still reliant on
VHE, representing a cheap and immediate alternative to
long-term high-resolution tracking methods (GPS) that
remain elusive for herpetofauna [30, 80]. Presently, ap-
plications of dBBMMs to reptile movement data are still
restricted to a single field site [31, 74].

Although KDE LSCV came closest to performing com-
parably with dBBMMs at high resolutions, beyond failing
the initial point independence assumption, this smoothing
parameter failed to converge. In other words, the LSCV
method could not identify the optimal smoothing factor,
making the estimations unstable and unusable (supporting
findings from [63]). Non-convergence issues are com-
pounded by large numbers of identical locations or very
tight clusters (ie., high site fidelity), which we did not

explicitly simulate. While ignoring side fidelity can inflate
LSCV performance [62, 63, 76, 81], we demonstrate that
dBBMMs still performed similarly or better than LSCV
even in these suboptimal conditions. Only regime 8 (with
removed non-relocations) improved KDE LSCV while
hindering dBBMMs. However, as we previously men-
tioned, this fix compromises the biological relevance of
area estimates as the autocorrelated nature of animal
movement is inherently biologically relevant and we
should not seek to eliminate the structure of our data [19,
51]. Explorations using real GPS data also show consistent
problems with KDE LSCV omission error, leading to se-
vere undersmoothing, and frequent convergence failures
[63]. In addition, Jones, Marron, & Sheather [82] found
that LSCV-smoothed utilization distributions had un-
acceptable variability, that can further undermine compar-
isons between individuals, populations, or studies.
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Archetypal species movement characteristics influ-
enced our estimates (MCP, KDE and dBBMM). The ac-
tive hunter (Species 1), with its sporadic long-distance
moves, had lower F-measures and higher error rates
than the ambush predators (Species 2 and 3). Essentially,
greater movement capability led to greater uncertainty
concerning movement pathways (i.e., larger confidence
region estimates from dBBMMs). When comparisons
between species are required, researchers should explore
how regime and estimation method affect comparisons.
Ideally, researchers should be able to access the original
data from previous studies to confidently compare be-
tween species. We encourage greater use of open data
repositories in reptile studies (e.g., Movebank). Com-
pared to other taxonomic groups, terrestrial reptile data
on Movebank is currently lacking (7 species, 3 testudines
and 4 snakes), out of over 950 species present on
Movebank).

Reptile movement is unique compared to other taxo-
nomic groups, as long-term sheltering essentially leads
to a highly zero-inflated movement dataset, which intro-
duces error in area estimates by under- and over
smoothing with traditional estimators. While dBBMMs
provide a more direct modelling approach for move-
ments —a critical component of assessing habitat use
[83]- they are limited to within-sample interpolation
(i.e., not home range as defined by [3]). Other methods
that tackle space-use in the sense of home range,
such as the autocorrelated KDE [12], are more appro-
priate if the research question calls for the estimation
of long-term area requirements or beyond-sample ex-
trapolation. Within-sample space use and movement
estimates can also be further enhanced by methods
incorporating landscape (e.g., dBBMM with covariates
[84]) or behaviour [85].

Conclusions
Ultimately, accuracy of area estimates will be dependent
on resources, tracking frequency and study duration
[86], all directly impacting the viability of proposed tel-
emetry studies. A clearly defined question [87] enables
researchers to identify potential trade-offs in the right
context, and should be considered during study design
with specific consideration of the area of interest
(within-sample space-use and movement pathways ver-
sus home range) and the appropriate estimation method.
There will always be spatial uncertainty, but it should be
minimized with reference to the chosen research ques-
tion and any targeted behaviours [88, 89]. Better estima-
tors are an inexpensive way to optimize returns from
tracking data compared to technological advances or in-
creasing fieldwork.

Our work concurs with previous studies e.g., [90] fur-
ther reiterating known problems with both MCP and
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KDEs despite claims of continued use to maintain “com-
parability”. We find this deeply flawed, particularly in
cases where tracking regimes or estimators differ, as they
can produce dramatically different error rates. Instead,
we demonstrate dBBMMs are more stable and accurate
representations of movement pathways and thus suitable
for proper comparisons. However, as an occurrence dis-
tribution method, dBBMM:s should be applied only with
the appropriate research questions (e.g., evaluating
movement behaviour, pathways, and space-use within
the study period). The information provided here can
help optimise reptile spatial ecology by yielding more ac-
curate and reproducible estimations.
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