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Abstract

Background: Animals respond to environmental variation by changing their movement in a multifaceted way.
Recent advancements in biologging increasingly allow for detailed measurements of the multifaceted nature of
movement, from descriptors of animal movement trajectories (e.g., using GPS) to descriptors of body part
movements (e.g., using tri-axial accelerometers). Because this multivariate richness of movement data complicates
inference on the environmental influence on animal movement, studies generally use simplified movement
descriptors in statistical analyses. However, doing so limits the inference on the environmental influence on
movement, as this requires that the multivariate richness of movement data can be fully considered in an analysis.

Methods: We propose a data-driven analytic framework, based on existing methods, to quantify the environmental
influence on animal movement that can accommodate the multifaceted nature of animal movement. Instead of
fitting a simplified movement descriptor to a suite of environmental variables, our proposed framework centres on
predicting an environmental variable from the full set of multivariate movement data. The measure of fit of this
prediction is taken to be the metric that quantifies how much of the environmental variation relates to the
multivariate variation in animal movement. We demonstrate the usefulness of this framework through a case study
about the influence of grass availability and time since milking on cow movements using machine learning
algorithms.

Results: We show that on a one-hour timescale 37% of the variation in grass availability and 33% of time since
milking influenced cow movements. Grass availability mostly influenced the cows’ neck movement during grazing,
while time since milking mostly influenced the movement through the landscape and the shared variation of
accelerometer and GPS data (e.g., activity patterns). Furthermore, this framework proved to be insensitive to
spurious correlations between environmental variables in quantifying the influence on animal movement.

Conclusions: Not only is our proposed framework well-suited to study the environmental influence on animal
movement; we argue that it can also be applied in any field that uses multivariate biologging data, e.g., animal
physiology, to study the relationships between animals and their environment.

Keywords: Behaviour classification, Collective movement, Cows, Foraging, Group dynamics, Lactation, Machine
learning, Random forest regression, Resource availability, Support vector machine
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Background
Analysing animal movement is fundamental to ecol-
ogy, because movement is arguably the most import-
ant way for animals to respond to their environment
[1]. Quantifying the environmental influence on ani-
mal movement is therefore an important practice in
ecology [2, 3]. As animal movement is inherently
multifaceted, with aspects related to the movement of
the animal through the landscape and aspects related
to the movement of body parts, the movement
process cannot be described with simplified descrip-
tors without loss of information. On the contrary, a
plethora of emergent patterns can be identified
through these multifaceted movement descriptors,
e.g., activity types (such as walking, foraging or rest-
ing) and collective movement properties [4, 5].
Technological advancements in the field of biologging
currently allow for data on animal movement to be
acquired at finer temporal and spatial scales and in
increasing volumes, e.g., data on animal movement
speed, movement path tortuosity, tri-axial acceleration
of body parts, and heart rate patterns can now rela-
tively easily be acquired [6–8]. These technological
advancements provide opportunities to increase eco-
logical understanding by analysing the full multivari-
ate complexity of animal movement [7, 8]. This
multivariate complexity of movement is not fully used
in recent studies to infer the environmental influence
on animal movement. Instead, quantifying the envir-
onmental influence on animal movement is currently
often done through relating simplified movement de-
scriptors, e.g., animal distributions, net displacements,
diffusion rates, or distributions of step lengths and
turning angles, to a suite of environmental variables,
e.g., through canonical analyses, linear mixed models,
semivariance approaches, diffusion approximations,
step-selection functions, hidden Markov models, or
state-space models [2, 3, 9–13]. Many of these ap-
proaches were not designed specifically for animal
movement data, but are approaches that function
generally well in quantifying the relationship of inde-
pendent variables with one or several dependent vari-
ables. Although the simplification of movement
descriptors prior to analyses is a useful practice to ac-
quire ecological understanding, it almost necessarily
leads to a reduction in the quantified environmental
influence on multivariate animal movement as this in-
fluence may not become fully apparent in the simpli-
fied movement descriptors. Even more so considering
that there are often multiple behavioural phenotypes
that individuals of the same species can produce in a
given set of environments [14], which can also be in-
fluenced by different internal states between individ-
uals [1]. This consequently challenges the way that

the analysis should be approached, as a multivariate
analytic framework is required to quantify the overall
influence of environmental variables on fine-scale
multivariate animal movement data.
Data-driven machine learning methods provide a

toolset to be able to model multivariate animal move-
ment data and have been adopted by many animal
ecologists over the past years [15, 16]. These machine
learning methods have been used to automatically de-
tect and classify animal species in images [17], to
track moving animals in videos [18], to follow animal
body postures and track body parts in videos [15], to
flag when animals become sick using animal-mounted
biologging sensors and videos [19], and to classify
animal activities from biologging sensors [16]. Al-
though machine learning has proven to be useful for
movement ecology, it is often only used as a tool to
transform raw data (e.g., images, videos, accelerometer
readings) into informative data (e.g., species labels,
animal locations, animal activity labels) [15, 16]. After
these informative data have been generated, ecologists
often use more traditional statistical methods to relate
these data to environmental variables [2, 3, 7]. Ma-
chine learning has certainly generated ecological un-
derstanding via this way, but we posit that machine
learning can also be used to acquire ecological under-
standing by directly relating animal movement data to
environmental variables.
Here we propose a machine learning-based analytic

framework, based on existing methods, to quantify
the overall influence of an environmental variable on
multivariate animal movement. After introducing the
general framework, we demonstrate the usefulness of
this framework with a case study about the influence
of grass availability, time since milking, and wind
speed on cow movements. Apart from quantifying the
degree of coupling between the environment and cow
movements, this case study shows that applying this
framework can yield ecological insights. Finally, we
discuss possible usages and constraints of this analytic
framework. We contend that this framework contrib-
utes to the toolbox of ecologists studying the relation-
ship between the environment and animal movement,
behaviour, and physiology.

Methods
Our analytic framework quantifies the influence of an
environmental variable on animal movement by utiliz-
ing the multivariate richness of movement data. In-
stead of building a model to predict a simplified
animal movement descriptor from a set of environ-
mental predictors, i.e., the route of causal inference,
we turn this around and build a model to predict an
environmental variable from a large number of animal
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movement variables. By using animal movement
variables, the model of this framework predicts a per-
ceived environmental variable by the animal [6, 20].
Although predicting an environmental variable from
movement data is the goal of the model, it is an
intermediate step of the framework in order to quan-
tify environmental influence on animal movement. In
this framework it is key to use as many informative
movement variables as possible, which could be
meaningful human-constructed ecological (e.g., vari-
ables related to multiple classified animal activities),
mathematical and/or physical variables, or abstract
variables from an automated (deep learning) feature
extraction algorithm. When effort is made to extract
as many informative variables as possible from the
animal movement data, chances are maximized that
most of the variation of the environmental variable
under scrutiny that is present in the data is captured.
Furthermore, instead of creating the model as the end
product during the analysis, the environmental vari-
able should be predicted on a separate test dataset as
the final step of the analysis. This follows from a
data-driven and machine learning philosophy, in
which complex multivariate models can be built that
are not overfitted and therefore generalize better to
new datasets. When distinguishing the train and test
dataset, the test set used in the prediction of the en-
vironmental variable needs to be from a different
temporal range than the train set that is used in the
model building phase, due to autocorrelation in ani-
mal movement data that can otherwise cause the
model to overfit [21]. The range of values in the test
set of environmental variables (whether or not these
are under scrutiny) should be comparable to the
range of values in the train set, to prevent incorrect
extrapolation. After generating model predictions on
the test set, the coefficient of determination (R2)
quantifies the fit of this predicted environmental vari-
able from animal movement data to the measured en-
vironmental variable on a known scale and can thus
be considered a metric on how much of the variation
in the environmental variable influenced animal
movement in a multivariate fashion (see Add-
itional file 1) [22]. The measure of fit of the null
model (i.e., no environmental influence) should be
chosen depending on the algorithm that is used,
which is R2 = 0 for algorithms that are able to always
predict the mean of the response variable (e.g., Sup-
port Vector Regression and Random Forest Regres-
sion), even when the input variables are white noise.
The measure of fit of this null model will then form
the baseline value for which there is a 0% environ-
mental influence and an R2 of 1 can always be inter-
preted as 100% environmental influence. Of course R2

should only be used as the measure of fit when mod-
elling a continuous environmental response variable.
With a discrete environmental variable, a classification
approach should be undertaken, which is outside the
scope of this study. However, to compare the influ-
ence of different environmental variables with each
other fairly, the same measure of fit should be used.
In order to demonstrate the usefulness of the pro-

posed analytic framework, we applied this framework
to a case study about the influence of resource avail-
ability (here grass biomass), time since milking, and
wind speed on the movement of eight dairy cows in a
pasture (Fig. 1). When animals are facing resource
depletion, movement characteristics (through the
landscape and of body parts), and emergent patterns
like group (herd) characteristics, and time allocated to
specific activities (e.g., foraging) often change, because
animals need to invest more time and/or energy in
searching for and acquiring resources [23, 24]. Cows
in a pasture are a good model for such a case study,
because this provides a relatively homogenous for-
aging arena. Time since milking is another variable
that could substantially influence the movement of
dairy cows, because it has been shown that the lacta-
tion stage of cows (a variable that is intuitively linked
to time since milking regarding its effect on cow
behaviour) influences the relative distribution of their
activity patterns [25, 26]. Wind speed provided a
good test case for our framework, because it was
moderately correlated (r = 0.37) with grass biomass.
We expected this correlation to be spurious and the
effect of wind speed on cow movement to be negli-
gible, because conditions were mild during the experi-
ment (0–9 m s− 1).
The exact methodological approach that we describe

for this case study is one possible implementation of
our proposed analytical framework (Fig. 1). However,
there are numerous possible implementations of this
framework for other studies, which may be influenced
by the problem statement, experimental setup, animal
movement sensors, environmental data types, data
quantity, etc. However, the property that all imple-
mentations should have in common is that the envir-
onmental influence on animal movement is quantified
by predicting environmental variables from movement
descriptors in a data-driven (viz., machine learning)
approach, which uses the coefficient of determination
as a measure to quantify this influence. This frame-
work is fully based on existing machine learning
methods that are already widely used in movement
ecology [15, 16]. For example, the classification of
animal activities from biologging data are often per-
formed in a similar way, where movement features
are extracted from the data and linked to known

Eikelboom et al. Movement Ecology            (2020) 8:40 Page 3 of 18



(supervised) or unknown (unsupervised) output values
via a data-driven algorithm [4, 16, 27, 28]. In this
framework we apply the same principle, but in a
different setting, to predict the environment from
multivariate animal movement. Furthermore, the in-
terpretation of the coefficient of determination is
atypical as well, where this measure is often used in
movement ecology as solely a measure of model fit
without an ecological meaning.

Data collection
For this case study eight adult female Holstein-Friesian
dairy cows were kept in controlled pastures that were
small enough so that foraging lead to resource deple-
tion over the course of several days. The experiment
ran from 25 April until 11 May 2017. During the
experiment, the cows’ movements were recorded con-
tinuously with e-Track neck collars (Noldus Innova-
tionWorks, Wageningen, Netherlands), containing an
EGNOS-augmented GPS receiver and a tri-axial accel-
erometer sensor. The cows were continuously kept on
pasture at Carus animal facility in Wageningen,
Netherlands (51°59′8″ N, 5°39′11″ E), and could move
freely around as a single group during the experiment.
Over the course of this period, we relocated the cows

between three 0.32 ha pasture plots (sequentially five,
six and six consecutive days in each plot). At every pas-
ture switch the cows were housed inside the Carus fa-
cility for one night where they were offered fodder, so
that they were not hungry at the start of a new pasture
plot session. Furthermore, the cows were taken inside
for milking and feeding every morning between 7:30
and 8:30 CEST and solely for milking every afternoon
between 16:30 and 17:00 CEST. The time the cows
spent on pasture was short enough to assume that the
pasture did not increase in grass quality because of re-
growth after grazing and only decreased in grass avail-
ability [29]. The short duration of the pasture sessions
(approximately 1 day longer than when a commercial
farmer would have moved the cows, as judged by the
farm manager) ensured that the cows were not hungry,
but only had to put more effort into foraging when
time progressed. Furthermore, the collaring process did
not put the cows under noticeable stress, more so be-
cause they were accustomed to continuously wearing a
neck collar.
The sensors in the cows’ neck collars recorded GPS

and accelerometer data during the experiment. The data
were stored with a millisecond-accurate timestamp on a
local SD memory card, which was replaced every 1 to 5

Fig. 1 Flow chart of the summarized methodological approach for the case study
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days together with the battery. GPS data were stored on
the SD card with a 1 s interval. The accelerometer data
were sampled with a variable frequency of 25–500 Hz,
which were later down-sampled and linearly interpolated
to a constant 32 Hz signal. Both the GPS and the accel-
erometer did not record data during some hardcoded
multi-hour periods of inactivity, which were variable in
duration and time of day, to save battery power. How-
ever, the time between GPS fixes was exactly 1 s in more
than 99% of the cases. The precision of the GPS fixes
was high, with 98% of the fixes having a Horizontal Dilu-
tion of Precision (HDOP) of less than two (a dimension-
less unit; two is considered “excellent” precision). All
GPS fixes with an HDOP of more than five, which were
0.5% of all fixes, were considered to be untrustworthy
and filtered out of the final dataset. We also tested the
accelerometer data for precision by placing the sensor
on a stable, non-moving surface while it recorded for
several minutes. The fluctuations in the recorded signal
of all three accelerometer axes were small, 0.06 m s− 2

between the lowest and highest value, and were consid-
ered negligible and thus ignored.
Activity (or behaviour) observations were conducted

on work days from 25 April to 9 May 2017. A single per-
son visually classified the activities using focal-animal
sampling with a pre-defined ethogram (Table 1). All ac-
tivity types in the ethogram (grazing, walking, standing,
standing while ruminating, lying, lying while ruminating)
were mutually exclusive. Each individual cow was ob-
served continuously for 10 min in the morning (10:00–
13:00 CEST) and 10 min in the afternoon (13:00–17:00
CEST), in random order, resulting in a total observation
time of 1760 min. During the observations, the start and
end times of each displayed activity type from the etho-
gram were recorded. We conducted these observations
to acquire annotations for an activity classification
model. Representative acceleration plots of the three
axes for the different activity types are provided (see
Additional file 2).
We measured resource availability as dry matter

grass biomass in kilograms per hectare, excluding
stubble biomass. We determined time-varying biomass
levels using a combination of field-measured biomass

levels at specific time points, satellite-based biomass
estimates derived from the Normalized Difference
Vegetation Index (NDVI), and modelling of grass dy-
namics (see Additional file 3). Wind speed (m s− 1,
mean speed 10 m above ground) were recorded at 10
min resolution during the experiments with a weather
station on a grass pasture at the Veenkampen,
Wageningen, Netherlands. This weather station is lo-
cated one kilometre west of the pasture plots used
for the experiments.

Data processing
We used the pre-processed 32 Hz, tri-axial accelerom-
eter signal as input for the accelerometer feature
extraction. First, we converted all the records in the
three-dimensional accelerometer dataset to 21 dimen-
sions using multiple geometric transformations, i.e.,
resultant vectors, angles, solid angles, volumes and areas
(Table 2). These dimensions constitute all geometric
transformations of angles and distances in one, two and
three dimensions. Considering that tri-axial accelerom-
eter readings describe the movement forces in three di-
mensions, geometric transformations make sense from a
physics perspective. More transformations could be con-
sidered, but these may lack to provide additional infor-
mation to the feature set. Second, we divided the
resulting dataset into non-overlapping time windows.
We tried all window sizes in the range of 1 until 30 s
and optimized this window size as a hyperparameter re-
garding the activity classification performance, where 3 s
turned out to be the optimal window size (see Add-
itional file 5). For every time window we computed mul-
tiple statistics per accelerometer dimension per cow, e.g.,
mean, standard deviation, quantiles and Fast Discrete
Fourier Transform (FFT) parameters (Fig. 2). These sta-
tistics were chosen to provide summary statistics about
both the time-invariant and sequential aspects of the
data, given that accelerometer data also includes pat-
terns in the frequency domain regarding animal activity
(e.g., head movement of cows during grazing has a
strong cyclic behaviour). We computed the FFT with the
base R 3.6.2 stats package [30], of which we used the
maximum FFT value as the dominant amplitude, the

Table 1 Ethogram. Descriptions of the recorded, mutually exclusive activity types

Activity Description

Grazing Foraging behaviour by chewing grass from the pasture whilst standing still or slowly moving with the head down

Walking Taking at least two steps without grazing, either with the head up or down

Standing without ruminating Standing on all four legs with head erect, without swinging its head from side to side and without ruminating

Lying down without ruminating All four legs tucked underneath the torso or lying down on one side of its body without ruminating

Ruminating while standing Masticating regurgitated feed, swallowing masticated feed or regurgitating feed while standing with head erect

Ruminating while lying down Masticating regurgitated feed, swallowing masticated feed or regurgitating feed while lying down
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Table 2 Dimensions extracted from the accelerometer data

Name Formula Description

x x raw accelerometer reading in the x axis

y y raw accelerometer reading in the y axis

z z raw accelerometer reading in the z axis

rxyz x
y
z

������
������

magnitude of resultant vector

rxy x
y

����
���� magnitude of resultant vector in x,y plane

rxz x
z

����
���� magnitude of resultant vector in x,z plane

ryz y
z

����
���� magnitude of resultant vector in y,z plane

ϑxy arctanðyxÞ angle of resultant vector in x,y plane

ϑxz arctanðzxÞ angle of resultant vector in x,z plane

ϑyz arctanðzyÞ angle of resultant vector in y,z plane

ϑz
arctan

 
z

x
y

����
����
!

angle of resultant vector with x,y plane collapsed to 1 line

ϑy
arctan

 y

x
z

����
����
!

angle of resultant vector with x,z plane collapsed to 1 line

ϑx
arctan

 
x

y
z

����
����
!

angle of resultant vector with y,z plane collapsed to 1 line

Ωx

arcsin

� yz

k
x
y
0

����������

����������

x
0
z
k

� solid angle of resultant pyramid base projected along x axis

Ωy

arcsin

� xz

k
x
y
0

����������

����������

0
y
z
k

�
solid angle of resultant pyramid base projected along y axis

Ωz

arcsin

� xy

k
x
0
z

����������

����������

0
y
z
k

� solid angle of resultant pyramid base projected along z axis

Vxyz xyz volume of resultant cuboid

Ax yz area of resultant pyramid base projected along x axis

Ay xz area of resultant pyramid base projected along y axis

Az xy area of resultant pyramid base projected along z axis

Axyz
1
2

���� x
y
0

2
4
3
5�

x
0
z

2
4
3
5
����

area of resultant triangle
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corresponding period of the dominant amplitude as the
dominant period, and finally the sum of all squared FFT
values as the spectral energy. Our list of computed sta-
tistics is not all-encompassing and more statistics can be
thought of to describe patterns in the data, but these
statistics are similar to the ones that are often used in
activity classification with accelerometers [31, 32]. Fur-
thermore, as these statistics were mainly used in the ac-
tivity classification part of the analysis, we deemed the
computed statistics sufficient when it resulted in a high
performance during activity classification. Overall, com-
puting all statistics for each dimension resulted in 210
accelerometer features per time window per cow.
We used the filtered 1 Hz GPS data as input for the

GPS feature extraction. First, we transformed all the lati-
tude, longitude coordinates to Cartesian coordinates by
projecting them to zone 31 N of the UTM system (EPSG
32631). Second, we extracted a number of individual
GPS features from the projected GPS coordinates per
time window per cow, related to speed, turning angle,
tangential velocity, mean squared displacement, and first
passage time (Table 3), which are widely used metrics
for path-level analyses in movement ecology [33]. The
time windows were exactly the same as the time win-
dows used in the extraction of the accelerometer
features. Third, we extracted a number of group GPS
features from the projected GPS data per time window
per cow, related to group shape, group area, and

distances and directions to other cows (Table 4), which
are low-level geometric metrics similar to those used for
2D point clouds in computational geometry [34]. We de-
termined which individual and group GPS features to
compute by drawing fake GPS trajectories and animal
clusters, after which we discussed which geometrical
properties (e.g., tangential velocity: the linear speed of an
animal moving along a circular path) could be extracted
from these patterns. Furthermore, we computed eco-
logical properties of animal trajectories that were known
to us (e.g., Mean Squared Displacement: a measure of
the deviation of the position of an animal with respect
to a reference position over time) and searched the lit-
erature and animal movement related R packages for
other ecological properties (e.g., First Passage Time: the
time required for an animal to cross a circle with a given
radius). We do not suggest that the provided list of com-
puted features is all-encompassing, but we do suggest
that spending time and effort in the engineering of fea-
tures (or optimizing the architecture of a neural network
in a deep learning approach) is an important part of our
suggested framework. The more informative variation
that is extracted from the raw data, the better the model
could potentially perform and thus the better the quanti-
fied environmental influence on animal movement
matches reality. Overall, computing both the individual
and group GPS features resulted in 38 GPS features per
time window per cow.

Fig. 2 Statistics calculated per time window, cow and accelerometer dimension. FFT stands for Fast Fourier Transform
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; in which n is the number of records.
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Table 3 Individual GPS features extracted per time window and cow
Dimension Statistic Description

Distance Net gross ratio Distance between first and last position divided by sum of distances of all segments

Speed Mean

Standard deviation

Median

Minimum

Maximum

First quartile

Third quartile

Autocorrelation function index Autocorrelation value at a lag of 1 s

Brownian motion scaling parameter See Eq. 1

Turning angle ρ Length of the mean resultant vector

Autocorrelation function index of the absolute turning angles Autocorrelation value at a lag of 1 s

Absolute tangential velocity Mean

Standard deviation

Median

Minimum

Maximum

First quartile

Third quartile

Autocorrelation function index Autocorrelation value at a lag of 1 s

Mean Squared Displacement Diffusion coefficient The value of a in the fitted model MSD = aτb on MSD values for τ from 1 to 6

Diffusion power coefficient The value of b in the fitted model MSD = aτb on MSD values for τ from 1 to 6

First Passage Time Mean, 5 m radius

Variance of log, 5 m radius

Autocorrelation function index, 5 m radius Autocorrelation value at a lag of 1 s

Radius with maximum variance of log (integers from 1 to 10m)

Linear regression coefficient log radius vs. log mean FPT
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Data analysis
We used the accelerometer features and individual GPS
features per time window per cow for which activity ob-
servations were undertaken as input data for the activity
classification models (Fig. 2, Table 3), which we first
converted to principal components. We linked the time-
matched activity observations to these input data and
used the activity type as output variable for the classifi-
cation models. We trained a multi-class classification
model for the activity types: grazing, walking, standing
and lying down. As a second step after the main activity
classification we also trained a binary classification
model for ruminating, with an extra input variable that
indicated standing versus lying down. We tried for both
classification models a Support Vector Machine (SVM)
with a Radial Basis Function (RBF) kernel and a one-
against-one approach, implemented in the e1071 pack-
age for R 3.6.2 [30, 35], and a Random Forest (RF) with
500 trees, implemented in the randomForest package
[36]. To prevent overfitting due to autocorrelation in the
data we randomly assigned each hour of the dataset into
a train (80%) or test set (20%) and performed 5-fold
cross-validation on the train set, which was also split per
hour at each of the 5 cross-validation iterations [21]. To
find the optimal hyperparameters for the models (num-
ber of principal components and time window size for
both SVM and RF; cost, gamma and class weights for
SVM; and mtry, sample size and node size for RF), we
used an extensive grid search on a High Performance
Cluster of Wageningen University, Netherlands (see

Additional file 5). We started the grid search with a
coarse resolution search that covered a large range of all
hyperparameters, to make sure that the global optimum
was covered and to get a feel for the performance land-
scape. We zoomed in with a finer resolution during a
second grid search and finished with an even more
zoomed in and finer resolution during a final grid
search. We determined the optimal classification model
and hyperparameters by selecting for the highest mean
balanced accuracy during cross-validation (Eq. 2). The
classification models with the highest performance dur-
ing cross-validation were then evaluated for performance
on the test dataset. Finally, we used the models to pre-
dict the displayed activity type (grazing, walking, stand-
ing or lying down) and whether or not the cows were
ruminating, for all the time windows and cows with
available sensor data.

mean balanced accuracy ¼

Xn
x¼1

1
2

TPx

Px
þ TNx

Nx

� �� �

n
ð2Þ

where x is a class; n is the number of classes; TP is the
number of true positives; P is the number of positives;
TN is the number of true negatives; and N is the number
of negatives.
We computed the dataset for the environmental vari-

able predictions per cow over one-hour time windows.

Table 4 Group GPS features extracted per time window and cow

Dimension Statistic Description

Net distances to
other cows

Mean

Median

Minimum

# cows within 2 m
radius

# cows within 4 m
radius

# cows within 8 m
radius

# cows within 16
m radius

All mean cow
coordinates

Group elongation
index, φ

Variance explained by the first principal component through the mean x and y coordinates of all cows.
Value lies by definition between 0.5 (when completely non-elongated, e.g., an exact circle) and 1 (when all
coordinates lie on a straight line). Afterwards scaled between 0 and 1, by subtracting 0.5 and multiplying
by 2.

Group area proxy πσ2(1 − φ); where σ is the standard deviation of the first principal component values. This measure
assumes that the area can be estimated by considering the group as an ellipse. When completely non-
elongated the area is πσ2 (where the variance σ2 is a proxy for the extent of the direction of elongation)
and when fully elongated the area is 0.

Directions to other
cows

ρ Length of the mean resultant vector

Periphery index Maximum difference between consecutive directions, minus 2π
#cows − 1 and divided by 2π
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The window size that is chosen has of course an influ-
ence on the results, as the effect of an environmental
variable on animal movement data varies with temporal
scales [37]. In short, the window size that is chosen rep-
resents the scale at which the animals’ behavioural deci-
sions are made [37]. The choice of this temporal scale
should therefore be chosen in line with the study’s aim
and based upon ecological considerations, which are dif-
ferent for every study. We chose a window size of 1 h
for a combination of two reasons: 1) it makes sense from
an ecological point of view, as the considered environ-
mental variables likely influence cow behaviour on this
temporal scale, and 2) because it traded off the number
of resulting data records (number of rows in the dataset
after applying the 1 h window) and the convergence of
variables well; meaning that the resulting dataset con-
sists of hundreds of records (thereby being enough for a
data-driven machine learning approach) and each record
was based on 1200 (1 h divided by 3 s) underlying re-
cords or more (thereby making sure that the inherent
heterogeneity of animal movement is taken into account
by averaging it out over a large enough period). The cal-
culated variables consisted of multiple variable sets,
based on the source of the data (GPS or accelerometer),
organizational level (group or individual), transformation
type, and variables conditional on foraging (Table 5).
We did not consider variables conditional on other ac-
tivity types than foraging, because the cows sometimes
did not display one of the other activity types during a 1
h time window. This resulted in a total of 548 variables
per cow per one-hour time window. We standardized
these variables (to zero mean and unit variance) per
combination of day/night and cow ID to account for dif-
ferences in nocturnal and diurnal activities of cows and
individual differences in movement characteristics,

group characteristics, and activities. These standardized
variables were used as input for a principal component
analysis, but were first one by one visually checked for
symmetric unimodality by inspecting the histograms and
normal Q-Q plots. Two of the 548 variables displayed
signs of bimodality and eight variables appeared to be
somewhat heavy-tailed. Due to the low number of vari-
ables that showed these deviations and due to the small
severity of these deviations, we decided not to correct
these ten variables and thus left all standardized vari-
ables untransformed. Moreover, symmetric unimodality
is not an actual requirement of a principal component
analysis, but it does result in a better centring and
scaling of the principal components. After that we
converted the standardized variables to principal com-
ponents separately for the GPS and accelerometer vari-
ables and linked these principal components to the
mean grass biomass, time since milking, and wind
speed values per hour (see Additional file 4). To pre-
vent overfitting of the model due to autocorrelation of
the time series, we trained the model on the data of all
cows from two of the three pasture plot sessions (n =
600, viz., number of rows in the train set) and tested
the model on the data of all cows from the other pas-
ture plot session (n = 259, viz., number of rows in the
test set). We used the second pasture plot session as
our test set, because its range of biomass values fell
within the range of biomass values of the first and third
pasture plot session.
To predict the environmental variables we built a Sup-

port Vector Regression (SVR) model with a RBF kernel
and a Random Forest Regression (RFR) with 1000 trees
on the train set with both GPS and accelerometer princi-
pal components, with only GPS components, and with
only accelerometer components. These models are time-

Table 5 Calculated variable sets per cow over one-hour time windows

Variable set Statistic Transformed data

Individual GPS All statistics from Table 3 1 Hz GPS data

Proportion activity Proportion Predicted activity per three-seconds window (Table 1)

Individual GPS distribution
parameters while grazing

Mean and standard deviation of log-
transformed data

Median speed and median absolute tangential velocity per three-
seconds window while grazing (Table 3)

Median group GPS Median Group GPS features per three-seconds window (Table 4)

SD group GPS Standard deviation Group GPS features per three-seconds window (Table 4)

Median individual GPS while
grazing

Median Individual GPS features per three-seconds window while grazing (Table
3)

SD individual GPS while grazing Standard deviation Individual GPS features per three-seconds window while grazing (Table
3)

Median group GPS while grazing Median Group GPS features per three-seconds window while grazing (Table 4)

SD group GPS while grazing Standard deviation Group GPS features per three-seconds window while grazing (Table 4)

Median accelerometer while
grazing

Median Accelerometer features per three-seconds window while grazing (Fig. 2)

SD accelerometer while grazing Standard deviation Accelerometer features per three-seconds window while grazing (Fig. 2)
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invariant, as they assume independence between the data
records, and are particularly well-suited to model com-
plex interactions between a large number of variables.
To find the optimal hyperparameters for the models
(number of principal components for both SVR and
RFR; and cost, gamma and epsilon for SVR), we used a
grid search (following the same procedure as during the
grid search of the activity classification) on a High
Performance Cluster of Wageningen University,
Netherlands (see Additional file 4). We did not optimize
any other RFR hyperparameter, because the performance
improved barely compared to the default values during a
trial analysis. We determined the optimal hyperpara-
meters by selecting for the highest R2 on the test set (Eq.
3). Ideally, (cross-)validation is performed before a test
set evaluation to prevent overfitting in hyperparameter
space, but the limited quantity of data records in our
case study prevented us from setting aside more data
from the train set. However, we prevented overfitting in
hyperparameter space by not optimizing the hyperpara-
meters of the RFR and by limiting the amount of hyper-
parameter values that were tested for the SVR.

R2 ¼ 1 −

P
i yi − f ið Þ2P
i yi − yð Þ2 ð3Þ

where y is the vector of actual values and f is the vector
of predicted values.

Results
The general cline of grass biomass is predicted by both
models, but the steepness is not entirely captured (Fig. 3).
The time since milking cline is quite accurately matched
from 0.5 to 6.5 h, but after 6.5 h it levels off for both
models (Fig. 3). For wind speed both models were not
able to make accurate predictions (Fig. 3). Overall the
SVR models outperformed RFR in predicting the envir-
onmental variables from cow movement data (see Add-
itional file 4). When analysing the explained variation of
the models with only accelerometer or GPS datasets, the
qualitative differences between the explained variation of
the different response variables for both algorithms are
comparable (Fig. 4). However, SVRs are apparently bet-
ter capable of using the interaction between variables in
the mixed-sensor dataset to increase the explained vari-
ation, while RFRs are hardly able to do so with our data
(Figs. 4 and 5). Both models indicate that grass biomass
influences accelerometer data substantially more than
GPS data, while the reverse is true for time since milking
(Figs. 4 and 5). Furthermore, for time since milking the
explained variation by accelerometer data is largely
shared with GPS data (Fig. 5). Finally, the optimization
of the hyperparameters was also done on datasets of

each cow separately, which resulted into approximately
the same hyperparameters and performance when com-
pared to the model for all cows combined. Therefore, we
concluded that cows responded to changes in resource
availability and time since milking in approximately the
same manner and we thus decided to use the models for
all cows combined.
Some of the variables used in our model were based

on the automated activity classifications of the cows’
sensor data and visual observations. SVMs outperformed
RFs for all these activity classification tasks with our
data, so we only used the predictions of the SVMs. The
best performing SVM classification model of the main
activity types achieved 91.7% mean balanced accuracy on
the test set and the best performing SVM model of
rumination 90.9% (see Additional file 5). While we
maximized the mean balanced accuracy during cross-
validation, also kappa, Matthews Correlation Coefficient,
mean F1 and mean True Skill Statistic were maximized
at the same time (Table 6). Moreover, the confusion
matrices of both models show that, in addition to a high
accuracy, the relative frequency of misclassification of
each activity type was approximately equal (see
Additional file 6). This means that the models were not
overclassifying a specific activity type over another. Fur-
thermore, we have found no substantial inter- or intra-
cow activity classification performance differences. We
thus considered the SVM activity classification models
good enough to reliable predict the activity types based
on the movement sensor data, even more so because the
classification performance was higher or comparable to
other cow activity classification studies [4, 27, 28].

Discussion
In the case study we quantified (on a one-hour reso-
lution) that 37% of the variation in resource availability
influenced cow movements (consisting of movement
through the landscape, body part movement, and emer-
gent patterns like group characteristics, and displayed
activities) and time since milking influenced it for 33%,
while wind speed did not influence it noticeably (Fig. 3,
4 and 5). These results support our expectations that
both resource availability and time since milking are im-
portant in shaping the movement of cows, but that wind
speed (during relatively mild conditions) is not. Further-
more, it seems that the moderate correlation between
resource availability and wind speed was indeed spuri-
ous. This framework proved to be insensitive to this
spurious correlation, as it did quantify the influence of
wind speed on cow movement to be 0%. Furthermore,
the Support Vector Regression (SVR) models performed
overall better than the Random Forest Regression (RFR),
especially when confronted with a dataset with both
GPS and accelerometer variables, but the qualitative
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Fig. 4 Explained grass biomass and time since milking variation using Support Vector Regression models (SVR) and Random Forest Regression
Models (RFR) with a GPS, accelerometer (ACC) and combined dataset

Fig. 3 Left to right: measured versus predicted grass biomass, time since milking and wind speed using GPS and accelerometer data. Top:
Support Vector Regression predictions. Bottom: Random Forest Regression predictions
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patterns when comparing the three different environ-
mental influences to single-sensor movement datasets
were the same for both algorithms. Due to the SVRs
higher performance, we do consider it to be the better
alternative over RFR for this analytical framework when
dealing with hyperdimensional datasets, especially when
variables from multiple sensors are mixed. Moreover, we
found that resource availability influenced accelerometer
variables (29%) more than GPS variables (8%), but this
influence on GPS variables still was largely independent
from accelerometer variables (less than 1% of the total
variation was shared). This indicates that, at this tem-
poral scale and with these computed movement vari-
ables, the individual movement of cows through the
landscape and the spatial group characteristics hardly
contained any signature of resource availability and that

almost all of the influence of resource availability on
cow movements became apparent from the accelerom-
eter variables of the cows’ neck during grazing. The ac-
celerometer variables of the cows’ neck during grazing,
being descriptive for bite frequency and bite force (Table
2, Fig. 2 and Table 5), probably link more explicitly to
grazing behaviour than GPS variables do. These acceler-
ometer variables are probably influenced more by re-
source availability than GPS variables, because grazing
behaviour in cows is closely linked to resource availabil-
ity [39]. The opposite was found for time since milking,
which influenced GPS variables (29%) more than accel-
erometer variables (21%), with a lot of their explained
variation being shared (17% of the total variation). This
links well to our previous argument about that the accel-
erometer variables are shaped for a large part by the

Table 6 Performance measures on the test set of the best performing SVM activity classification models (g = grazing; w = walking;
s = standing; l = lying) [38]

Main activity types Rumination

Balanced accuracy μ = 91.7% (g = 94.2%; w = 84.5%; s = 90.2%; l = 97.9%) 90.9%

Accuracy 94.2% 90.9%

Kappa 88.0% 79.8%

Matthews Correlation Coefficient 88.0% 80.0%

True Skill Statistic μ = 83.4% (g = 88.3%; w = 69.0%; s = 80.4%; l = 95.8%) 81.8%

F1 μ = 88.0% (g = 96.6%; w = 76.6%; s = 83.4%; l = 95.6%) 86.6%

Precision μ = 90.0% (g = 95.9%; w = 84.9%; s = 85.1%; l = 94.2%) 82.8%

Recall μ = 86.5% (g = 97.3%; w = 69.8%; s = 81.7%; l = 97.0%) 90.9%

Negative predictive value μ = 97.4% (g = 93.9%; w = 98.0%; s = 98.3%; l = 99.4%) 95.4%

True negative rate μ = 96.9% (g = 91.0%; w = 99.2%; s = 98.6%; l = 98.8%) 90.9%

Fig. 5 Variation partitioning of accelerometer (ACC) and GPS data with Support Vector Regression models (SVR) and Random Forest Regression
models (RFR) for grass biomass and time since milking
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cows’ neck movement during grazing, which is intui-
tively more heavily influenced by grass biomass than by
time since milking. Previous studies also found that the
lactation stage, a variable that we expected to be linked
to time since milking regarding its effect on cow behav-
iour, influences the relative distribution of cow activity
patterns and cow movement through the landscape [25,
26]. This supports our finding about a higher influence
on GPS variables with a large shared influence with ac-
celerometer variables, because the movement through
the landscape is measured by GPS variables and the
activity patterns are measured by both GPS and acceler-
ometer variables. Finally, the estimated model parame-
ters were similar for all cows, indicating that the cows
responded to changes in resource availability and time
since milking in the same way. However, it should be
noted that all the results that are presented above are of
course context dependent. With a different experimental
setup, e.g., indoor instead of pasture housing or different
ranges of environmental variable values, the quantified
influences can change. As is the case with nearly all
modelling efforts, this framework is also only able to
provide sensible results about the system for which data
is available.
Our case study illustrates how the proposed analytic

framework can quantify the influence of an ecological
variable on animal movement. Having this quantification
as the goal of the analytic framework, human interpret-
ation and understanding of the correlative relationships
within the model is initially of lesser importance. The
goal is to build a model that can predict as much of the
variation in the measured environmental variable as pos-
sible, by not limiting the model’s complexity to facilitate
human interpretation. Only then the aim is to quantify
the overall influence of the environmental variable on
animal movement. This analysis could be followed by a
stage where the researcher is selective in the choice of
movement variables, to study which movement variables
are mainly influenced by the environmental variable.
Due to the way the framework is set up, the environ-
mental influence on multivariate animal movement will
by definition always be higher or equal to the environ-
mental influence on a subset of the animal movement
variables. Thus, using this framework to first determine
the environmental influence on multivariate animal
movement and afterwards determine the influence on
specific subsets of movement variables, allows for an
analysis that shows in which movement variables the en-
vironmental influence is most or least visible. This is
demonstrated in our case study, where resource avail-
ability mainly influenced accelerometer variables and
much less GPS variables, indicating that resource avail-
ability was more tightly linked to the cows’ movement of
body parts than to their movement through the

landscape. The opposite was true for time since milking,
where also the explained variation by the accelerometer
data was largely shared with GPS data. Furthermore, this
framework allows for a comparison between the influ-
ences of multiple environmental variables to animal
movement whilst being insensitive to moderate spurious
correlations between environmental variables, which is
also shown in our case study with regards to the influ-
ence of wind speed. Therefore, this framework could be
well suited for exploratory analyses of the link between
environment and animal movement.
In our framework the influence of the environment on

animal movement is quantified, but the difference with
previous studies (using low-dimensional movement de-
scriptors [2, 3]) is that our result is quantified by how
much of the variation in the environment can be pre-
dicted by observing the movement (instead of the other
way around). Terming this quantified measure “environ-
mental contribution”, it should be noted that the envir-
onmental contribution to animal movement (i.e., the
variation in an environmental variable that is traceable
in animal movement data) is not the same as the envir-
onmental dependency of animal movement (i.e., the
variation in animal movement that is dependent on an
environmental variable), where potentially the environ-
mental contribution can be large but the dependency
small or vice versa. To accommodate for a multivariate
analysis of animal movement we determine environmen-
tal contribution instead of the easier interpretable envir-
onmental dependency. In movement ecology usually the
environmental dependency of animal movement is the
focus of analyses, as this allows for the determination of
the direction and strength of the environmental influ-
ence on an animal movement variable. Therefore, post
hoc analyses that link environmental variables to a sim-
plified animal movement descriptor can supplement our
proposed multivariate analytic framework in order to
study the route of causal inference [2, 3].
Various factors in the relationship between the envir-

onment and animal movement influence the quantifica-
tion of the environmental influence on animal
movement (Fig. 6). First, many environmental variables
are correlated and interact with each other in their influ-
ence on the animal’s decision making and, thus, move-
ment [1]. When the influence of a single environmental
variable on animal movement is under scrutiny, these
correlations and interactions with other environmental
variables need to be taken into consideration. In the pro-
posed analytic framework we do not distinguish between
the independent, shared, and interaction influences of
environmental variables on animal movement [9], which
is different from the independent and shared influence
on multiple subsets of the movement variables as de-
scribed in our case study. As a consequence, both the
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direct and indirect influences of an environmental vari-
able on animal movement are combined into a single
metric. Future research could potentially be aimed at the
distinction between these influence types of multiple en-
vironmental variables on multivariate animal movement,
e.g., by using multi-target (Support Vector) regression
and variation partitioning procedures [40, 41]. Further-
more, when the influence of an environmental variable
on animal movement is quantified, it is important that
the movement itself does not influence the environmen-
tal variable directly at that point in space and time as
well. Social proximity is for example an important vari-
able in the shaping of individual animal movement, but
individual movement parameters also directly shape col-
lective movement patterns [42]. The fit of a model with
social proximity as response variable and individual
movement variables as input data would then not be
solely the influence of an environmental variable any-
more. This could consequently yield unrealistically large
values of the explained variance, which should be
prevented.
In the relationship between the environment and ani-

mal movement, the animal’s internal state (“why move?”),
motion capacity (“how to move?”), and navigation cap-
acity (“where to move?”) are also involved [1]. The ani-
mal’s internal state is composed of many different
factors, e.g., physiological “need” (hunger, fear, etc.),

physical characteristics (age, sex, body condition, etc.),
and personality differences (laziness, level of sociality,
etc.), that combined result in a certain response by the
animal when confronted with a set of environmental
variables at certain moment in time [1]. We translate
this combined net effect of the internal state factors into
the willingness of the animal to respond to the environ-
ment (Fig. 6). The motion and navigation capacity can
be translated into the ability of the animal to respond.
Another factor that is involved, even before the animal
can decide whether it is willing and able to respond, is
the animal’s perception of the environment [20]. Only
when an animal can observe changes or differences in
an environmental variable can it decide to respond in a
certain way. Because of the aforementioned latent vari-
ables – perception, willingness, and ability – the move-
ment of the animal is not purely a deterministic function
of a fixed set of environmental variables [1]. These latent
variables can thus cause a partial environmental influ-
ence on animal movement. Furthermore, these latent
variables are in part individual-specific [1], which is why
differences between individuals should be taken into
consideration by standardizing the movement variables
per individual and/or adding individual identifiers as var-
iables to the model.
Other factors, which are more data-related, also influ-

ence the quantification of the environmental influence

Fig. 6 Conceptual model of the relationship between an environmental variable, animal movement and a predictive model to determine the
influence of an environmental variable on multivariate animal movement. Dotted blocks are latent variables, rounded blocks are measurable
variables, greyed out blocks are unmeasured variables, and straight blocks are known variables, values, or objects. The dotted arrow displays the
predictive analysis following up on the model building phase
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on animal movement (Fig. 6). First, environment and
animal movement are linked through sensor measure-
ments, which influence the outcome of the analysis
through varying sensor types, resolution, extent, and
precision. Second, the movement variables that are com-
puted from the animal movement data to describe the
movement process determine how much of the environ-
mental influence on animal movement is traceable in
the data. Therefore it is key to extract as many inform-
ative movement variables from the animal movement
data as possible in this proposed framework (or optimize
the architecture of a neural network in a deep learning
approach), because ideally all inherent variation needs to
be extracted from the movement data to quantify the
total environmental influence and to compare the influ-
ence of different environmental variables fairly. In our
case study, the best performing models had a selected
number of principal components with a relatively low
cumulative proportion of variance, especially for the
GPS variables (see Additional file 4), which suggests that
enough variation had been extracted from the raw data
to make a good prediction about the environmental in-
fluence on animal movement. Although the best per-
forming model does not necessarily equate a good
model, so it could theoretically also be that we missed to
extract some extra informative variables from the raw
data, which could otherwise have resulted in an even
better performing model. Third, the temporal scale at
which these variables are computed determine the tem-
poral scale for which the influence of the environmental
variable on animal movement is quantified. As the effect
of an environmental variable on animal movement data
varies with temporal scales, the choice of the temporal
scale of the variables is relevant [37]. Finally, the algo-
rithm that is used to predict an environmental variable
from animal movement data influences the level of fit
that can be attained, which is demonstrated in our case
study with SVR outperforming RFR on all occasions.
Algorithms that can model complex interactions be-
tween variables are often able to make better predictions
of the response variable, e.g., RFR, SVR, and Neural Net-
work Regression, likewise are algorithms that take into
account the sequence of time series data, e.g., Recurrent
Neural Network. Quantitative comparisons between the
influences of different environmental variables on animal
movement can thus only be done reliably when the same
algorithm is used on the same underlying animal
movement dataset.
Apart from only using the R2 of the model predictions

to acquire ecological insights, the patterns of the ob-
served vs. predicted plots can also potentially generate
insight. For an environmental variable to influence ani-
mal movement, the animal’s perception, willingness, and
ability are conditionalities (Fig. 6). Therefore, certain

parts of the environmental variable’s range might be bet-
ter predicted by the model than other parts. It could be
argued that this could be an explanation for the better
SVR predictions during intermediate grass biomass com-
pared to low and high biomass levels, thereby creating a
lower overall slope of the predictions compared to the
observations (Fig. 3). However, apart from animal per-
ception, willingness, and ability, other factors might also
influence patterns of the observed vs. predicted plot (Fig.
6). In this case the algorithm might be the underlying
cause for the lower overall slope of the SVR biomass
predictions, due to a “regression toward the mean” char-
acteristic (see Additional file 7). Furthermore, the overall
gradient of the time since milking predictions follows
the measurements quite accurately for both models from
0.5 to 6.5 h, but after 6.5 h it levels off (Fig. 3). This sug-
gests that until 6.5 h cows continue to change their
movement in response to the time since they were last
milked, but after 6.5 h there is no noticeable change in
movement anymore. Besides a potential behavioural eco-
logical cause for this pattern, it could also be (partially)
caused by correlations with other time variables due to
our experimental setup where the cows were milked two
times a day around the same time of day. Follow-up
studies could focus on these predicted time since milk-
ing patterns, where the experimental setup should con-
tain multiple groups of cows that are milked at different
times of the day. Finally, apart from concluding that
wind speed probably has no noticeable effect on cow
movement in this study (Fig. 3), it becomes clear that
the model performance suffered from some higher wind
speed values in the test set compared to the train set
(thereby generating an R2 lower than 0).

Conclusions
We developed an analytical framework from existing
methods that can quantify the environmental influence
on animal movement while preserving the multifaceted
nature of the movement process. Apart from providing a
measure of the tightness of coupling between an envir-
onmental variable and animal movement, the prediction
of an environmental variable from animal movement
data can be a useful application in itself as the unique
property of this predicted variable is that it represents
the perceived environmental variable by the animals.
This framework demonstrates that the possible applica-
tions of machine learning methods extend beyond the
ability to transform raw into informative data to acquire
ecological understanding, and that machine learning can
also be used to directly relate movement data to envir-
onmental variables.
The applicability of our multivariate analytic frame-

work extends beyond animal movement. With the recent
increase in biologging practices, more and more
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variables of animal data are acquired [6–8]. These data
do not only encompass animal movement, but for ex-
ample also animal physiology, which can be related to
environmental variables as well using the same frame-
work as presented in this study [6–8], e.g., by relating
heart rate patterns to terrain characteristics or physical
fitness metrics to climate conditions. Apart from using
this analytic framework to quantify environmental influ-
ence on animal biologging data, the computation of per-
ceived environmental variables can allow researchers
and managers to monitor the perceived habitat of animal
species [6, 20]. This way, the habitat quality in natural
areas, e.g., in terms of resources, can be assessed more
precisely regarding the needs of specific, sensor-
equipped, focal animals [6, 43]. Furthermore, with the
results presented here, the management of pasture-fed
cattle can be optimized by detecting the appropriate
time to move cattle to a more resource-rich area or to-
wards a milking machine, without measuring resource
availability or milk content in the udder directly. Finally,
we argue that our proposed data-driven analytic frame-
work to quantify environmental influence on animal bio-
logging data is a valuable tool for explorative and
comparative analyses on the relationship between the
environment and animal movement, behaviour, and
physiology.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40462-020-00228-4.

Additional file 1.

Additional file 2.

Additional file 3.

Additional file 4.

Additional file 5.

Additional file 6.

Additional file 7.

Abbreviations
R2: Coefficient of Determination; HDOP: Horizontal Dilution of Precision;
NDVI: Normalized Difference Vegetation Index; FFT: Fast Discrete Fourier
Transform; MSD: Mean Squared Displacement; FPT: First Passage Time;
SVM: Support Vector Machine; RBF: Radial Basis Function; RF: Random Forest;
SVR: Support Vector Regression; RFR: Random Forest Regression;
ACC: Accelerometer

Acknowledgements
Not applicable.

Authors’ contributions
JE, HdK, TvdW, and HP conceived the ideas and designed methodology; JE,
HdK, and MK collected the data; JE, HdK, and MK analysed the data; JE led
the writing of the manuscript. All authors (JE, HdK, FvL, HP, TvdW, and MK)
contributed critically to the drafts and gave final approval for publication.

Funding
This research was funded by the European Space Agency (ESA Contract No.
“4000117990/16/NL/CLP”) and the Netherlands Organisation for Scientific
Research (NWO program “Advanced Instrumentation for Wildlife Protection”).

Availability of data and materials
Our code and data are available in the 4TU.ResearchData repository: https://
doi.org/10.4121/uuid:e552fe57-ab4f-4e31-83e3-82e1cbc06a70 [44].

Ethics approval and consent to participate
Wageningen University officials did not consider this study an animal
experiment according to the Dutch law and exempted this study from
requiring an ethics approval. The consent to participate is not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Wildlife Ecology and Conservation Group, Wageningen University and
Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands.
2School of Life Sciences, Westville Campus, University of KwaZulu-Natal,
Durban 4000, South Africa. 3Spatial Knowledge Systems, Wageningen
Environmental Research, Droevendaalsesteeg 3a, 6708 PB Wageningen,
Netherlands. 4Department of Animal Sciences, Wageningen University and
Research, De Elst 1, 6708 WD Wageningen, Netherlands.

Received: 26 May 2020 Accepted: 12 October 2020

References
1. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A

movement ecology paradigm for unifying organismal movement research.
Proc Natl Acad Sci. 2008;105:19052–9.

2. Avgar T, Mosser A, Brown GS, Fryxell JM. Environmental and individual
drivers of animal movement patterns across a wide geographical gradient. J
Anim Ecol. 2013;82:96–106.

3. Signer J, Ovaskainen O. Detecting the influence of environmental covariates
on animal movement: a semivariance approach. Methods Ecol Evol. 2017;8:
561–70.

4. Benaissa S, Tuyttens FAM, Plets D, de Pessemier T, Trogh J, Tanghe E, et al.
On the use of on-cow accelerometers for the classification of behaviours in
dairy barns. Res Vet Sci. 2017;125:425–33.

5. Sumpter DJT, Szorkovszky A, Kotrschal A, Kolm N, Herbert-Read JE. Using
activity and sociability to characterize collective motion. Philos Trans R Soc
B Biol Sci. 2018;373:20170015.

6. Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, et al.
Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol. 2004;19:
334–43.

7. Wilmers CC, Nickel B, Bryce CM, Smith JA, Wheat RE, Yovovich V. The
golden age of bio-logging: how animal-borne sensors are advancing the
frontiers of ecology. Ecology. 2015;96:1741–53.

8. McClintock BT, London JM, Cameron MF, Boveng PL. Bridging the gaps in
animal movement: hidden behaviors and ecological relationships revealed
by integrated data streams. Ecosphere. 2017;8:e01751.

9. Peres-Neto P, Legendre P, Dray S, Borcard D. Variation partitioning of
species data matrix: estimation and comparison of fractions. Ecology. 2006;
87:2614–25.

10. Turchin P. Quantitative analysis of movement: measuring and modeling
population redistribution in animals and plants. Sunderland: Sinauer
Associates Inc; 1998.

11. Thurfjell H, Ciuti S, Boyce MS. Applications of step-selection functions in
ecology and conservation. Mov Ecol. 2014;2:1–12.

12. Patterson TA, Basson M, Bravington MV, Gunn JS. Classifying movement
behaviour in relation to environmental conditions using hidden Markov
models. J Anim Ecol. 2009;78:1113–23.

13. Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J. State-space
models of individual animal movement. Trends Ecol Evol. 2008;23:87–94.

Eikelboom et al. Movement Ecology            (2020) 8:40 Page 17 of 18

https://doi.org/10.1186/s40462-020-00228-4
https://doi.org/10.1186/s40462-020-00228-4
https://doi.org/10.4121/uuid:e552fe57-ab4f-4e31-83e3-82e1cbc06a70
https://doi.org/10.4121/uuid:e552fe57-ab4f-4e31-83e3-82e1cbc06a70


14. Dingemanse NJ, Kazem AJN, Réale D, Wright J. Behavioural reaction norms:
animal personality meets individual plasticity. Trends Ecol Evol. 2010;25:81–9.

15. Hughey LF, Hein AM, Strandburg-Peshkin A, Jensen FH. Challenges and
solutions for studying collective animal behaviour in the wild. Philos Trans R
Soc B Biol Sci. 2018;373:20170005.

16. Wang G. Machine learning for inferring animal behavior from location and
movement data. Ecol Inform. 2019;49:69–76.

17. Eikelboom JAJ, Wind J, van de Ven E, Kenana LM, Schroder B, de Knegt HJ,
et al. Improving the precision and accuracy of animal population estimates
with aerial image object detection. Methods Ecol Evol. 2019;10:1875–87.

18. Risse B, Mangan M, Pero L Del, Webb B. Visual Tracking of Small Animals in
Cluttered Natural Environments Using a Freely Moving Camera. IEEE Int
Conf Comput Vis. 2017. p. 2840–9.

19. Van Hertem T, Viazzi S, Steensels M, Maltz E, Antler A, Alchanatis V, et al.
Automatic lameness detection based on consecutive 3D-video recordings.
Biosyst Eng IAgrE. 2014;119:108–16.

20. Manning AD, Lindenmayer DB, Nix HA. Continua and Umwelt: novel
perspectives on viewing landscapes. Oikos. 2004;104:621–8.

21. Arlot S, Celisse A. A survey of cross-validation procedures for model
selection. Stat Surv. 2010;4:40–79.

22. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2
from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4:
133–42.

23. Emlen JM. The role of time and energy in food preference. Am Nat. 1966;
100:611–7.

24. De Knegt HJ, Hengeveld GM, Van Langevelde F, De Boer WF, Kirkman KP.
Patch density determines movement patterns and foraging efficiency of
large herbivores. Behav Ecol. 2007;18:1065–72.

25. Nielsen BL, Veerkamp RF, Lawrence AB. Effects of genotype, feed type and
lactational stage on the time budget of dairy cows. Acta Agric Scand A
Anim Sci. 2000;50:272–8.

26. Bewley JM, Boyce RE, Hockin J, Munksgaard L, Eicher SD, Einstein ME, et al.
Influence of milk yield, stage of lactation, and body condition on dairy
cattle lying behaviour measured using an automated activity monitoring
sensor. J Dairy Res. 2010;77:1–6.

27. Martiskainen P, Järvinen M, Skön JP, Tiirikainen J, Kolehmainen M, Mononen
J. Cow behaviour pattern recognition using a three-dimensional
accelerometer and support vector machines. Appl Anim Behav Sci. 2009;
119:32–8.

28. Vázquez Diosdado JA, Barker ZE, Hodges HR, Amory JR, Croft DP, Bell
NJ, et al. Classification of behaviour in housed dairy cows using an
accelerometer-based activity monitoring system. Animal Biotelemetry.
2015;3:15.

29. Ferraro DO, Oesterheld M. The effect of defoliation on grass growth: a
quantitative review. Oikos. 2002;98:125–33.

30. Development R. Core team. R: a language and environment for statistical
computing [internet]. Vienna, Austria: R Foundation for Statistical.
Computing. 2008; Available from: http://www.r-project.org.

31. Bao L, Intille SS. Activity recognition from user-annotated acceleration data.
In: Ferscha A, Mattern F, editors. Pervasive Comput. Heidelberg: Springer;
2004. p. 1–17.

32. Shoaib M, Bosch S, Incel O, Scholten H, Havinga P. A survey of online
activity recognition using Mobile phones. Sensors. 2015;15:2059–85.

33. Seidel DP, Dougherty E, Carlson C, Getz WM. Ecological metrics and
methods for GPS movement data. Int J Geogr Inf Sci.
2018;32:2272–93.

34. Weinmann M, Jutzi B, Mallet C, Weinmann M. Geometric Features and Their
Relevance for 3D Point Cloud Classification. ISPRS Ann Photogramm
Remote Sens Spat Inf Sci. 2017;IV-1/W1:157–64.

35. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc
Functions of the Department of Statistics [Internet]. Vienna, Austria:
Probability Theory Group (Formerly: E1071), TU Wien; 2017. Available from:
https://cran.r-project.org/package=e1071.

36. Liaw A, Wiener M. Classification and regression by randomForest. R News
[Internet]. 2002;2:18–22 Available from: https://cran.r-project.org/doc/
Rnews/.

37. McClintock BT, Johnson DS, Hooten MB, Ver Hoef JM, Morales JM. When to
be discrete: the importance of time formulation in understanding animal
movement. Mov Ecol. 2014;2:21.

38. Kuhn M. caret: Classification and Regression Training. 2020. Available from:
https://cran.r-project.org/package=caret.

39. Drescher M, Heitkönig IMA, Prins HHT. Forage availability and accessibility
determine the functional response of herbivores in complex resources. In:
Drescher M, editor. Grasping complex matter large Herbiv foraging patches
Heterog Resour. Wageningen: Netherlands; 2003. p. 17–35.

40. Borchani H, Varando G, Bielza C, Larrañaga P. A survey on multi-output
regression. Wiley Interdiscip Rev Data Min Knowl Discov. 2015;5:216–33.

41. Melki G, Cano A, Kecman V, Ventura S. Multi-target support vector
regression via correlation regressor chains. Inf Sci (Ny); 2017;415–416:53–69.

42. Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective memory and
spatial sorting in animal groups. J Theor Biol. 2002;218:1–11.

43. Rosenzweig ML. On foraging theory, humans and the conservation of
diversity: a prospectus. In: Stephens DW, Brown JS, Ydenberg RC, editors.
Foraging Behav Ecol. Chicago: University of Chicago Press; 2007. p. 400–11.

44. Eikelboom JAJ. Inferring an animal’s environment through biologging:
quantifying the environmental contribution to animal movement. 4TU.
Centre Res. Data. 2020. Available from: https://doi.org/10.4121/uuid:
e552fe57-ab4f-4e31-83e3-82e1cbc06a70.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Eikelboom et al. Movement Ecology            (2020) 8:40 Page 18 of 18

http://www.r-project.org
https://cran.r-project.org/package=e1071
https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/package=caret
https://doi.org/10.4121/uuid:e552fe57-ab4f-4e31-83e3-82e1cbc06a70
https://doi.org/10.4121/uuid:e552fe57-ab4f-4e31-83e3-82e1cbc06a70

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data collection
	Data processing
	Data analysis

	Results
	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

