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Black bears alter movements in response to
anthropogenic features with time of day
and season
Katherine A. Zeller1* , David W. Wattles2, Laura Conlee3 and Stephen DeStefano4

Abstract

Background: With the growth and expansion of human development, large mammals will increasingly encounter
humans, elevating the likelihood of human-wildlife conflicts. Understanding the behavior and movement of large
mammals, particularly around human development, is important for crafting effective conservation and
management plans for these species.

Methods: We used GPS collar data from American black bears (Ursus americanus) to determine how seasonal food
resources and human development affected bear movement patterns and resource use across the Commonwealth
of Massachusetts.

Results: We found that though bears moved more and avoided human development during crepuscular and
daylight hours than at night, bears preferentially moved through human dominated areas at night. This indicates
bears were mitigating the risk of human development by altering their behavior to exploit these areas when
human activity is low. This behavioral shift was most prominent in the spring, when natural foods are scarce, and
fall, when energetic demands are high. We also observed a high degree of inter-individual variability among our
sample of bears. Bears with a higher density of houses in their home ranges (~ 75 houses/km2) displayed less
avoidance of human development than more rural bears. Furthermore, bear movement models had different
explanatory variables, with preference or avoidance of a variable being dependent on the individual bear. To
account for this individuality in our predictive surfaces, we projected the probability of movement for each season
and time of day using a spatially weighted surface centered on each bear’s home range.

Conclusions: We found that black bears in Massachusetts are operating in a landscape of fear and are altering their
movement patterns to use developed areas when human activity is low. We also found seasonal and diel
differences among individual bears in resource selection during movement. Accounting for these individual,
seasonal, and diel differences when assessing movement for large mammals is especially important if predictive
surfaces are to be used in identifying areas for conservation and management.

Keywords: Carnivore, Conservation, Movement ecology, Human development, Multi-scale habitat selection,
Massachusetts
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Background
Due to their space requirements, large mammals often
exist partially or wholly outside of protected areas where
they are exposed to varying levels of human presence.
With the continued growth, expansion, and spatial redis-
tribution of human populations, large mammals will in-
creasingly encounter humans and human development
[1, 2]. Human development has been shown to fragment
and decrease the amount of habitat [3], reduce move-
ments [4], and lower rates of survival and fecundity [5]
for large mammals. However, developed areas may also
provide food, either in the form of non-natural foods
like garbage, agricultural crops, and livestock [6], or a
higher density of natural foods like forage, rodents, and
deer [7]. Because large mammals, especially carnivores,
living in and around developed areas have been shown
to increase human-wildlife conflict [8], understanding
behavior and movement of these species in areas of hu-
man development is crucial for crafting effective educa-
tion and management plans to reduce human-wildlife
interactions.
The American black bear (Ursus americanus) is an op-

portunistic omnivore that can exploit anthropogenic
foods such as garbage, bird seed, fruit trees, and agricul-
tural crops. In developed areas, these supplemental
foods can sometimes be an additional source of nutri-
tion, however, bears in these areas also have an increased
likelihood of mortality from vehicle collisions and lethal
removal as well as decreased survival rates for subadults
and adult females [3, 9–11]. A risk-reward tradeoff exists
for bears living in and near human development, sug-
gesting bears may be operating in a ‘landscape of fear’ –
a conceptual model originally developed for prey species
where an individual’s perception and use of its environ-
ment is the result of a cost-benefit analysis of food and
risk [12–14]. Under this framework, the risk-reward tra-
deoffs for black bears would not only be influenced by
the built environment, but also the energetic state of an
individual and the presence of conspecifics [13].
Movement patterns can express how black bears per-

ceive the human environment and the risk-reward trade-
off [15, 16]. Previous studies have found black bears in
relatively undisturbed areas move more during diurnal
and crepuscular time periods than at night [9, 17], while
black bears in areas of human development have been
shown to shift movement activity to nocturnal periods
[9, 18]. Johnson et al. [19] and Baruch-Mordo et al. [20]
found black bears increase use of human development
and are more active at night in years when natural food
is scarce. Seasonally, bears have used human develop-
ment more in spring, when natural food availability is
typically low [19], and in fall when bears are in a state of
hyperphagia [21]. These findings suggest black bears per-
ceive human areas as risky, but will utilize these areas in

times of low food availability to improve their energetic
state. However, a black bear study in Pennsylvania, New
Jersey, and West Virginia found no difference in re-
sponse to human development between urban and rural
black bears and concluded that uniform management ac-
tions could be applied across the entire bear population
[22].
Clearly, there are still nuances in the movement pat-

terns of black bears that can shed light on their percep-
tion of the risk-reward tradeoff in developed areas. The
aforementioned studies have not examined movement in
relation to different landscape features at different times
of day, nor have they modeled movement with multi-
scale models, which have been shown to be more appro-
priate than single scale models for modeling movement
and habitat use [23, 24]. Furthermore, these studies did
not predict movement in response to human develop-
ment in a spatially-explicit manner that preserves the in-
dividuality of each bear and its presumed acclimation to
human development [21].
Black bears have been observed to be highly individu-

alistic in their response to landscape features [25]. Some
of these individual responses may be the result of differ-
ent genotypic or phenotypic expressions (e.g., boldness,
curiosity, spatial learning) [26, 27], or sex, age, or repro-
ductive status [21, 25, 28–30]. Other differences may be
the result of acclimation to various landscape features in
their home ranges [21]. Many studies account for indi-
vidual variability in population-wide models by using
random slopes and intercepts for individuals. Even with
this approach, population models have been shown to
mask individual differences, lead to weak or inconclusive
responses to landscape features, and result in poor pre-
dictive results [25, 31]. Furthermore, spatial predictions
have been solely based on population-level models des-
pite spatially inhomogeneous responses across the land-
scape [32]. For example, bears in more rural areas may
have a stronger negative response to roads and residen-
tial areas than bears in more developed environments.
Modeling bears separately and then combining individ-
ual predictive surfaces into a single surface that pre-
serves these spatial differences helps to avoid weak
predictions and spatial biases [32].
We examine daily and seasonal black bear movement

and response to human development in the Common-
wealth of Massachusetts, USA. Massachusetts is the
third most densely populated state in the nation [33]
and has a growing black bear population that is expand-
ing eastward from more rural parts of the state towards
the greater Boston metropolitan area [34]. Our objec-
tives were to determine how seasonal food resources
and human development affected bear movement pat-
terns and to spatially predict the probability of bear
movement across the state. We first examined overall
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daily movement patterns as well as daily movement pat-
terns in response to environmental features across sea-
sons. We assumed that preference for moving through
areas of human development at times other than peak
movement times was evidence of bears altering their be-
havior to avoid risky situations. Second, we examined re-
source selection during movement by running a multi-
scale step selection function (SSF) for each individual
bear for each season during the day and at night. As part
of this analysis we were interested in determining if
bears with more human development in their home
ranges would be more acclimated to human develop-
ment or instead show higher avoidance of human devel-
opment. Third, we predicted the probability of bear
movement across the state for each season and diel
period by spatially integrating the predicted surfaces for
each individual weighted by the distance from each indi-
vidual’s home range. The results from our analyses can
be used to better understand bear perception and use of
human development, project movement into areas of

the state where bears are expanding, and provide valu-
able information for bear management and mitigation of
human-wildlife conflicts.

Methods
Study area
The study area was in the Commonwealth of Massachu-
setts, USA. Bears were collared and tracked in the cen-
tral and western parts of the state (Fig. 1). To account
for bears that moved beyond state borders, we buffered
Massachusetts by 35 km to identify our greater study
area. Spatial predictions were performed across the
greater study area, but then were clipped to the state
boundary.

Black bear data
Female bears were captured between 2009 and 2017 and
fitted with either a Telonics Gen 3 or Gen 4 GPS collar
(Any use of trade, firm, or product names is for descrip-
tive purposes only and does not imply endorsement by

Fig. 1 Location of black bear GPS points from bears collared with a 15 or 45-min fix interval
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the U.S. Government). Most bear collars between 2012
and 2017 were programmed to acquire a fix every 15
(n = 7) or 45 (n = 69) minutes. These bears were used in
the movement analyses. Bears with longer fix intervals
(n = 20) were used as hold-out data to assess predictive
performance of the movement models. GPS collar data
for each bear (ID, fix interval, date range, etc.) are pro-
vided in Additional file 1: Table S1.
Bears were captured via barrel traps, free-range using

dart projector, and during winter den checks. Bears were
immobilized using 191 mg/ml Telazol R (Tiletamine HCl
and Zolazepam HCl) at a dosage of 7 mg/kg in winter,
and 229 mg/ml at a dosage of 5 mg/kg in summer, ad-
ministered by a syringe on the end of a jab pole or via a
tranquilizer dart. All capture, immobilization, and hand-
ling procedures were performed in accordance with Uni-
versity of Massachusetts, Amherst IACUC Protocols #
2011–0074, 2014–0074, and 2017–0066.
GPS fixes were examined for positional errors and the

following categories of fixes were removed from the data
set: (1) fixes that were unresolved, (2) fixes with a PDOP
> 5 and classified as resolved QFP (uncertain) or 2D, (3)
fixes with a PDOP > 20 and classified as resolved QFP
(certain) or 3D. This filtering was done to minimize lo-
cational error [35] and resulted in a mean loss of 3.93%
(SD = 2.67%) of the data points.
Den entry and den emergence were identified by visu-

ally examining the GPS points for each bear and identi-
fying when movement stopped in the fall and began in
the spring. Only points outside of the denning period
were used in the analyses.

Environmental variables
We selected a suite of landscape variables that may
affect black bear movement (Table 1). Many variables
were available across the entire study area. However,
some variables were mapped more accurately in Massa-
chusetts by the state Bureau of Geographic Information.
Since most of our GPS locations were in Massachusetts,
we combined the more accurate Massachusetts layers
with region-wide layers by cross-walking categories from
both data sets into a single layer. All raster variables
were available at a 30 m pixel resolution. Vector data
were rasterized to match this resolution. Though some
small land use changes have occurred between the time
the GIS data were collected and when the bear GPS data
were obtained, land cover types are relatively stable in
bear range in Massachusetts and no sweeping changes
occurred over this period [37].

Seasons
Ecologically-based seasons were identified with the clus-
tering technique presented by Basille et al. [38]. This ap-
proach incorporates not only movement behavior, but

also land cover attributes to account for changes in be-
havior based on food availability. We identified seasons
using only data from bears with a 45-min fix interval
(n = 69) so that speeds and turning angles were consist-
ent. Data cleaning and missed GPS collar fixes resulted
in the time between some locations being longer than
the original collar schedule, therefore, we further subset
the data so that only consecutive fixes were used. We
then calculated movement speed and turning angle
among consecutive points for each bear and assessed
whether each point was located in coniferous forest, de-
ciduous forest, forested wetland, or agricultural areas.
We also determined the value of percent impervious
surface at each point. At the recommendation of Basille
et al. [38], we then smoothed the movement and habitat
variables for each bear-year with a 5-day moving window
and range standardized the data. We used k-means clus-
tering and selected the number of clusters with the gap
statistic [38]. This approach resulted in three seasons:
spring (den emergence to June 14th), summer (June
15th to August 9th), and fall (August 10th to den entry).
For the seasonal analyses presented below, only bears
that had a full season’s worth of data were used.

Movement steps
Because our interest was in longer movements across
the landscape, as opposed to short distance or foraging
movements, we identified movement behavior from the
step length and turning angle distributions of each bear
by using hidden Markov models with the R package [39]
moveHMM [40]. We ran a three-state hidden Markov
model which characterized behavior as (1) an encamped
state with short steps and wider turning angles, (2) a for-
aging state with slightly longer steps and smaller turning
angles, and (3) a movement state with long step lengths
and directed movement (more details and an example
are provided in Additional file 2: Figure S2). We used
only movement steps for all subsequent analyses.

Statistical analyses
Daily movement and habitat selection
Following VanCleave et al. [41], for the bears with a 45-
min fix interval, we calculated the bootstrapped mean
and confidence intervals of step lengths over each 45-
min period throughout the day for each season. We also
calculated the third-order selection ratio (sensu Johnson
[42]) for each bear for each categorical predictor variable
for each 45-min period. The selection ratios were esti-
mated for each individual by first calculating the total
proportion of each categorical variable within its sea-
sonal 95% kernel density home range (Additional file 3).
We then calculated the mean proportion of each step
that was in each predictor variable for each 45-min time
period and divided this by the proportion of that variable
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in an individual’s seasonal home range. The boot-
strapped mean and confidence intervals for each 45-min
time period were calculated across bears.

Multi-scale step selection functions (SSF)
Due to differences observed in bear temporal movement
and habitat selection, we ran two SSFs for each season,
one with daytime points and one with nighttime points.
Day/night periods for each bear were identified using
daily sunrise/sunset times for Amherst, Massachusetts
from the Astronomical Applications Department of the

U.S. Navy Observatory. We also ran a single SSF with all
the bear data across seasons and diel periods. Bears with
the 15-min or 45-min fix interval were used for this
analysis.
Following Zeller et al. [23], the mean value (for con-

tinuous variables) or proportion of the area (for categor-
ical variables) was extracted within a 30m uniform
buffer around each step. This was the ‘used’ data for the
SSFs. We examined multiple scales for representing the
‘available’ data. Scales were determined by estimating the
mean distance moved over the following time periods:

Table 1 Environmental variables used in the black bear movement analyses

Variable Massachusetts source Buffer area source (if different from
Massachusetts source)

Topographic

Ruggedness derived from National Elevation Dataset

Slope derived from National Elevation Dataset

Development

All Roads Designing Sustainable Landscapes

Primary Roads Designing Sustainable Landscapes

Secondary & Tertiary Roads Designing Sustainable Landscapes

Primary, Secondary, & Tertiary
Roads

Designing Sustainable Landscapes

Open space Massachusetts GIS Land Use 2005 layer (cemetery, golf course, recreation
areas)

Designing Sustainable Landscapes
(developed open space)

Commercial /
Industrial

Massachusetts GIS Land Use 2005 layer (Commercial / Industrial / Junkyard /
Urban Public, Institutional / waste disposal)

Designing Sustainable Landscapes
(developed high intensity)

High density
residential

Massachusetts GIS Land Use 2005 layer (Housing on < 1/4 acre lots) Designing Sustainable Landscapes
(developed high intensity)

Medium density
residential

Massachusetts GIS Land Use 2005 layer (Housing on 1/4–1/2 acre lots) Designing Sustainable Landscapes
(developed medium intensity)

Low density residential Massachusetts GIS Land Use 2005 layer (Housing on 1/2–1 acre lots) Designing Sustainable Landscapes
(developed low intensity)

Very low density
residential

Massachusetts GIS Land Use 2005 layer (Housing on > 1 acre lots) Designing Sustainable Landscapes
(developed low intensity)

Percent impervious
surface

Designing Sustainable Landscapes

Agriculture Massachusetts GIS Land Use 2005 layer (pasture, cropland, orchard, open
land)

Designing Sustainable Landscapes
(pasture)

Powerline corridors Massachusetts GIS Land Use 2005 layer Designing Sustainable Landscapes
(developed open space)

Water and wetlands

Open water Massachusetts GIS Land Use 2005 layer Designing Sustainable Landscapes

Emergent wetland USGS National Wetlands Inventory

Forested wetland USGS National Wetlands Inventory

Vegetation

Coniferous forest Pasquarella et al. [36]; Pasquarella et al. (in prep)

Deciduous forest Pasquarella et al. [36]; Pasquarella et al. (in prep)

Mixed forest Pasquarella et al. [36]; Pasquarella et al. (in prep)

Landscape Configuration Metrics

Similarity Designing Sustainable Landscapes
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45min, 1.5 h, 2.25 h, 3 h, 4.5 h, and 6 h. The mean move-
ment distances were 360 m, 650 m, 837 m, 1007m, 1288
m, and 1523 m respectively. The scales were used as the
standard deviation for a Gaussian kernel placed over
each step. The mean value or proportion of each variable
was calculated within the Gaussian weighted kernel
around each step at each scale and were used as the
‘available’ data. Used and available data were z-score
standardized prior to modeling.
We modeled each bear independently to preserve indi-

vidual differences and predict the relative probability of
movement in a spatially unbiased manner (see Predictive
Surfaces below) [32]. We paired each used step with its
corresponding available step at a scale and ran paired lo-
gistic regressions with the clogit function from the R
package coxme [43]. For each bear, we used a two-step
approach to generate the SSF [24]. We first ran univari-
ate models for each variable at each scale. We identified
the scale with the lowest AICc value as the characteristic
scale of selection for that variable. We then assessed
pairwise correlations between the variables at their char-
acteristic scales. If pairwise correlations were | > 0.7|, we
selected the variable from each pair with the lower AICc
value for inclusion in the multiple regression models.
We ran a forward and backward stepwise model selec-
tion and identified the final model for each bear as the
model with the lowest AICc value.

Home range housing density effects on selection
To determine if bears living in more developed areas
were more acclimated to human development, we mod-
eled the standardized regression coefficient for percent
impervious surface as a function of home range housing
density (HRHD) [21]. We calculated HRHD for each
bear’s annual home range as well as each bear’s seasonal
home range. For each season, we explored a linear rela-
tionship and a logistic relationship. We also ran an inter-
cept only model. Competing models were ranked with
AICc values. We assumed that if the highest ranked
model included HRHD as a variable and that if the slope
of this model was positive, then bears were acclimating
to residential areas within their home ranges.

Predictive surfaces
Because we observed significant results from our HRHD
analysis, we concluded that bears in more developed
areas were responding to landscape features differently
than bears in undeveloped areas. To maintain this indi-
vidual variability in our predictive surfaces we did not
average the model coefficients across bears (which does
not maintain individual variability in the predictive sur-
face), but instead used the approach presented in Osi-
pova et al. [32], which spatially weights predictions for
each individual based on their home range centroid. By

projecting each bear model separately across the study
area, but combining them through a spatial weighting by
distance from home range centroid, a single surface is
obtained. To generate this predictive surface, we used
the following procedure. For each bear year, we pre-
dicted the relative probability of movement across Mas-
sachusetts using the exponentiated form of the relative
predicted resource selection probabilities as recom-
mended by Johnson et al. [44]: ŵ ðxÞ ¼ expðβ1x1 þ β2x2
þβ3x3þ … + βpxp). Before combining bear years into a
single surface, we weighted each bear’s surface so that
areas close to each bear’s home range had a higher
weight than areas further away. We implemented this by
(1) estimating a kernel density home range for each bear
for each season (Additional file 3), (2) identifying the
home range centroid, (3) generating a distance from
home range centroid surface, and (4) taking the inverse
of the distance surface so that higher values were closer
to the home range centroid [32]. This was our weighted
surface. Each pixel on the landscape was normalized so
that all the home range weighted surfaces summed to
one. We then multiplied each relative predictive surface
for each bear by the home range weighted surface and
summed them to obtain a final predicted probability sur-
face across the state for all seasons and for each season/
diel period.
We evaluated the performance of the predictive surfaces

using the hold-out data set of 20 bears and calculating the
Boyce Index [45, 46], which compares the predicted values
at the hold-out points with the expected values across the
study area. The Boyce Index has values ranging from 0 to
1 with values closer to 1 indicating better predictive abil-
ity. We compared the predictive surfaces with each other
by calculating the Pearson’s correlation coefficient and by
the pixel by pixel differences between the surfaces.

Results
Daily movement and habitat selection
Across seasons, bears moved an average of 200m every
45-min during daylight hours (Fig. 2). Movement steps
were longer during crepuscular periods with the longest
steps observed during the evening hours from approxi-
mately 16:00–21:00 h. The minimum movement lengths
occurred from approximately 02:00–03:00 h and remained
low during most nighttime hours. Seasonally, movement
activity maintained the same general patterns, but bear
steps were shorter during the spring than during other
times of year and were longer during summer than during
other times of year (Fig. 2).
The selection ratio analysis indicated bears selected for

forested areas across seasons and times of day and se-
lected for wetlands strongly during daylight hours (Fig. 3)
. Bears avoided agricultural areas at all times of day in
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spring and summer, but bears selected for agriculture in
the fall during the nighttime hours and showed variable
selection in the fall during the daytime. Agriculture in
our study area includes crops like corn, berries, apples,
and a wide variety of vegetables bears may be utilizing.
Bears had similar responses to roads and human devel-
opment; bears selected for roads and residential areas at
night during spring and fall, but strongly avoided these
areas during the day. Bears mostly selected against roads
and residential areas in the summer at all times of day
with the exception of showing a slight tolerance for resi-
dential areas at night.

Multi-scale step selection functions
The multi-scale SSF models for individual bears often
contained different variables and different numbers of
variables. The all-seasons model for each bear included
3 to 11 landscape variables with an average of 7.68 ±
1.84 variables per model. For the natural cover types,
forested wetland was present in 80% of the models, and
mixed and deciduous forest were both present in 73% of
the models (Table 2). For the developed cover types, per-
cent impervious surface was present in 61% of the
models, agriculture was present in 55% of the models,
and the other variables were included in the bear models
less often. High and medium density residential variables
were not selected for any final bear model, though low
and very low density residential variables were present
in some of the models. Similar results were observed for

each season/diel period with forested wetland, mixed
and deciduous forest, impervious surface, and agricul-
ture being present in a high number of models (Table 2).
Bears also responded to different landscape variable

scales (Additional file 4: Figure S4). Across seasons and
times of day, bears typically selected for finer scales of
forested wetland, conifer forest, primary roads, and com-
mercial/industrial lands and selected for coarser scales
of emergent wetland, agriculture, low and very low dens-
ity residential areas, imperviousness, secondary and ter-
tiary roads, deciduous and mixed forest, slope, and
ruggedness. However, the scale of selection was not con-
sistent across bears and individual bears selected varying
scales for all landscape variables (Additional file 4: Fig-
ure S4).
The response to environmental variables differed

across the bear population. Figure 4 shows the propor-
tion of the final bear models having a positive or nega-
tive coefficient for each variable. Generally, across
seasons and diel periods, bears preferred forested cover
types and wetlands and avoided agriculture, open water,
open space, roads, and high values of percent impervious
surface (Fig. 4). However, responses to these landscape
features were not consistent and changed with season
and time of day. For each season, a higher proportion of
bear models showed selection for percent impervious
surfaces, roads, and other residential development at
night than during the day. All of the models for spring
night showed a selection for low and very low residential

Fig. 2 Mean step length and confidence intervals for each 45-min period throughout the day
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development. For spring and summer during both day
and night, bear models all showed an avoidance of agri-
culture, but for fall day, about 25% of models showed a
preference for agriculture and for fall night, almost 50%
of bear models showed a preference for agriculture.

Home range housing density analysis
Bears with a higher HRHD showed weaker avoidance of
human development compared with more rural bears
(Fig. 5). The logistic model was the best fitting model
and was significant. AICc values of the logistic model,
the linear model and the intercept only model were −
10.5, − 3.8, and 5.3 respectively. The threshold of this

curve was observed around a housing density of 75–100
houses/km2. Because the percent impervious surface
variable was not included in all the bear models, when
we parsed the data into seasons, we did not have enough
data to fit the HRHD models to each season.

Probability of movement surfaces
Differences in habitat selection among the season/diel
models were reflected in the probability of movement
surfaces (Fig. 6a; statewide surfaces are provided in Add-
itional file 5: Figure S5). The correlations between the all
seasons/diel periods probability surface and the other
surfaces were all relatively high (spring day = 0.97, spring

Fig. 3 Selection ratios for forest, wetland, agriculture, roads, and residential areas for each 45-min window. All forest, wetland, and residential
types were combined in these analyses
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night = 0.62, summer day = 0.98, summer night = 0.86,
fall day = 0.98, fall night = 0.94). However, differences be-
tween the surfaces on a pixel by pixel basis could be
quite pronounced. Figure 6b shows the top 20th quan-
tiles of positive and negative differences between the all
seasons/diel periods surface and the other surfaces. Posi-
tive differences indicate that a higher probability of se-
lection was observed for the pixels in that season/diel
period than in the all seasons model. Negative differ-
ences indicate that a lower probability of selection was
observed for that season/diel period. Positive differences
in relative probability values ranged from 0.05 to 0.47
for daytime surfaces and 0.09 to 0.54 for nighttime sur-
faces. Negative differences in relative probability values
ranged from − 0.05 to − 0.45 for daytime surfaces and −
0.12 to − 0.92 for nighttime surfaces.
All the predictive surfaces had relatively high predict-

ive performance. The Boyce Index Spearman rank cor-
relation coefficient values were 0.98, 0.95, 0.72, 0.98,
0.83, 0.98, and 0.93 for the all seasons, spring day, spring
night, summer day, summer night, fall day, and fall night
surfaces respectively.

Discussion
In keeping with the ‘landscape of fear’ model [12, 14],
our study on bear movement patterns indicates that

black bears in Massachusetts mitigate the risk of being
in areas of human development by altering their behav-
ior to exploit these areas when human activity is low.
Nocturnal utilization of developed areas was strongest in
the spring, when natural foods are more limited, and in
the fall, when bears are in a state of hyperphagia. Our
study also found that bears with higher amounts of hu-
man development in their home ranges did not avoid
human areas as strongly as more rural bears, indicating
bears are acclimating to living in developed areas. Given
the differences among bears living in rural and more de-
veloped areas, our spatial predictions of black bear
movement preserved the individual nature of bears ex-
posed to different landscape features.
Black bear movement patterns were typical of black

bears in wildland areas with most movement occurring
during the day, with peaks during morning and evening
hours [9, 17]. However, examining daily selection for dif-
ferent landscape features showed that when bears did
move at night, they displayed a preference for roads and
residential areas, especially in the spring and fall. This is
a shift from normal activity patterns and suggests behav-
ioral plasticity in response to human development. Simi-
lar nocturnal shifts have been observed in other black
bear studies in developed areas [9, 18–20]. Black bears
may be shifting their use of developed areas to times

Table 2 Proportion of bear models containing each environmental variable. Because the step selection functions were optimized
for each individual bear, not all bears had the same explanatory variables in their final models

All seasons/diel periods Spring day Spring night Summer day Summer night Fall day Fall night

Percent impervious surface 0.61 0.29 0.14 0.55 0.33 0.35 0.30

All Roads 0.17 0.34 0.19 0.13 0.19 0.28 0.30

Secondary & Tertiary Roads 0.10 0.15 0.14 0.17 0.13 0.15 0.11

Primary, Secondary, & Tertiary Roads 0.11 0.16 0.14 0.13 0.19 0.21 0.15

Primary Roads 0.06 0.05 0.05 0.02 0 0.07 0

Very low density residential 0.14 0.24 0.38 0.21 0.19 0.12 0.26

Low density residential 0.18 0.11 0.43 0.19 0.14 0.12 0.22

Commercial / Industrial 0.23 0.21 0.29 0.17 0.10 0.09 0.07

Open space 0.14 0.05 0.24 0.06 0.05 0.05 0.11

Agriculture 0.55 0.47 0.48 0.43 0.43 0.40 0.48

Powerline corridors 0.30 0.05 0.14 0.32 0.14 0.19 0.22

Slope 0.48 0.34 0.29 0.30 0.24 0.37 0.26

Ruggedness 0.52 0.26 0.24 0.49 0.33 0.47 0.33

Similarity 0.48 0.53 0.43 0.34 0.38 0.56 0.48

Open water 0.26 0.21 0.48 0.15 0.14 0.14 0.19

Emergent wetland 0.44 0.50 0.48 0.43 0.24 0.23 0.30

Forested wetland 0.80 0.53 0.29 0.64 0.24 0.81 0.52

Coniferous forest 0.55 0.39 0.43 0.34 0.33 0.35 0.33

Mixed forest 0.66 0.47 0.38 0.44 0.57 0.53 0.44

Deciduous forest 0.73 0.58 0.33 0.57 0.38 0.67 0.70
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when human activity is low, indicating black bears per-
ceive human activity and associated noise and traffic as
risky and may be responding to these environmental
cues more than human infrastructure on the landscape
[21, 47]. These shifts are not only occurring in black
bears, but have also been documented in other species.
In a meta-analysis on 62 species, Gaynor et al. [48]
found that large mammals significantly increased noc-
turnal activity in response to all types of human
presence.
Limitations of natural food sources as well as the ener-

getic state of individual bears may drive when bears are
willing to utilize riskier human dominated areas. We
found black bear use of developed areas at night was
strongest in the spring and fall, indicating these behav-
ioral shifts can be dynamic throughout the year and may

be tied to caloric requirements. In our study area, the
availability of natural foods in the spring is lower than
other times of year, and in the fall, bears are in a state of
hyperphagia and have increased metabolic requirements.
In the summer, though movement rates of bears are
higher than the other two seasons, this nocturnal shift is
not as prominent, suggesting greater availability of nat-
ural food sources in less risky environments and that
bears weigh risks with energetic demands. Baruch-
Mordo et al. [20] and Johnson et al. [19] found that the
shift to increased activity in developed areas was coinci-
dent with poor food years. We did not measure natural
food availability directly, so were unable to study
whether bears in Massachusetts exhibited higher use of
human development in poor food years. Furthermore,
our study only included female bears, but Johnson et al.

Fig. 4 Proportion of bear movement models with a positive or negative regression coefficient for a variable. Blue bars indicate the proportion of
models with positive coefficients and orange bars indicate the proportion of models with negative coefficients. Because the step selection
functions were optimized for each individual bear, not all bears had the same explanatory variables in their final models
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[19] found use of human development was also
dependent on sex and age, and Evans et al. [21] found
use of development was a function of reproductive sta-
tus, lending further evidence that use of human develop-
ment is temporally dynamic. Expanding this research to
include male bears as well as bears in different age clas-
ses and reproductive states would allow for a more
nuanced picture of black bear response to human devel-
opment in Massachusetts. Additionally, this research
could be enhanced by using time of day as a continuous
variable in the SSF models instead of using a binary clas-
sification of day and night.
The unit of inference for our SSF analysis was the step

between consecutive GPS collar fixes. Previous studies
have found that as the time between fixes increases, the
paths of individuals become less tortuous and shorter in
length [49], and biases may be introduced into SSFs at
fix rates of one hour or more [23]. Our steps were at 15
and 45-min intervals and though this period may not be
short enough to completely capture the more tortuous
bear movements, we are confident in our inferences.
The results are biologically meaningful and echo previ-
ous research on bear habitat use and movement.
Bears with a higher housing density in their home

ranges had a significantly weaker avoidance of impervi-
ous surfaces, indicating bears were acclimating to human
development. This relationship was best expressed as a
threshold, where weaker avoidance was observed at
home range housing densities above approximately 75
houses/km2. Evans et al. [21] also found a significant re-
lationship between home range housing density and de-
velopment and that bears showed a preference for
development when their home range housing density
was over 66 houses/km2. In our study, bears did not
show preference, but instead, weaker avoidance with

home range housing density. Differences among these
studies are likely due to the use of different measures of
development. Evans et al. [21] used housing density
whereas we used percent impervious surface, which is
not restricted to buildings, but includes roads and other
surfaces associated with development. Furthermore, our
sample of bears included bears in areas that were more
highly developed than those in the Evans et al. [21]
study.
Bears in Massachusetts showed a high degree of inter-

individual variability. Not only were bears in human
dominated areas more acclimated to development than
other bears, but also movement of individual bears was
driven by different landscape features. Bear movement
models had different numbers and types of variables and
preference or avoidance of a variable was dependent on
the individual bear. In general, bear movement was facil-
itated by forest and forested wetland and impeded by
roads and developed areas, but this was not entirely con-
sistent across the population especially when seasonality
and time of day was considered. Lesmerises and St-
Laurent [25] observed individuality in black bears and
found opposite selection coefficients that were linked to
individual characteristics. They also found that when all
bears were included in a population-level model, these
opposite responses cancelled each other out and resulted
in weak selection responses. For an omnivorous, gener-
alist species such as the black bear, that is capable of be-
havioral plasticity depending on its environment,
ignoring individual variability can result in inconclusive
or misleading results [25].
Accounting for individual variability by modeling each

individual separately provides important insights for un-
derstanding wildlife habitat use and movement. How-
ever, applying individual models in a spatially explicit
manner to project habitat use or movement across a
study area is impractical due to the sheer number of in-
dividual surfaces this would produce. This has prevented
the use of individual models in spatially projecting re-
source use and movement. Osipova et al. [32] provides a
nice solution to this problem with an approach that
maintains the individuality of each bear relative to its lo-
cation in a study area. By projecting each bear model
separately across the study area, but combining them
through a spatial weighting by distance from home
range centroid, a single surface is obtained. Osipova et
al. [32] demonstrated that this spatial weighting ap-
proach outperformed the surface derived from a popula-
tion level model where the regression coefficients were
averaged. We implemented the Osipova et al. [32] ap-
proach and produced predictive movement surfaces
spatially weighted by each individual bear. The high
Boyce Index values indicate high predictive performance
of these models. Because the individual-based spatially

Fig. 5 Logistic relationship between the home range housing
density for each bear and the standardized regression coefficient for
percent impervious surface from the step selection function models
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weighted approach is still a relatively new method, more
research is needed to determine how many individuals
and over what spatial configuration is ‘enough’ to result
in meaningful predictions. Additionally, Signer et al.
[50], recommended a simulation-based approach for
generating the predictive surfaces from SSF models as

they found it to perform better than the traditional ap-
proach of multiplying the coefficients with the geospatial
variables. Some combination of the individual-based
spatially weighted approach proposed by Osipova et al.
[32], and the simulation-based approach proposed by
Signer et al. [50] may further improve predictive surfaces

Fig. 6 (a) Spatially weighted relative probability of movement surfaces for each season/diel period and all seasons/diel periods. A small part of
the Commonwealth of Massachusetts is shown. See reference map for major land cover types in this region. (b) Differences in the relative
predicted probability of movement surfaces. Each seasonal/diel period surface was subtracted from the all seasons/diel periods surface. A positive
difference indicates that the pixel in the seasonal/diel period surface had a lower probability of movement than that same pixel in the all seasons
surface. A negative difference indicates that the pixel in the seasonal/diel period surface had a higher probability of movement than the all
seasons surface. The top 20% of positive differences (blue) and top 20% of negative differences (yellow) are shown.
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generated from SSFs, however more research on this
topic is needed.
Accounting for time of day and season was also im-

portant in our predictive surfaces. Bear movement may
be interpreted differently depending on the time of day
and season and it is important to account for these dif-
ferences when assessing movement across the landscape,
especially if predictive surfaces are to be used in identify-
ing areas of connectivity, conservation corridors, and
road crossing locations.

Conclusions
Understanding the movement of large mammals in and
around areas of human development is crucial for devel-
oping successful management plans and mitigation ap-
proaches for reducing human wildlife conflict. We
analyzed black bear movement in the third most densely
populated state in the U.S. and observed behavioral plas-
ticity and acclimation to human development. We also
observed inter-individual differences and suggest main-
taining these inter-individual differences when spatially
predicting movement across a landscape. We were un-
able to assess whether use of developed areas conferred
positive or negative fitness benefits, but this is a question
for future research. Our results offer insights into the
landscape of fear for black bears and what drives their
spatial and temporal use of human dominated areas and
may be used by managers across highly developed land-
scapes, such as the state of Massachusetts. Our predict-
ive surfaces will also help identify how and where bears
are expanding as they move closer to the Boston metro-
politan area.
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