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Abstract

Background: Because empirical studies of animal movement are most-often site- and species-specific, we lack
understanding of the level of consistency in movement patterns across diverse taxa, as well as a framework for
quantitatively classifying movement patterns. We aim to address this gap by determining the extent to which
statistical signatures of animal movement patterns recur across ecological systems. We assessed a suite of
movement metrics derived from GPS trajectories of thirteen marine and terrestrial vertebrate species spanning
three taxonomic classes, orders of magnitude in body size, and modes of movement (swimming, flying, walking).
Using these metrics, we performed a principal components analysis and cluster analysis to determine if individuals
organized into statistically distinct clusters. Finally, to identify and interpret commonalities within clusters, we
compared them to computer-simulated idealized movement syndromes representing suites of correlated movement
traits observed across taxa (migration, nomadism, territoriality, and central place foraging).

Results: Two principal components explained 70% of the variance among the movement metrics we evaluated
across the thirteen species, and were used for the cluster analysis. The resulting analysis revealed four statistically
distinct clusters. All simulated individuals of each idealized movement syndrome organized into separate clusters,
suggesting that the four clusters are explained by common movement syndrome.

Conclusions: Our results offer early indication of widespread recurrent patterns in movement ecology that have
consistent statistical signatures, regardless of taxon, body size, mode of movement, or environment. We further
show that a simple set of metrics can be used to classify broad-scale movement patterns in disparate vertebrate
taxa. Our comparative approach provides a general framework for quantifying and classifying animal movements,
and facilitates new inquiries into relationships between movement syndromes and other ecological processes.

Keywords: Movement ecology, Migration, Nomadism, Central place foraging, Territoriality, GPS data, Classification
scheme, Cluster analysis

Background
Animal movement is an essential determinant of individ-
ual fitness (e.g. resource acquisition, survival), with critical
implications for population persistence (e.g. dispersal,
gene flow), species distributions, and ecosystem function
(e.g. ecosystem engineering, propagule dispersal) [1–4]. In

the so-called Anthropocene, movement will also play a
critical role in species and community responses to envir-
onmental change [5–7]. Because of the profound import-
ance of movement in driving the spatial dynamics of
multiple levels of ecological organization, a deeper inte-
gration of movement ecology into wildlife ecology and
conservation biology has recently been highlighted as a
research priority [8]. A rigorous classification of move-
ment patterns is needed, independent of the mechanisms
that produce those patterns, to better link movement
ecology with other areas of ecological research. In
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particular, these patterns may be used to inform predic-
tions in such areas as the invasive potential of exotic
species [9], how diseases may spread through contact-
networks [10], or how species may respond to climate
change [11]. Pattern classification tools will moreover
allow us to investigate factors, including life history traits,
that produce common movement patterns across organ-
isms. Yet, because empirical studies of animal movement
are most-often site- and species-specific [12], we lack a
sense of the extent to which classes of movement patterns
recur across diverse organisms.
In behavioral ecology, the concept of behavioral

syndromes, i.e. suites of correlated behaviors, has aided
quantification of animal behavioral types and their inte-
gration into ecological and evolutionary studies [13].
Analogously, we aim to quantitatively characterize move-
ment syndromes, i.e. suites of correlated movement traits
[14], such as migration or nomadism [13, 15]. A rapidly
growing body of movement studies has generated a
number of promising methods and metrics to differenti-
ate movement patterns [16–18], but few empirical stud-
ies have tested the utility of these metrics across
multiple species, let alone highly diverse vertebrate taxa
[19]. Different taxa not only have different modes of
movement (e.g., swimming versus terrestrial locomo-
tion), but also move across spatial and temporal scales
that differ by orders of magnitude. Thus, a unified
framework for characterizing movement syndromes
requires an examination across a range of taxa, move-
ment modes, and body sizes.
Here, we provide the some of the first empirical evi-

dence that statistical signatures of animal movement
patterns recur across widely disparate taxa and can be
used to classify movement syndromes for terrestrial,
aerial and marine species. Three movement syndromes
appear repeatedly in the literature from which we draw
upon: range residency, nomadism, and migration [17,
19–21]. Range residency can be further expanded upon
to include central place foraging and territoriality, yield-
ing four movement syndromes classically defined as: 1)
central-place foraging, in which individuals return to
fixed locations between foraging trips [22]; 2) territorial-
ity, in which individuals actively demarcate the boundar-
ies of fixed areas against conspecifics [23]; 3) nomadism,
in which individuals move unpredictably with little to no
site fidelity [24]; 4) migration, in which individuals move
with persistence from one habitat area to another, bi-di-
rectionally and with temporal predictability [25]. These
movement syndromes may be lifetime descriptors corre-
lated with life history types, or life history stage descrip-
tors of significant movement phases (e.g. breeding,
resource pulses, etc.). We excluded dispersal from our
assessment because it is a rare, life-history-related event
that typically occurs over short time-scales [26]. While

the four syndromes considered in our study differ
conceptually and qualitatively, we develop a novel meth-
odology for their quantitative distinction.
We expected similar forms and characteristics of

movement to underlie the same syndrome across taxa,
movement modes, and body sizes. To evaluate this
prediction and test whether simple metrics can reliably
classify movement syndromes, we assessed five key
movement metrics for GPS trajectories of individuals
from thirteen species spanning three taxonomic classes,
continents, movement modes, and orders of magnitude
in body size. Using these metrics, we performed a cluster
analysis to determine if our study organisms fell into
statistically distinct groupings. We compared the result-
ing four groupings with simulations of the four idealized
syndromes – central place foraging, territoriality,
nomadism, and migration – which revealed that ob-
served groupings were explained by common movement
syndromes. Thus, our approach provides a framework
for a rigorous large-scale movement classification
scheme that may facilitate the integration of animal
movement into other areas of ecology by pairing the
movement syndrome of an animal with ecological and
life-history data to develop and test predictions.

Methods
Empirical data
We gathered satellite-derived movement data for the
following species: African buffalo (Syncerus caffer),
African elephant (Loxodonta africana), African wild dog
(Lycaon pictus), black-backed jackal (Canis mesomelas),
California sea lion (Zalophus californianus), cheetah
(Acinonyx jubatus), Galapagos albatross (Phoebastria
irrorata), Galapagos tortoise (Geochelone nigra), African
lion (Panthera leo), northern elephant seal (Mirounga
angustirostris), plains zebra (Equus quagga), springbok
(Antidorcas marsupialis), and white-backed vulture
(Gyps africanus). Species were chosen to represent an
array of taxa, environments, and body sizes, but were re-
stricted by the availability of datasets with sufficient
quality in terms of resolution (<= 1 h fix intervals) and
duration (continuous data collection for > = 2 months to
allow for quantification of monthly home range overlap),
with the exception of Galapagos albatross data that were
collected at 90-min intervals. All datasets were derived
from GPS units except the California sea lion and north-
ern elephant seals that were fitted with ARGOS tags; for
these, data were first filtered for errors and smoothed
using a state space model to obtain hourly position esti-
mates using the R package crawl [27–30]. All data were
resampled to a 1-h resolution to achieve consistent fix
rates for comparison. To check the sensitivity of our
results to temporal resolution, we reran the following
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analyses at 3-h intervals. See Additional file 1: Table S1
for a detailed summary of data and sources.

Movement metrics
We employed five metrics widely applied in current
movement studies and grounded in ecological theories
of animal movement in heterogeneous landscapes. Turn
angle correlation and net-squared displacement are two
central parameters in random-walk (RW) models, which
are extensively used to evaluate animal search strategies
and foraging efficiency [30–33]. Variations of random
walk models have been shown to approximate nomadic
movement via uncorrelated RWs [17], central-place for-
aging via biased RWs [34], and territorial behavior via
correlated RWs [35]. When spatially-explicit information
about the landscape is known, ecologists have employed
a variety of time-use metrics to quantify how animals
exploit resources. In heterogeneous landscapes, for
example, animals are predicted to adjust their residence
times and/or return times to a given area in response to
variation in resource quality [36–38]; these two proper-
ties have been linked to emerging patterns of home
range residency [38]. Over longer timescales, measures
of home range stability, such as the amount of overlap
between seasonal home ranges, can inform theory on
how animals respond to temporal predictability of
resources [39] and have been used to identify migration
patterns [40]. Because movement processes are often
scale-dependent and those of a given syndrome may be
observable at one or more spatiotemporal scales [41], we
considered that our metrics were relevant over a range
of timescales — in our case, hour, day, month, and life-
time of trajectory. Thus, for each individual in our data-
set, we calculated five movement metrics suitable for
analysis over these timescales as follows:

1. Mean turn angle correlation (TAC). Following Dray
et al. (2010), we calculated angular
autocorrelation SA as the sum of squares of chord
distances between N successive turn angles ρ:

SA ¼ 1
N

X

n¼1

N−1
cosρnþ1 − cosρn

� �2 þ sinρnþ1 − sinρn
� �2h i

Thus, small chord distances resulting in low SA values
correspond to high turn angle correlation [42].

2. Mean residence time (RT). Residence time was
measured as the number of hours the animal spends
inside a circle of a given radius centered on each
location without leaving the radius for more than a
specified cut-off time [38]. We tested the sensitivity
of a subset of our dataset to radii of mean step

length (SL), 2 x mean SL, 4 x mean SL, and 8 x
mean SL, where SL was calculated as the mean
Euclidean distance between successive relocations,
and cut-off times of 12 and 24 h. Consistent
time-use patterns were observed across these
thresholds, so following van Moorter et al. (2015),
we used a radius of mean SL and a 12-h cut-off
time.

3. Mean time-to-return (T2R). Time-to-return was
measured as the number of hours the animal spends
beyond a specified cut-off time before its return to a
circle of a given radius centered on each location
[38]. We conducted the same sensitivity analysis for
this metric as above, and finding consistent patterns
across thresholds, we again used a radius of mean
SL and a 12-h cut-off time.

4. Mean volume of intersection (VI). Volume of
intersection was measured by the overlap between
monthly 95% kernel density home ranges [43, 44].
Volume of intersection varies between 0 and 1, with
increasing values corresponding to increasing
overlap between monthly home ranges. VI is thus a
measure of home range stability.

5. Maximum net squared displacement (MNSD).
Maximum net squared displacement was calculated
as the maximum squared Euclidean displacement
from the first relocation of the trajectory over the
full course of the trajectory [45]. To make
comparisons among individuals across species that
have orders of magnitude different motion
capacities, we scaled this parameter for each
individual by dividing by the smallest MNSD
observed for its species.

All movement metrics were calculated using the
adehabitatLT and adehabitatHR packages [46, 47] in
R 3.3.2 [29].

Cluster analysis
To elucidate any underlying structure in our dataset, we
performed a principal components analysis (PCA) for
the above metrics calculated from our empirical datasets
using the prcomp function in the R stats library [29].
PCA is a widely used technique for summarizing a
multivariate dataset into a reduced number of uncorre-
lated dimensions, or principal components, while minim-
izing the loss of information in the original dataset [48].
We used the Broken-stick criterion to retain important
composite (PC) axes, in which components are retained
if their eigenvalues exceed those expected by random
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data [43]. Comparative analyses of component retention
methods have shown the Broken-stick model to be
among the most reliable techniques [48, 49]. To
normalize the dataset for this analysis we first log-
transformed the data, followed by centering around the
mean and dividing by the variance [50].
Finally, we applied Ward’s agglomerative hierarchical

clustering algorithm to the resulting PCA values [51]
using the hclust function in the R stats library [29]. This
approach clusters the most similar pair of points based
on their squared Euclidean distance at each stage of the
algorithm, and is an efficient method to identify clusters
based on minimum within-cluster variance without
making an a priori determination of the number of
clusters to generate [52]. These clusters can be viewed
as functional movement groups, analogous to functional
types first theorized for plant communities, which
provide a non-phylogenetic classification based on
shared responses to environmental conditions [53]. To
determine the significance of the resulting cluster
arrangement, we calculated p-values for each cluster via
multi-scale bootstrap resampling with 1000 bootstrap
replications using the R package Pvclust [54, 55]. By
simulating the following idealized movers and determin-
ing their cluster assignments, we were able to identify
these clusters by movement syndrome.

Simulated data
To interpret the resulting clusters, we developed
spatially-explicit models simulating four movement syn-
dromes: central place foraging, territorial, nomadic, and
migratory (Fig. 1). Central place foragers and territorial
individuals were assumed to have stable home ranges,
whereas nomadic and migratory individuals moved
without boundary constraints. For each syndrome, we
simulated six individuals, using rules described below. In
all cases, we drew step length and turning angle ran-
domly from probability distributions, enabling variation
in the movement paths of individuals within the same
syndrome. We simulated data for each individual for
3600 time steps at hourly intervals, with the exception
of migratory individuals, which we simulated for 7200
time steps to incorporate a return migration. R code for
these simulations is provided in Additional file 2, with
additional information about parameter settings includ-
ing scalar multipliers for step size and standard
deviations of normal distributions used for correlated
turning angles.

Central Place Foragers (CPFs)
For CPFs, we assumed that resources are optimal at the
center of the home range (the ‘central place’) [56]. We
drew steps within the core of the home range from a
uniform distribution and weighted them by the distance

to the edge of the home range to simulate greater space
use within the core. Upon reaching the home range
boundary, we drew turning angles from a normal distri-
bution with a mean 180° from the direction the
simulated individual was traveling rather than a uniform
distribution, leading to its return to the home range
center.

Territorialists
The territorial individual functioned in an opposite fash-
ion from CPFs in terms of its selective use of the outer
edges of its home range – in effect demarcating or
defending the territory [57]. Steps were weighted by the
distance to the home-range center. Turning angles, how-
ever, were adjusted as for CPFs to maintain home range
stability.

Nomads
We assigned these individuals randomly to one of two
states: foraging or exploratory [58]. The probability of
switching from one state to the other in nomads was
0.05 based on empirical estimates ranging from 0.018–
0.09 [59, 60]. The foraging state was meant to simulate
movement patterns in the vicinity of high quality
resources, so we applied lower weights to step sizes for
the foraging state than for the exploratory state. We
drew turning angles from a uniform distribution for the
foraging state and a normal distribution for the explora-
tory state with a mean of the initial direction after
switching from the foraging state.

Migrants
We assigned these individuals to one of two states: sed-
entary or migratory [58]. In the sedentary state, we de-
fined movement by uniform step size and turning angle
distributions. We defined the migratory state by highly
directional movement, with long step sizes and highly
correlated turning angles [61]. After an approximately
four-month period of residence, the individuals migrated
for about two months before entering a sedentary state
for another four months at their new location, then
returned to their origin location over the course of a two
month return migration.

Results
The first two principal components (PC) of the PCA
explained 70% of the variance among the five movement
metrics and thus PC1 and PC2 were retained for the
cluster analysis using the Broken-stick criterion (Table 1).
Plotting our data along the minor PC axes (PCs 3, 4, and
5) did not provide informative clusters, suggesting that
the first two PCs are sufficient for classifying individuals
by syndrome (Additional file 3: Figure S2). Using acro-
nyms VI (Volume of Intersection), RT (Residence Time),
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T2R (Time-to-Return), TAC (Turn Angle Correlation)
and MNSD (Maximum Net Squared Displacement), the
first PC represented a contrast primarily between VI + RT
and TAC + MNSD, with a somewhat smaller contribution
of T2R, to the latter. The second PC represented a con-
trast primarily between T2R and TAC + MNSD. Because
of evidence of collinearity between MNSD and TAC, as
well as VI and RT (Fig. 2b), we ran the PCA using
different combinations of a reduced set of three variables
(Additional file 3: Figure S3). Despite potential collinearity,
we found that including only three variables performed

less well than including all five, presumably because some
variables play a larger role in classifying particular syn-
dromes than others (Fig. 3).
The resulting cluster analysis identified four statisti-

cally significant groupings (Fig. 2a). All individuals of the
four simulated movement syndromes fell into separate
groups. These results were robust to reducing the
sampling resolution from hourly to 3-hourly (Additional
file 4). A full dendrogram displaying individual leaves
within clusters is provided in Additional file 3: Figure
S1. The heights of the associated dendrogram branches

Table 1 Contributions of variables to and cumulative percentage of variance explained by principal components. PC1 and PC2 are
significant components based on the Broken-stick criterion and retained for the cluster analysis

PC1 PC2 PC3 PC4 PC5

Turn Angle Correlation 0.47 0.47 −0.12 −0.55 −0.50

Residence Time −0.46 0.17 0.72 0.04 −0.50

Time-to-Return 0.35 −0.68 0.46 −0.45 0.08

Volume of Intersection −0.50 0.23 −0.00 −0.67 0.49

Maximum Net Squared Displacement 0.44 0.48 0.51 0.21 0.51

Cumulative Percentage of Variance Explained 51.5% 70.1% 84.4% 94.8% 100%

Fig. 1 Sample path simulations for four idealized movement syndromes. Movement paths begin at the blue triangle and end at the red square
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correspond to the squared Euclidean distances between
clusters in PCA-defined movement ecology space (Fig.
2b). Thus, clusters that diverge at lower heights (have
shorter branches) have greater similarity. Multiple

species were represented in more than one cluster,
showing that more than one movement syndrome may
occur within a monospecific population (Table 2;
Additional file 3: Figure S1).

Fig. 2 a Dendrogram tree displaying results of Ward hierarchical cluster analysis of all individuals based on PC1 and PC2 values, and
bootstrapped p-values for each cluster. See Additional file 3: Figure S1 for full display of individual leaves within each major cluster. b Scatterplot
of individuals based on PCA-defined axes. Simulated individuals are plotted for reference, although not included in the PCA. c Scatterplot of
classified individuals based on PCA-defined axes. Ellipses represent the 50% probability contour for cluster classifications
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Analysis of the movement metrics for each cluster
revealed distinct differences between putative syndromes
(Fig. 3). Specifically, individuals in the migrant cluster
had the highest average turn angle correlation, times to
return, and maximum net squared displacement, and
the lowest average residence times and volume of inter-
section. In contrast, individuals in the central place
cluster had the highest average RT and VI and lowest
T2R. Individuals in the territorial cluster had next-to-
highest T2R and VI, and lowest MNSD. Finally, individ-
uals in the nomadic cluster had intermediate values for
all metrics.

Discussion
Quantitative descriptions of broad-scale movement pat-
terns seen across taxa are limited by the species-specific
nature of movement studies, often due to constraints in
funding or feasibility [12]. By combining movement data
from thirteen taxonomically diverse species with simu-
lated movement trajectories representing four movement

syndromes, our results offer an early indication of
widespread recurrent patterns in movement ecology that
have consistent statistical signatures, even in highly
disparate ecological systems. Our analysis found that
movement syndromes were conserved across ecotype, in-
cluding marine systems which change more rapidly than
terrestrial habitats [62]. We show that the trajectories of
individuals can be classified into these movement
syndromes using a suite of simple metrics. Ultimately,
classifying individuals by movement syndromes provides a
window to predicting spatial and broader life history
patterns.
Importantly, our movement syndrome classifications

did not simply divide by species membership, but
instead indicated movement strategies common across
individuals within their syndrome cluster. For some spe-
cies, such as the black-backed jackal, all individuals were
assigned to the same syndrome (Table 2). For other spe-
cies, assignments were made to more than one syn-
drome. For instance, half of the Galapagos tortoises in
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our dataset exhibited seasonal altitudinal migrations [63]
and were appropriately classified as migrants, while the
remaining resident tortoises were classified as CPFs (see
Additional file 3: Figure S4 for movement paths). This
highlights the value of examining intraspecific variability
in movement behavior when assessing population-level
movement patterns. It also emphasizes the need to con-
sider the degree to which populations of a species con-
tain multiple movement syndromes, particularly when
developing conservation and management plans.
Results from our principal components analysis

showed that movement syndromes could be differenti-
ated based on two orthogonal axes. From left to right
along PC1 were clustered CPFs/territorial individuals,
nomads, and migrants (Fig. 2b), suggesting this axis indi-
cates a spectrum of random walk movement from diffu-
sive (low directional persistence) to advective (high
directional persistence) movement [30]. In contrast,
along PC2 territorial individuals have low values and
CPFs have high values. This second axis can be inter-
preted as a continuum of low to high repeated use of
resources, as territorial animals may limit returns to
previously visited sites in exchange for patrolling a
greater proportion of their territory [57], while CPFs by
definition have high site fidelity and return rates to their
‘central place’ [56]. Contrary to our expectations, terri-
torial individuals were more closely associated with no-
mads than CPFs (Fig. 2a), likely because of the strong
role their similar values of T2R play in defining PC2
(Fig. 3). There is also a clear trend along the PC2 axis
differentiating terrestrial species and marine species.
Across movement syndromes, marine species — here,
migratory Northern elephant seals and central placing
foraging Galapagos albatrosses and California sea lions

— have lower mean T2R and higher MNSD and TAC
than their terrestrial counterparts. We hypothesize that
these differences could be attributed to the high motion
capacity of marine organisms [64], facilitation of move-
ment in air and water with few static barriers requiring
circumnavigation (resulting in higher turn angle correl-
ation) [65], and greater dispersion of resources in pelagic
environments [66].
No single metric could be used to distinguish the four

movement syndromes, suggesting that these metrics
must be assessed in concert. While significant headway
has been made applying a single statistic such as Net
Squared Displacement to differentiate between sedentary
home range behavior, migration and nomadism in a sin-
gle taxon [17, 21, 67], distinguishing between more com-
plex forms of sedentary behavior such as territoriality
versus central place foraging, and among disparate taxa,
is a greater challenge. Thus, we recommend evaluating
movement with multiple metrics in order to capture
metric- or scale-dependent patterns. Our choices of
metrics reflect those prevalent in current studies of
movement ecology and were selected to represent mul-
tiple time scales of analysis relevant to resource use on
land- and seascapes. Our results indicate that the
metrics used here can serve as informative synoptic
measures to classify a broad array of organisms into
movement syndromes. However, future research should
test the utility of other movement metrics in classifying
organisms into additional meaningful classes in ecology.
We also note that while our syndromes were defined by
individual movement metrics, syndromes emerging from
behavioral responses to conspecifics, such as territorial-
ity, also could potentially be elucidated by evaluating
movement patterns at a population level.

Table 2 Summary of 130 individuals within 13 species analyzed into cluster classifications

Species N individuals Migratory Central place Nomadic Territorial

African buffalo 5 - - 2 3

African elephant 8 - 1 4 3

African wild dog 13 - 9 1 3

Black-backed jackal 15 - 15 - -

California sea lion 15 1 14 - -

Cheetah 5 - - - 5

Galapagos albatross 8 - 8 - -

Galapagos tortoise 8 4 4 - -

Lion 9 - 1 1 7

N. elephant seal 15 15 - - -

Plains zebra 9 - - 6 3

Springbok 10 2 4 4 -

White-backed vulture 10 - 2 3 5
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Additionally, many movement metrics will be sensitive
to the temporal resolution or duration of the data
collected [41, 68]. For the purposes of illustration, we in-
vestigated 1-h and 3-h resolution data collected for at least
two months to allow quantification of monthly volume of
intersection, yet other analyses may use different time-
scales that, for example, better capture single life events
such as dispersal. Lower sampling rates have also been
shown to reduce ability to distinguish among behavioral
modes [69]. Indeed, our re-analysis for data subsampled
to 3-h resolution had a harder time distinguishing be-
tween nomadic and central place foraging syndromes for
some individuals (Additional file 4). Generally, metrics
measuring movement at finer scales were more sensitive
to the fix rate. For subsampled data, residence times in-
creased and times to returns decreased when compared to
those derived from hourly fixes. As demonstrated in other
studies, turn angles became also less correlated at lower
resolution [69], while volume of intersection and max-
imum net squared displacement metrics remained stable.
Despite these differences, our analysis of lower resolution
data retained four distinct clusters that matched the
proposed syndromes in the simulations, and main-
tained the majority of syndrome assignments for the
empirical data (Additional file 4).
While we cannot ground-truth the classification of

each study animal in our dataset, their assignments are
consistent with how we understand their movement pro-
cesses, such as the tortoise assignments described above
[63], northern elephant seals performing long-distance
migrations [28], and California sea lions making re-
peated foraging trips from their breeding colony [70]. A
priori predictions for individual African wild dogs, lions
and cheetahs based on behavioral observations made
during movement data collection also match their classi-
fications (Botswana Predator Conservation Trust, per-
sonal communication). Because the classification scheme
is determined by our syndrome simulations, assignments
may exist that are contrary to expectations and these
may prompt deeper investigation into the ecology of the
study system. For example, all of the California sea lions
in our dataset were breeding females restricted to central
place foraging and were correctly assigned as CPFs
except one: this individual exhibited foraging trips an
order of magnitude greater in distance than its
conspecifics, and as a result was classified as a migrant
(Table 2; see Additional file 3: Figure S5 for movement
paths). This result could subsequently direct researchers
to more closely examine the behavior and ecology driv-
ing this intraspecific variation in foraging patterns.
Finally, it is important to note that individuals may

transition between syndromes seasonally or during dif-
ferent life stages. One such example (not analyzed here)
is the Pacific salmon (Oncorhynchus spp.), which

undertakes a one-time migration as juveniles [71]. Indi-
viduals can also experience seasonal transitions, such as
male springbok that enter a highly territorial phase [72]
or pelagic seabirds that become CPFs [73, 74] during
their breeding season. These transitions can explain why
some individuals within a species that have the same life
history pattern may be categorized differently, or appear
at the interface between two syndromes. For example,
among African wild dogs, which have annual denning
periods during which they are restricted to central place
foraging [75], most were classified as CPFs while some
were classified as territorial and one was nomadic (Table
2). These differences can reasonably be explained by the
life history stage of an individual during data collec-
tion. We include an approach to quantify the degree
of intermediacy between syndromes in Additional file
5. Developing methods for dividing an individual’s
trajectory into constituent movement syndromes is an
arena ripe for future research.

Conclusions
Our findings suggest that a relatively simple set of met-
rics can be used to reveal movement syndromes across
taxa, environments, and spatial scales. While our study
species span multiple taxa, movement modes, and order
of magnitudes in body size, future work should continue
to evaluate the generality of our approach by applying it
to additional taxa. In short, our quantitative classifica-
tion scheme opens the way to further studies relating
movement syndromes to ecological factors, as well as life
history traits. This has important implications for
current attempts to incorporate species traits into cli-
mate change predictions [76]. For example, the inclusion
of coarse classifications of species’ movement capacities
(permanent resident, short-distance migrant, and long-
distance migrant) into species distribution models has
been shown to improve predictions of the probability of
range shifts in response to climate change [77]. The
movement syndrome concept can also inform predic-
tions in a number of other areas of ecological research.
For example, movement syndromes can be applied to
macroecology to test whether species-area relationships
vary between syndromes, in parallel to how they are ex-
pected to vary among taxa or geographic regions [78].
Classifying organisms by movement syndrome can in-
form predictions regarding the spatial dynamics of inva-
sive species and disease ecology [9, 10], as well as the
spatial distribution of resources in an organism’s envir-
onment [79]. To our knowledge, this is the first attempt
to summarize measures of animal movement into broad
movement syndromes evident across diverse systems —
a framework that enables the generation of new insights
into multiple aspects of ecology.
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