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Abstract

Most songbird migrants travel between their breeding areas and wintering grounds by a series of nocturnal flights.
The exact nocturnal departure time for these flights varies considerably between individuals even of the same
species. Although the basic circannual and circadian rhythms of songbirds, their adaptation to migration, and the
factors influencing the birds’ day-to-day departure decision are reasonably well studied, we do not understand
how birds time their departures within the night. These decisions are crucial, because the nocturnal departure
time defines the potential flight duration of the migratory night. The distances covered during the nocturnal
migratory flights in the course of migration in turn directly affect the overall speed of migration. To understand the
factors influencing the arrival of the birds in the breeding/wintering areas, we need to investigate the mechanisms that
control nocturnal departure time. Here, we provide the first conceptual framework for explaining the variation
commonly observed in this migratory trait. The basic schedule of nocturnal departure is likely regulated by both the
circannual and circadian rhythms of the innate migration program. We postulate that the endogenously controlled
schedule of nocturnal departures is modified by intrinsic and extrinsic factors. So far there is only correlative evidence
that birds with a high fuel load or a considerable increase in fuel load and significant wind (flow) assistance towards
their migratory goal depart early within the night. In contrast, birds migrating with little fuel and under unfavorable
wind conditions show high variation in their nocturnal departure time. The latter may contain an unknown proportion
of nocturnal movements not directly related to migratory flights. Excluding such movements is crucial to clearly
identify the main drivers of the variation in nocturnal departure time. In general we assume that the observed variation
in the nocturnal departure time is explained by individually different reactions norms of the innate migration program
to both intrinsic and extrinsic factors.
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Background
Each year billions of birds migrate between their breed-
ing areas and wintering grounds [1, 2]. The vast major-
ity of these are songbird migrants [1, 3] that follow a
stop-and-go migration strategy [4, 5] with replenishing
the fuel used during previous flights when stopping
over [5, 6]. Most songbird migrants travel exclusively
during the night [4, 7–9], likely because energetic costs
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[10], water loss [11, 12], and predation risk [13] are re-
duced in comparison to daytime travels [4, 14].
Migratory movements of nocturnal migrants are usu-

ally terminated before sunrise [4, 7–9], with only some
exceptions when crossing ecological barriers [15–20].
Provided that these birds usually restrict their migratory
activity to the night hours, their departure time within
the night defines the potential flight duration, i.e., the
potential time spent flying during a migratory flight
bout, assuming a termination of flight shortly before
sunrise. The flight duration and a bird’s ground speed
represent the two core factors determining a bird’s travel
speed [21, 22]. Travel speed and total stopover duration
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together define a bird’s total speed of migration. Vari-
ation in total speed of migration in turn affects the tim-
ing of the arrival at both the breeding areas and the
wintering grounds, which has an effect on reproductive
success and survival probability [23–26]. Understanding
the causes of variation in nocturnal departure time and
in nocturnal landing time is therefore important for
explaining variation both in total speed of migration and
the phenology of birds. In this review we focus on vari-
ation in nocturnal departure time, because there is little
information available about when songbirds terminate
their nocturnal migratory flights.
It has been assumed that nocturnal migrants depart

soon after sunset (e.g. [4, 10]). During evening twilight a
maximum number of navigational cues become avail-
able. Then birds are able to recalibrate their different
Fig. 1 Variation in the nocturnal departure time of different songbird species
variation in nocturnal departure timing in relation to sunset (left side) and the
kernel density estimations of the distribution of individual departures, given a
departure time of the respective group. Gray bean plots: autumn migration; w
Rybachy, Russia [39] and Falsterbo, Sweden [46]; Song Thrush (Turdus philome
Long Point, Ontario, Canada [49, 50]; Eurasian Reed Warbler (Acrocephalus scir
at Falsterbo, Sweden [46]; Garden Warbler (Sylvia borin) at Falsterbo, Sweden [
Ontario, Canada [49, 50]; Northern Wheatears (Oenanthe oenanthe) at Wales, A
(Acrocephalus schoenobaenus) at Rybachy, Russia [48]
compass systems, e.g., geomagnetic and celestial com-
pass [27, 28], using the polarization pattern of visible
light during twilight [29, 30]. Thus, one would expect a
massive exodus of nocturnal migrants in the first two
hours of the night as indeed commonly observed in
radar studies [9, 31–35]. However, using ground surveil-
lance radar the departure behavior of a priori selected
individuals cannot be monitored, and the birds’ actual
departure from the ground is difficult to detect [36].
Further, the vertical speed of individual birds – provid-
ing information about ascending or descending tenden-
cies – is generally balanced after the initial exodus [15].
Thus, quantifying the proportion of individuals starting
their nocturnal migratory flights after the exodus by
radar is not straightforward and likely to be underesti-
mated in the course of the night. The temporal distribution
as obtained from different radio tracking studies. Bean plots illustrate
proportion of the night (right side). Extension of the bean plots represent
s small lines in the plot. Broad lines represent the median nocturnal
hite bean plots: spring migration. European Robin (Erithacus rubecula) at
los) at Falsterbo, Sweden [46]; Swainson’s Thrush (Catharus ustulatus) at
paceus) at Falsterbo, Sweden [37]; Willow Warbler (Phylloscopus trochilus)
46]; Black-throated Blue Warbler (Setophaga caerulescens) at Long Point,
laska, USA [44] and on Helgoland, Germany [42, 43]; Sedge Warbler
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of nocturnal departures recorded by visual observations
during the night, high mist-nets and radio tracking indi-
cates that the timing of nocturnal departures is not exclu-
sively confined to the specific period of 1 to 2 h after
sunset [37–47], but see [48] (Fig. 1). Although most birds
directly observed departing or caught in high mist-nets
might have intended to depart from the study site, other
nocturnal behaviors cannot be excluded. Recently, several
types of nocturnal behavior, apart from real departures in
seasonally appropriate directions, have been described in-
cluding reverse movements, nocturnal explorative flights
and landscape-scale stopover movements [43, 49, 50]. Such
uncertainties can be minimized by radio-tracking individual
birds provided that nocturnal movements on the
landscape-scale are not misinterpreted as actual departures
for migratory flight [49, 50].
The observed variation in nocturnal departure time raises

the question of which proximate causes help to explain the
pattern (Fig. 1). Since most nocturnal songbird migrants
travel between their breeding areas and wintering grounds
without any parental or social guidance, they rely entirely
on their innate migration program to reach their migratory
Fig. 2 Schematic conceptual framework for the regulation of nocturnal departu
circadian rhythms and spatiotemporal schedule of migration. The photoperiod
variation in birds’ fuel load and the seasonal-specific sequence of molt are regu
nocturnal departure time represents the interplay of both the intrinsic and extri
goal, at least during their first autumn migration [51]. The
innate migration program of these birds includes inherited
dispositions for migratory directions, duration of migration,
and migratory fueling, which are governed by endogenous
rhythms (for reviews see: [51–57]). Further, the innate mi-
gration program determines how birds react jointly to dif-
ferent intrinsic factors and the currently encountered
environment in terms of migratory direction [42, 58, 59],
duration of migration, and stopover decisions [60–62],
reviewed in [57, 63]. The combination of innate rhythms
and environmental conditions predetermines the day-to-
day departure decisions in migrants along their route and
over the season (e.g. [63–68]). However, little is known
about the cues and underlying mechanisms that shape the
variation in nocturnal departure time, i.e. departure deci-
sions on the within-night level.
Here, we aim to review the current knowledge about

variation in nocturnal departure time to provide a first
conceptual framework of how this trait may be regulated
in migratory songbirds (Fig. 2). We postulate that once a
bird has decided to resume migration, the nocturnal
departure time is endogenously controlled by the
re time in songbird migrants. The innate program provides the circannual,
is used to calibrate or reset the innate migration program. The seasonal
lated among other traits by the innate rhythms (broken arrows). The realized
nsic factors modulating the endogenous stimuli
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underlying innate rhythms of nocturnal activity. We
additionally expect that a set of intrinsic and extrinsic
factors modify this endogenously controlled basic sched-
ule of nocturnal departure time [42, 45]. The result
would be the realized nocturnal departure time, repre-
senting the phenotypic response of the individual bird to
the experienced conditions (Fig. 2). With this work we
summarize previous findings and present a theoretical
basis for future investigations on proximate causes and
underlying mechanisms of variation in the nocturnal de-
parture time of migratory songbirds.

Endogenous control of nocturnal departure time
The innate migration program of birds comprises both
circannual (yearly) and circadian (daily) rhythms acting
as biological clocks that provide the underlying temporal
basis for migration [54]. The circannual rhythm times
the different life history stages (e.g. breeding, molt,
migration, wintering) of the annual cycle, including the
initiation of migration and the physiological adaptations
for migratory fueling (reviewed by [69]). In nocturnal
migrants that are usually day-active outside of their mi-
gration period (but see [70]) the circannual rhythm is as-
sumed to cause changes in the circadian rhythm which
involve the development of nocturnal activity for migra-
tion [54]. Both rhythms can run independently of any
environmental cues as shown in long-term common-
garden experiments (e.g. [54, 71, 72]). However, without
any external cues both rhythms fail to exactly track the
natural migratory schedule after some time [54].
To investigate the innate migration program and its

temporal rhythms, most studies made use of the fact
that caged birds in migratory disposition, i.e., during the
natural migration periods, show spontaneous seasonal
variation in body mass [71, 73] and restless movements
consisting of wing whirring and hopping during the
night, when they would usually migrate [74, 75]. This
nocturnal migratory restlessness (“Zugunruhe”) was
shown to be a good general proxy for the migratory be-
havior that a bird would show in the wild. In naïve birds
on their first autumn migration, intensity and duration
of nocturnal migratory restlessness throughout the sea-
son reflect the inherited migratory distance [71, 72, 76].
In wild songbirds caught on migration, the intensity of
nocturnal migratory restlessness predicts the subsequent
departure likelihood from a stopover site [77]. Further-
more, the start of nocturnal migratory restlessness of
caged songbirds caught on migration is positively corre-
lated with their actual departure time in the following
night [78]. Analyzing patterns of nocturnal migratory
restlessness therefore represents the key method for
studying endogenously controlled migratory behavior in
birds, including its variation among different populations
and individuals [57].
As the spatiotemporal organization of migration is
predetermined by the innate migration program [54, 57],
we postulate that the timing of nocturnal departure is
likely endogenously controlled as well (Fig. 2). However,
so far we lack systematic experiments focusing on this
trait in naïve birds. The diel activity patterns of Garden
Warblers (Sylvia borin), a long-distance songbird mi-
grant, kept under a naturally changing day-light regime
in autumn may suggest an endogenously controlled ad-
vancement in the start of nocturnal migratory restless-
ness with the progress of the migration season [54]. It
needs to be considered that the corresponding data were
not analyzed in this respect and sample size was low. In
the European Quail (Coturnix coturnix coturnix), a noc-
turnal long-distance migrant among landfowl, individ-
uals from a captive stock that experienced natural day
length during spring were consistent in their start of
nocturnal migratory restlessness over at least six con-
secutive nights [79]. A similar consistent pattern was
found in a nocturnal songbird migrant, the Common
Redstart (Phoenicurus phoenicurus) [80]. Individuals
were caught on migration and subsequently kept under
constant dim light conditions without access to environ-
mental cues for three consecutive day-and-night cycles.
Their nocturnal migratory restlessness consistently
started within a narrow time window over the entire trial
[80]. This suggests that birds may use their circadian
clock to time the initiation of migration within the night.
Whether this observed within-individual consistency in
the start of nocturnal migratory restlessness is also
reflected in the realized nocturnal departure time under
free-flying conditions remains unknown. So far, there is
only anecdotal evidence from a single Swainson’s Thrush
(Catharus ustulata) being radio-tracked for over
1,500 km during seven consecutive nights [81]. On six
of the seven nights, nocturnal departure times ranged
over a narrow time window, from nine to 13 min after
evening civil twilight, i.e, when the sun was at least 6°
below the horizon [81].
The basic endogenous schedule of nocturnal departure

time is likely to be affected by the birds’ migratory strat-
egy (e.g. short versus long-distance migrants) and their
total migration distance. The total migration distance
can be regarded as a species- or population-specific trait
of the innate migration program, because both the
amount and duration of nocturnal migratory restlessness
represent the population-specific migration distance
[71, 72, 76]. Furthermore, there is a population-specific
increase in total speed of migration with total migration
distance [16, 82–84]. This may suggest that not only
the amount and duration of nocturnal migratory rest-
lessness, but also the travel speed, may be endogenously
controlled in relation to a bird’s total migration dis-
tance. As travel speed is a function of nocturnal



Fig. 3 Predictions about the potential effect of different intrinsic and
extrinsic factors on nocturnal departure time of songbird migrants.
Predicted effects on mean nocturnal departure time (solid and
dashed line) and its variation (shaded light gray) refer to factors in the
respective boxes (solid and dashed fringe)
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departure time (see above), the mechanism driving the
population-specific speed of migration might be regu-
lated by a population-specific nocturnal departure time
(cf. [44]), if landing times do not vary to the same ex-
tent. This is, however, still completely unknown. Cor-
relative support for a population-specific nocturnal
departure time has been found in the Northern Wheatear
(Oenanthe oenanthe), a long-distance nocturnal songbird
migrant of which all populations winter in sub-Sahelian
Africa. A comparison between Northern Wheatears
breeding in Alaska (USA), northeastern Canada and Eur-
ope revealed that there is a positive association between
total speed of migration (ranging between 115–200 km/
day) and the respective total migration distance (ranging
between ca. 4000 – 14500 km) [16, 82–85]. Furthermore,
the nocturnal departure time advanced towards sunset
with an increase in the population-specific total migration
distance and the corresponding total speed of migration
of the different wheatear populations [44]. Hence, species/
populations with a higher speed of migration, related to a
longer total migration distance, are likely to depart earlier
and/or with less temporal variation in the beginning of the
night [44]. Visual observations of departures from the
Courish spit (Kaliningrad region, Russia) during five au-
tumn migration seasons support this pattern, as long-
distance migrants took off earlier and with less temporal
scatter within the night than short-distance migrants [86].
Causal investigations are required to systematically test
whether variation in nocturnal departure time can be in-
deed attributed to total migration distance.

Phenotypic response to intrinsic and extrinsic
factors: the realized nocturnal departure time
During migration, many birds encounter a variety of
habitats that differ from their natal areas [87–89].
This environmental variation may affect a bird’s over-
all body condition and stopover decisions [68, 89].
The between-individual variation in nocturnal depart-
ure time observed under the same set of intrinsic and
extrinsic factors is likely explained by the individual
differences in their innate migration program yielding
individually different phenotypic responses. Between-
individual differences in the intrinsic and extrinsic
factors additionally contribute to the observed vari-
ation in nocturnal departure times [39, 42, 44–47]
(Fig. 3). Here we review results on the intrinsic and
extrinsic factors that are known to influence noctur-
nal departure time in birds. In addition, the factors
that have been shown to affect departure decisions on
the day-to-day level [63] are discussed with respect to
their potential effect on the nocturnal departure time.
We also consider cage studies of individual variation
in both the amount and the start of nocturnal migra-
tory restlessness.
Intrinsic factors
Fuel load
In addition to its effects on decisions on the day-to-day
level [63, 90], fuel load also influences within-night depart-
ure decisions. Individuals with a high fuel load depart earl-
ier within the night and with less temporal variation than
individuals with a lower fuel load [42, 45, 46], but see
[39–41]. Birds with high fuel loads, enabling a night-
long flight towards their migratory goal, are thought
to use the entire night for flying. They likely decide
within a short time period after sunset to resume mi-
gration [42]. In contrast, birds with low fuel loads –
having still decided to leave the current stopover site
– could depart any time of night, possibly travelling
shorter distances to nearby stopover sites that are



Müller et al. Movement Ecology  (2016) 4:24 Page 6 of 12
potentially more favorable for refueling [49, 50]. We
argue that “lean” birds continuously decide when to
leave the current site during the course of a night.
Such behavior would explain the high variation in
their nocturnal departure time. For these birds a late
departure may be advantageous, as it could ensure ar-
rival at the next stopover site with some safety margin of
fuel [41, 48]. Further, decisions for late departures may
be driven by the advantage of early morning arrivals
that allow visual selection of suitable stopover sites.
Both would help to minimize the risk of starvation
during migration.
Most published studies that focus on the effect of fuel

load on nocturnal departure times are based on between-
individual (cross-sectional) correlations [42, 45–47]. Since
the individual change in fuel load over a bird’s stopover
duration is positively correlated with the concurrent
change in nocturnal migratory restlessness [91], and
since an individual increase in restlessness is equivalent
to an individually higher departure probability [77], we
stress that the within-individual variation in fuel load is
one important factor predicting individual nocturnal
departure time. However, detecting within-individual
variation in fuel load and nocturnal departure time is
notoriously difficult in field studies. Avoiding these dif-
ficulties by temporarily caging migrating Northern
Wheatears demonstrated a strong negative within-
individual effect of fuel stores on the start of migratory
restlessness, indicating that an increase in individual
fuel stores induced an advanced start of nocturnal mi-
gratory restlessness on the level of the individual [92].
As the latter is a reliable approximation for the noctur-
nal departure time [78], the individual change in fuel
load is likely an important intrinsic factor shaping indi-
vidual variation in nocturnal departure time (Fig. 3). In-
formation about the current fuel load and its changes
during a bird’s stopover will be incorporated in the
expression of innate migratory rhythms (Fig. 2) and the
resulting behavioral response, i.e., departure decisions
on the day-to-day level and during the night.

Molt, health, sex, and age
There are other intrinsic factors, like molt, health, sex,
and age, influencing departure decisions on the day-to-
day level and the general movement ecology of migrants
(e.g. [63, 93–95]). Although these have not been related
to nocturnal departure time, we briefly discuss their
potential influence here.
Molt is an energy and time demanding process in the

annual cycle of birds [96]. As molt also compromises
the flight ability [97–99] and likely increases predation
risk [100], most birds molt in the breeding areas and/or
on the wintering grounds prior to migration or suspend
the molt during migration [101–105]. Migrating during
molt or with suspended molt increases flight costs
[97–99] and thereby decreases travel speed. Birds ei-
ther set off early in the night to compensate for the
low travel speed, or they time their nocturnal departure
irrespective of molt status but reduce the intended travel
distance per night. Thus, the potential effect of active or
suspended molt on the variation of nocturnal departure
time remains ambiguous.
Infections, diseases, and parasites can seriously affect

the health of birds, and consequently their migratory
performance [106]. A poor overall body condition as a
result of a poor health status likely increases the vari-
ation in the timing of nocturnal departure, because sick
birds may have to allocate energy for stimulating their
immune system [106, 107] at the cost of fuel deposition
for migratory flights.
Sex is an important intrinsic factor influencing the

phenology of most migratory birds [108–110]. In spring,
males typically arrive at the breeding area and at stop-
overs earlier than females [26, 85, 111–114]. In addition
to the sex-specific initiation of spring migration at the
wintering grounds, there is evidence for a higher speed
of migration in males than in females [85]. Higher mi-
gration speed in males may be realized either by shorter
stopover durations, increased airspeed or more time
spent flying during each migratory flight bout. The latter
can be accomplished by an earlier or less variable noc-
turnal departure time in males. If so, we predict that the
sex-specific differences in nocturnal departure time may
be related to sex-specific differences in their travel
speed. Yet, we lack any evidence for such a sex-specific
difference in nocturnal departure time.
The age of a migratory bird affects the initiation of mi-

gration [115], the selection of the route [64, 115–117],
and the selectivity with regard to favorable wind condi-
tions for departure [93]. In general, young individuals
show more variation in migratory traits than old birds
[93, 116, 117], although there is no clear pattern in
respect of the nocturnal departure time [45]. However,
potential age effects are difficult to assess, since they can
be attributed either to learning [116, 117] or to selective
disappearance reducing genetic and phenotypic variation
in older age classes [118]. Longitudinal data, i.e., tracking
the time when individuals resume migration within the
night over many years, are required to correctly assess
the effect of age on nocturnal departure time.

Extrinsic factors
Remaining migration distance and progress of the season
The remaining migration distance to the seasonally ap-
propriate migratory goal is subject to a continuous
change along the migration route. A migrant’s general
stopover ecology is modulated by the individual’s pos-
ition [119–121] and the time within the season [64].
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This demonstrates the capability of birds to estimate
their relative whereabouts along the migration route
(reviewed in [122]). Simulating a geomagnetic displace-
ment in a “common-garden experiment” showed that
Northern Wheatears adjusted their amount of nocturnal
migratory restlessness in relation to the simulated
remaining migration distance [121]. Whether the noc-
turnal departure time is also affected by the remaining
migration distance remains unknown. In spring, individ-
uals that have a long remaining migration distance and/
or that are late in the migratory season are thought to
increase their fitness by minimizing the remaining time
required to reach the breeding area still within the re-
productive time window [110]. By departing closer to
sunset, individuals can maximize their potential noctur-
nal flight duration and thereby advance their arrival in
the breeding area. Given this, we predict that birds with
longer remaining migration distances should depart earl-
ier in the night and/or show less temporal variation than
those with shorter remaining migration distances
(Fig. 3). Furthermore, individuals migrating late in the
season may also show earlier nocturnal departure
times so as to increase their migration speed relative
to individuals of the same population migrating early
in the season (Fig. 3).

Length of night
For nocturnal migrants, the length of the night (being
inextricably linked with time within season) generally
predetermines the potential maximum flight duration
for a migratory flight bout, although birds may prolong
their flights into the day when crossing ecological bar-
riers [9, 15, 17–20]. It has therefore been hypothesized
that with a decrease in night length, nocturnal departure
time is more concentrated shortly after sunset [37, 39]
(Fig. 3). As a consequence, the predicted patterns are
opposite for spring and autumn (Fig. 3). A telemetry
study with European Robins passing the Courish spit
(Kaliningrad region, Russia) revealed a seasonal differ-
ence in the median nocturnal departure time which was
related to seasonal differences in night length [39]. How-
ever, environmental conditions [123] and the main en-
dogenous drivers for an early nocturnal departure likely
also differ between seasons (cf. [71, 124]) and so may
explain the observed seasonal differences.

Weather
Weather variables, such as wind, air pressure, cloud
cover, precipitation, and air temperature, have been
shown to strongly influence the departure behavior of
birds [22, 63]. Favorable wind conditions increase the
departure probability from a stopover site, whereas birds
prolong their stopover under unfavorable wind condi-
tions (e.g. [22, 50, 65, 125–129]). Likewise, correlative
evidence suggests that birds advance their nocturnal de-
partures towards sunset to maximize the potential flight
duration under favorable and/or improving wind assist-
ance [42, 130] (Fig. 3). Wind is the result of differences
in air pressure. Therefore, a change in air pressure is
usually predictive of the upcoming wind conditions. Birds
are able to detect changes in air pressure [131, 132]. Mi-
grants may use this cue for their departure decisions
[22, 133, 134]. Based on a study with European Robins
it has been suggested that a change in air pressure may
also affect the exact timing of nocturnal departures
[41]. Birds experiencing a drop in air pressure during
the day were found to set off late at night [41]. In gen-
eral, it seems that favorable winds and rising air pres-
sure promote early nocturnal departure times.
However, the effect of deteriorating wind conditions
(i.e., headwinds) on nocturnal departure time is diffi-
cult to predict and likely depends on the magnitude
and direction of the alternation.
The effect of cloud cover on nocturnal departure time

has mainly been considered in relation to the visibility of
celestial cues [37, 39–41]. Species that use a celestial
compass (e.g. [135, 136]) may delay their nocturnal de-
parture under an overcast sky until stars become visible.
Such a behavioral response was observed in European
Reed Warblers (Acrocephalus scirpaceus) [37], but not in
European Robins [39–41]. It remains therefore unclear
whether or not cloud cover itself has a significant impact
on nocturnal departure time. Alternatively, the probabil-
ity of precipitation related to the magnitude of cloud
cover may affect the birds’ departure decision [127, 137],
because rain represents a severe hazard during flight
[138]. Yet, no study could demonstrate that a high prob-
ability of precipitation affects the nocturnal departure
time of birds.
With a drop in air temperature both the day-to-day de-

parture probability from stopover sites [44, 83] and the
amount of nocturnal migratory restlessness [139, 140], in-
dicative for the departure probability of birds [77], have
been shown to increase. Such a reaction is regarded as an
energy-saving strategy to minimize the costs of thermo-
regulation [141], as the energy expenditure of birds
decreases with increasing temperature [141, 142]. For the
same reasons we hypothesize that birds time their noctur-
nal departure closer to sunset when experiencing cold
conditions on the ground for the same reasons as outlined
above (Fig. 3). The effect may be more pronounced during
the autumn migration season, when warmer conditions
are expected towards the seasonally appropriate migratory
direction, than in spring.

Food availability, competition, and predation risk
Other factors such as food availability, inter-/intra-spe-
cific competition and predation risk have been shown
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to influence a bird’s day-to-day departure decisions
[63, 143]. These three factors characterize the quality
of the current stopover site which in turn affects a
bird’s fueling rate and the resulting departure fuel load
(e.g. [144–146]). Hence, we assume that they may act
on the nocturnal departure time via their effect on the
bird’s fuel load.

Social stimulation
Many bird species utter specific calls during flight, espe-
cially during the migratory periods. These flight calls are
assumed to help birds keeping contact in loose flocks
during nocturnal migration [147]. Furthermore, these
calls seem to stimulate migratory behavior of conspe-
cifics, as indicated by a study on captive Bobolinks (Doli-
chonyx oryzivorus) [148]. In this study, birds responded
to flight calls of conspecifics by an immediate increase
in their nocturnal activity in the cage, if they had shown
nocturnal migratory restlessness before. If they had been
inactive during the previous night, flight calls induced
only a weak activity response [148]. This might indicate
that migratory songbirds, which are ready for a noctur-
nal flight bout, can get stimulated to depart by social
stimuli like the flight calls of their conspecifics. Whether
flight calls affect the actual departure times of migrants
at night remains ambiguous.

Ecological barriers
On their migratory journeys, most long-distance song-
bird migrants will have to negotiate species-specific ad-
verse habitats for resting and refueling to reach their
respective breeding areas or wintering grounds. At the
extreme, these habitats may offer limited or even no
opportunity for landing and feeding, as do large water
bodies (oceans or large lakes) and deserts for migratory
land birds. The crossing of such ecological barriers re-
quires sufficient fuel and the ability to select for favorable
weather conditions [42, 63, 71, 128, 129, 137, 149, 150].
Hence, migrants that encounter an ecological barrier
need to jointly integrate intrinsic (fuel load) and extrin-
sic factors (wind, precipitation, air pressure) for their
departure decision [42], as a mistake may have lethal
consequences for the individual. If birds carry insuffi-
cient fuel and/or encounter unfavorable weather condi-
tions for such a crossing, they may either prolong their
stopover in wait for better conditions [66], perform
reverse migration in search of a more suitable stopover
site [42, 45, 151–155] or circumnavigate the barrier by
a detour [156]. These behaviors are usually observed in
rather lean individuals and the timing of departure
ranges over the whole night [42, 45, 47]. In contrast,
migrants with sufficient fuel loads for the crossing and
experiencing favorable weather time their departures
early within the night with only little temporal variation
[42, 45, 46]. In doing so, these birds maximize the night
time available for flying across the barrier and thereby
minimize their exposure to the disadvantages of
daytime flights, i.e., more turbulent air [10] and higher
predation risk [13].

Conclusions
Our concept suggests that the basic schedule of noctur-
nal departures is regulated by the circannual and circa-
dian rhythms of the innate migration program. The sum
of intrinsic factors cumulatively describes a bird’s
current overall body condition, i.e., its general readiness
for a migratory flight. This readiness together with the
environmental conditions described by the extrinsic fac-
tors is likely fed back to the innate migration program
and thus, both modulate jointly the endogenously con-
trolled nocturnal departure time (Fig. 2). The observed
realized nocturnal departure time of an individual bird is
the result of this process.
Variation in nocturnal departure time is likely ex-

plained by individual differences in the innate migra-
tion program and the individually different phenotypic
reaction norms to both the intrinsic and extrinsic fac-
tors. At present, it seems that the individual change in
fuel load and the individually experienced wind condi-
tions are the main drivers for the variation in nocturnal
departure time. Potential effects of other weather pa-
rameters are difficult to assess, as they are all highly
correlated with each other. Thus, there is a severe stat-
istical issue, in terms of multicollinearity [157]. There is
further a biological issue, as it remains difficult to dis-
tinguish whether individual birds respond to one or
more weather parameters at the same time in correla-
tive studies [89].
Given that the start of nocturnal migratory restlessness

is positively correlated with the nocturnal departure
time, allows the identification of factors causing individ-
ual variation in the former trait and transferring these
results to nocturnal departure times [78]. This provides
the potential to investigate causal relationships and
easily separate between within- and between-individual
variations in future experimental studies [92].
Under free-flying conditions, nocturnal movements

not related to departures for migratory flights add an
unknown amount of variation to our estimates of the
nocturnal departure time. Ideally, these can be disre-
garded. Stopover sites in front of an ecological barrier
allow distinguishing between departures for migratory
flights and non-migratory movements. However, the
crossing of an ecological barrier constitutes a special
case, as the barrier itself is an environmental factor of
major significance. Results from these sites may not be
directly transferable to the nocturnal departure behavior
of birds migrating across benign landscapes. New
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technical developments for tracking small songbirds on
a broad landscape scale [158] or even globally [3, 159]
will help to disentangle the different types of migra-
tory and non-migratory nocturnal movements. This
will significantly improve our understanding of the
timing of nocturnal departures.
Technical improvements and miniaturization of accel-

erometers implemented in small tracking devices [160]
will further enable studying individual departure and
landing times in migratory birds simultaneously. The
resulting actual migratory flight durations and the corre-
sponding distances covered will detail the between and
within-individual variation in migration strategies, which
may extend our understanding of the flexibility of migra-
tory behavior substantially.
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