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Abstract

Background Genetic instability is known to relate with carcinogenesis by providing tumors with a mechanism for
fast adaptation. However, mounting evidence also indicates causal relation between genetic instability and improved
cancer prognosis resulting from efficient immune response. Highly unstable tumors seem to accumulate mutational
burdens that result in dynamical landscapes of neoantigen production, eventually inducing acute immune
recognition. How are tumor instability and enhanced immune response related? An important step towards future
developments involving combined therapies would benefit from unraveling this connection.

Methods In this paper we present a minimal mathematical model to describe the ecological interactions that couple
tumor adaptation and immune recognition while making use of available experimental estimates of relevant
parameters. The possible evolutionary trade-offs associated to both cancer replication and T cell response are
analysed, and the roles of mutational load and immune activation in governing prognosis are studied.

Results Modeling and available data indicate that cancer-clearance states become attainable when both mutational
load and immune migration are enhanced. Furthermore, the model predicts the presence of well-defined transitions
towards tumor control and eradication after increases in genetic instability numerically consistent with recent
experiments of tumor control after Mismatch Repair knockout in mice.

Conclusions These two main results indicate a potential role of genetic instability as a driver of transitions towards
immune control of tumors, as well as the effectiveness of increasing mutational loads prior to adoptive cell therapies.
This mathematical framework is therefore a quantitative step towards predicting the outcomes of combined
therapies where genetic instability might play a key role.
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Background
Cancer is a disease resulting from Darwinian evolution
in cellular tissues[1]. Following depletion of a vast set
of genetic insults altering normal multicellularity pheno-
types, rogue cells are able to adapt and evade selection
barriers leading to uncontrolled proliferation. In this con-
text, genomic instability plays a key role as a driver of
the genetic novelties required for tumor progression and
rapidly adapting phenotypes [2, 3]. High levels of evolving
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instability sustain a very diverse population [4], and intra-
tumor heterogeneity lies at the very core of why cancer is
still difficult to define, characterize and cure [5].
In this paper we aim at understanding an impor-

tant relationship between the effectiveness of cancer
immunotherapy and genetic instability. The relevance of
such link needs to be found in the challenges faced by
immunotherapies based on immune checkpoint inhibi-
tion or adoptive cell transfer [6], where mutational burden
seems to play a key role. Due to the underlying complexity
of cancer immunology, interdisciplinary efforts towards
novel immunotherapies are much required [7–9]. As dis-
cussed below, the crucible of the problem might be to
the nonlinear dynamics associated to cancer neoantigen
production and the consequent enhancement of immune
surveillance.
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A key point in cancer immunotherapy lies on the
mechanisms by which T cells actually recognize cancer-
ous from healthy tissue [10] and eventually attack tumor
cells expressing tumor-specific antigens [11]. On a general
basis, such antigens can be common proteins for which
T cell acceptance is incomplete, or more importantly,
novel peptides [10, 12]. Except for specific tumor types
of viral etiology, these so-called neoantigens arise after
DNA damage resulting in the production of novel pro-
teins. Recent advances highlight the importance of under-
standing neoantigen generation as a consequence of the
tumor mutational load and dissecting specific neoantigen
immunogeneicity [10, 11, 13]. Furthermore, direct corre-
lations have been suggested between neoantigen produc-
tion at high microsatellite instability, eventual immune
surveillance and clinical response to immunotherapies
[14–16].
Several experimental and clinical sources are point-

ing towards a causal relation, including tumor growth
impairment after inactivation of MLH1 [17], or the posi-
tive response to PD-1 blockade across different mismatch
repair (MMR) defficient cancer types [18]. The inacti-
vation of MMR results in increased mutational burden
of cancer cells, promoting the generation of neoanti-
gens which improve immune surveillance and eventual
tumor arrest. These obxservations suggest a novel view
on immunotherapy, where targeting mutagenic pathways
can result in an alternativemechanism to unleash immune
responses [9, 19].
All in all, genetic instability seems to play a conflictive

role in cancer evolution and proliferation. It appears that
the same genome alterations that activate cancer progres-
sion can trigger T cell recognition and immune attack.
The extent of such trade-off and its application to ther-
apy, however, is not clear. On the one hand, mutagenic
therapies coexist with an intrisic risk, as increased genetic
instability on heterogeneous populations might activate
oncogenic outgrowth in previously stable cells. Moreover,
a reactive immune system might pose a selective pres-
sure for immune editing, leading to selection for T cell
evading tumor subclones. How do these two components
-instability and immune response- interact and what are
the consequences? Is it possible to provide useful insight
from mathematical models without a detailed picture of
the immune landscape of cancer?.
Nonlinear responses associated to cancer-immune sys-

tem interactions have been known from the early days
of cancer modelling, from more classical approaches
[20] to recent perspectives based on neoantigen recog-
nition fitness [21]. These studies have revealed a num-
ber of interesting properties exhibited by toy models,
including in particular the existence of shifts and break-
points separating cancer progression from its extinc-
tion (see [22] and references therein). Such shifts are

of exceptional importance in our context: they indicate
the existence of well defined conditions (and perhaps
therapeutic strategies) allowing an all-or-none response.
However, a mathematical description of the specific role
of genetic instability in cancer immunology has not yet
been developed. Belowwe provide a first approach to such
goal, based on considering both cancer adaptation and
immune surveillance as influenced by mutational burden,
and we analyze how genetic instability can account for
transitions towards states of cancer control and elimina-
tion. The implications of these transitions on combination
therapies are discussed, pointing towards possible cross-
therapies activating neoantigen production and immune
stimulation.

Methods
Population dynamics of the tumor-immune interaction
The ecology of the cancer-immune system interac-
tion pervades several complexity levels, from a vast
antigenome [23] to multilayer cellular competition
dynamics [24], and a first step towards modeling such
ecology lies in dissecting which specific ingredients are
key drivers in the phenomena we aim to understand.
Recent research points out that there might be up to

28 immune cell types with both antitumor and immuno-
supressive roles infiltrated within a tumor [25]. Focusing
on the immuno-surveillance mechanism of tumor growth
inhibition following immune system recognition (early
introduced in [26]), a minimal modelling approach recalls
at least considering a population of tumor cells growing in
competition with immune cells. It is commonly accepted
that the immune response to cancer is mostly driven by an
adaptive cohort of cytotoxic immune cells, such as CD8+
T cells, together with a cellular compartment of the innate
immune system such as NK cells [27, 28]. Despite this
work focuses on the adaptive response to neoantigen pre-
sentation, including an innate effector response will allow
for understanding relevant non-antigenic immune effects.
Even if further models have been useful at depicting

very advanced properties of the immune system [29],
we have chosen to keep a minimal scenario able to
describe the competition dynamics at play. We apply a
well characterised model (see e.g. [30]) that has been used
to account for experimental results in cancer immunol-
ogy such as tumor-immune equilibrium [31]. This model
has been studied using parameter ranges measured from
experimental setups consistent with several tumor types
(Table 1, see [20, 32]).
The cellular interactions considered here involve a com-

monly used well-mixed (mean-field) model [20, 22] where
the population of cancer cells c follows a logistic growth
(at effective replication rate r = b − d and carry-
ing capacity K) and immune-cell mediated death (at
rate δc). This saturating growth model captures several
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Table 1 Parameter values for the cancer-immune ecology
model, estimated from experimental data of BCL1 lymphoma in
the spleen of chimeric mice (see [20])

Parameter Meaning Kuznetsov et al. (1994)
estimate

r Cancer cell replication rate 0.18day−1

K Tumor carrying capacity 2 × 109cells

δc Immune-mediated cancer
cell death rate

1.101 × 10−7day−1cells−1

δE Cancer-mediated immune
cell death rate

3.422×10−10day−1cells−1

m Rate of T cell migration
towards tumor site

1.3 × 104cells day−1

g Tumor size limit for
effective T cell infiltration

2.019 × 107cells

ρ Rate of cancer cell
recognition by the
immune system

0.1245day−1

d Intrinsic T cell death rate 0.0412day−1

tumor microenviroment effects of malignant cell compe-
tition and death, such as spatial constraints or nutrient
availability [33].

dc
dt

= rc
(
1 − c

K

)
− δccE. (1)

The effector immune population includes both NK and
T cell compartments. Despite further modeling has been
able to capture specific dynamics of T cell activation by
cancer-NK cell encounter [27], activation of both cell
types by malignancy can be described in a similar form
[22], here described by

dE
dt

= m + ρ

(
c

g + c

)
E − δEcE − dE, (2)

In this framework, the innate and adaptive immune
populations are encapsulated into a single Effector com-
partment that grows due to a constant migration of cells
and a predation term ρ that is commonly acknowledged
to obey a Michaelis-Menten-like saturation due to limi-
tations in immune cell circulation through the tissue [20]
and penetration within the solid tumor [32, 34]. The pecu-
liarity of the model lies in considering this predation term
different for both NK and T cells. As discussed below, ρ is
split into a constant rate refering to innate NK predation
(see [27] and references therein) together with a variable
part that will relate to antigen recognition by T cells, so
that ρ = ρNK +ρT . Effector cells also have a natural decay
rate, d, and die when competing with tumor cells at a rate
−δEc. The complete set of interactions described by (1)
and (2) is schematically shown in Fig. 1.

Ecological trade-offs in genetic instability
As discussed above, genetic instability plays a key role in
tumor evolution, acting as the drivingmechanism towards
phenotypic variation and adaptation. Within our model,
this can be translated as the replication rate being a func-
tion of its level of genetic instability μ. On the other hand
ρT , the rate of cancer cell recognition by T cells, is also μ-
dependent because of neoantigen production. Below we
propose a minimal characterization of r and ρ able to
describe how genetic instability modulates such trade-off.

Cancer adaptation as a function of genetic instability
Cancer adaptation, here summarized to modulations in
its replication rate, stems from the phenotypic plasticity
resulting from mutations and copy-number alterations.
On a general basis, enhanced tumor replication fol-
lows frommutations affecting oncogenic pathways, which
poses a trade-off on genetic instability as it can, as well,
damage any of the necessary machinery for cell viability.
Following previous research [35, 36], an adaptive land-

scape is build on several assumptions based on the proba-
bilities of mutating oncogenic and house-keeping genes.
Genetic instability has a twofold impact on cell fitness.

Specifically, replication rate r will be considered a func-
tion of mutation probability μ. A landscape r(μ) is now
in place [35, 37], and follows from considering that muta-
tions on oncogenes can translate into a linear increase in
replication rate. This follows from assuming that repro-
ductive effects of oncogenes, as for advantageous muta-
tions on many systems, are exponentially distributed [38],
so that their sum is gamma distributed with average
increasing with the number of mutated oncogenes. This
will be expressed as R1(μ) = r0 + NRδRμ with r0 being
the basal replication rate of normal cells, NR the number
of oncogenes responsible for increased replication and δR
the mean effect on replication rate when mutating one of
such genes.
To account for cell viability, the number of house-

keeping genesNHK is taken into account so that mutations
affecting them result in null replication [39]. This intro-
duces the constraint of not having any of them mutated,
R2(μ) = (1 − μ)NHK . Grouping both considerations
together we obtain an analytical description of the cou-
pling between replication rate and mutation probability
r(μ) = R1(μ)R2(μ) which reads:

r(μ) = (r0 + NRδRμ)(1 − μ)NHK (3)

This adaptive landscape is of course of qualitative
nature, and realistic fitness landscapes for unstable tumor
environments are still far from our knowledge. However,
certain points can be made if we give values within realis-
tic parameter ranges to our function. The number of both
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Fig. 1 A schematic summary of the basic cancer-immune cell-cell interactions. The two key components are (a) a tumor population driven by
genetic instability and (b–c) interactions associated to tumor cell recognition and attack by T and NK cells. The strength T cell attack depends on the
number of surface neoantigens (c), while NK killing is constant [27]. In (d) the population-level interaction diagram is displayed based on the model
in [20]. Here c and E indicate the number of cancer and T and NK cells, respectively. Cancer cells grow at a rate r (and have a limited carrying
capacity) while immune cells enter the system at a constant production ratem and react at malignant cells at a rate ρ that will be different for NK
cells and instability-dependent T cell recognition. A constant average death rate d is associated with their removal. Two constant cross-interactions
rates are also indicated as δT and δc associated to the removal efficiency of cancer cells and the death of immune cells resulting from the same
process, respectively

oncogenes and house-keeping genes have been widely
assessed, and we take them to be about NR ≈ 140 [40]
and NHK ≈ 3804 [39] respectively. Interestingly, consid-
ering small replication effects for δR, such experimental
values produce an adaptive landscape that has an optimal
region for tumor replication at about μ ≈ 10−5 − 10−4,
which is in accordance with the point-mutation proba-
bility levels experimentally measured for unstable tumor
cells [41].

Immune recognition ofmalignancy as a function of genetic
instability
Building a mathematical description of how the immune
system reacts at the mutational burden of cancer cells is
not straightforward. This stems from the fact that such
behavior is yet starting to be understood at the molecular
level and it probably builds upon many layers of com-
plexity [10]. In our minimal mathematical approach, the

first step is describing immune reactivity as proportional
to the adaptive compartment of cancer cell recognition
ρT , a rate that itself depends on the dynamics of neoanti-
gen expression. Under our assumptions, since adaptive
immune response follows from neoantigen detection we
expect ρT being a function of the overall mutational land-
scape of a tumor, μt, which is eventually responsible for
such neoantigen dynamics. Following recognition proba-
bility distributions from [21], we expect the average dom-
inance to initially increase with mutations as more and
more neoantigens are generated and eventually saturate as
very dominant neoantigens are rare.
The mathematical shape of this dependency ρT (μt)

could stem from purely stochastic dynamics, but recent
research gives better insight into the shape of this cor-
relation. Rooney and colleagues provided an enlighting
perspective in this direction by comparing a measure of
immune response from the transcript levels of two key
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cytolytic effectors with the total mutation count for eight
tumor types [42].
Cytolytic response strengths in [42] seem to indicate a

dependency on tissue and tumor microenviroment, which
we have not included in our study since our model is not
tumor type-specific. For each tumor type, a least-squares
linear regression is used (Melanoma in Fig. 2). When
comparing across tumor types the shape of the immune
response seems to obey a common pattern across many
cancers, once cytolytic response values are normalized
(Table 2). A linear relation can be found for which nor-
malized cytolytic activity scales with mutational load as
CYT∼ 4.35 × 10−4μt when averaged across the range of
tumor types explored here. However, we expect a func-
tion depending only on mutation probability. The variable
t in this expression refers to the evolutionary life history
of mutations accumulation of the tumor. This time scale is
much larger than the faster ecological dynamics that gov-
ern the cancer-immune system interactions, so that we
can consider it an average measure of tumor age at the
time of detection, and consider it constant when intro-
ducing ρ in the ecological dynamics. From these facts,
the only variable governing immune recognition at the
cancer-immune competition level is the point mutation
probability μ.
A very rough estimate for t could be either inferred from

average cell replication data or from the fact that values
for the mean mutation rate and the absolute mutational
load are known for many tumors [43]. For example, we
can use the notion that mutator tumors have mutation

rates of about 10−5 mutations per gene per cell division
[44], which account for the accumulation of about 103
somatic mutations per tumor life [42], so that average
tumor divisions lies at about t ∼ 107. Using this approx-
imation we obtain our preliminar expression for how the
immune reactivity rate depends on the mutation levels,
ρT (μ) = 4.35 × 103μ.
In this first correlation measure from [42], however,

immune recognition grows constantly with mutational
load. This growth should not be indefinite, and many fac-
tors counteract the cytolytic effect of antigen-producing
mutations. As an example, increases in genetic instability
can also account for antigen silencing and immune edit-
ing, which itself would reduce cytolytic activity [45]. All
in all, it seems plausible to consider that antigenic and
immune-suppressing mutations could balance beyond
certain mutational threshold. Following data from [42] it
seems that the tumor-immune cytolytic interaction is far
from saturation, with an estimated saturation behavior
to happen beyond μ ∼ 10−4, a mutational level higher
than those of most tumors measured by recent method-
ologies (see e.g. [42]). This saturating function follows
the same trend of the data-based linear relationship and
reads

ρT (μ) = 4.35 × 103μ ∼ 2
1.4 + e14000μ

− 5
6
, (4)

and can be compared with tumor adaptability r(μ) (Fig. 3)
to obtain a full mutational landscape for tumor progres-

Fig. 2Measuring immune reactivity as a function of the mutational load. Melanoma is plotted as an example, where a linear regression (black line,
scale=3.36E-4) between total mutation count and relative cytolytic activity is evaluated. Results for 12 cancer types in Table 2. Data is obtained from
[42]. As in the original work, the correlation spans the 5th to 95th percentile of the mutation count variable
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Table 2 Linear regressions for ρ(μt) across 12 cancer types,
resulting in ρ(μt) = 4.35 × 10−4μt

Cancer Type Gradient of ρ(μt)

GBM 1.38×10−4

LUAD 4.73×10−4

LUSC 6.98×10−4

BRCA 2.17×10−3

UCEC 2.30×10−4

CRC 2.88×10−4

STAD 3.29×10−4

HNSC 8.37×10−4

SKCM 3.36×10−4

CESC 9.25×10−4

BLCA 3.98×10−4

LGG 2.98×10−3

Data is obtained from [42] with linear regressions performed as in Fig. 2

sion in the presence of T cells. Assumptions on immune
response saturation at high genetic instabilities do not
affect the outcome of the model. Finally, the death rate of
cancer cells increases as they become immunogenic and
detectable by T cells [10, 46]. This is translated in the
model as cancer cells dying at rate δc = (ρNK + ρT (μ))δ,
the rate of immune detection (ρ) times the rate of T cell

killing (δ). Since saturating dynamics are already present
in the mathematical shape of ρT , this last rate δ is con-
sidered constant, which is consistent with other recent
modeling efforts [46].

Cancer-Immune system attractor states
Once the proper role of genetic instability on cancer adap-
tation and immune response is defined, the original model
is reinterpreted as a pair of coupled populations with
instability-dependent rates, i.e.

dc
dt

= r(μ)c
(
1 − c

K

)
− δ(ρNK + ρT (μ))cE (5)

dE
dt

= (ρNK + ρT (μ))

g + c
cE + m − δEcE − dE (6)

A global picture for the behavior of the system is
obtained by studying its possible attractor states tak-
ing into account the variability of the mutational load.
Together with the cancer free attractor (c∗,E∗) =
(0,m/d), other attractors can be inferred from the inter-
sections between nullclines

E1(c) = r(μ)

δ(ρNK + ρT (μ))

(
1 − c

K

)

E2(c) = m(
δEc + d − (ρNK+ρT (μ))c

g+c

) (7)

Fig. 3 Functional forms for cancer replication r(μ) and the adaptive compartment of immune recognition ρT (μ) related to neoantigen
presentation. The first (black curve) provides a representation of the cancer instability landscape, as predicted from our theoretical approach (see
Methods section) and calibrated by available data. It reveals a very slow increase (in this log-linear diagram) at low instability levels followed by an
increase associated to favourable mutations allowing for faster replication and a marked decay at high instabilities due to mutations on viability
genes. The immune reactivity to genetic instability function ρ(μ) (in red, obtained from [42]) rises from zero to saturation beyond μ ∼ 10−4. The
relevant domain of common cancer instability levels is highlighted. The innate response, ρNK , is not depicted as is not a function of genetic
instability and lies in a smaller order of magnitude of around ρNK = 2.5 × 10−2 [27]
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Nullcline 1 is a simple line with a negative slope con-
trolled by the inverse of the carrying capacity of cancer
cells. On the other hand, nullcline 2 is a peaked curve,
with a height controlled by immune cell migration and a
denominator that might eventually produce divergences.
Through their crossings we will find which steady states
coexist under which parameter domains (See Results
section and Fig. 4).
Along with genetic instability, another parameter is key

to the dynamics of the system. Regarding the second null-
cline, we can see its size is linearly affected by the influx
m of immune cells arriving at the tumor site. It is there-
fore interesting to understand how μ andm are related to
cancer-immune scenarios, since this will open the door to
further discussion on mutagenic and immune activation
therapies.
By solving E1(c) = E2(c), we can understand how the

values ofm andμ affect the nature and number of possible
solutions of the system. We here write (ρNK + ρT (μ)) =

ρ for simplicity. The previous identity leads to a cubic
expression of the form Ac3 + Bc2 + Cc + D = 0, with

A = −δEr(μ)b
δρ

B = − r(μ)

δρ

(
b(d − ρ) + δE(bg − 1)

)

C = r(μ)

δρ

(
d + gδE − ρ − bgd

)
− m

D = r(μ)gd
δρ

− mg.

(8)

The sign of the discrimant � = 18ABCD − 4B3D +
B2C2−4AC3−27A2D2 will define of which combinations
of m and μ belong to which scenarios of Fig. 4. Knowing
that three real roots exists for � > 0 and only one for
� < 0, the transitions between attractor scenarios happen
to occur at � = 0. This condition can be used to easily
describe the whole bifurcation space as seen in the results

Fig. 4 Cancer-Immune response attractors driven by instability. In (a–d) we display the nullclines as we increase mutation probability values.
Arrows indicate the system flow towards the small and large tumor attractors. Two transitions can be seen. a At low genetic instability levels of 10−5

mutations per gene per division, such as those common in mutator tumors, only a large cancer attractor coexists with the unstable tumor-free
equilibrium left from the graph at c = 0. b Beyond μ∗ ∼ 1.6 × 10−5, two new attractors are created, which correspond to a stable microtumor
attractor and an unstable twin [30]. c At μ∗ = 2.0 × 10−5, the microtumor attractor becomes smaller; until eventually the attractor of uncontrolled
tumor growth is eliminated (d) at mutational levels similar to those attained after Mismatch-Repair knockout [40]. In (e) and (f) we summarise the
bifurcation diagrams for the possible scenarios as a function of μ andm. For standard immue migration rates (e, black region in f), mutational
increases drive the system across the two transitions observed in (a–d) and towards the controlled tumor state. However, by increasing both μ and
m through combining Mismatch Repair knockout with adoptive cell therapy, the total cancer clearance state can be accessed



Aguadé-Gorgorió and Solé Journal for ImmunoTherapy of Cancer           (2019) 7:345 Page 8 of 13

and Fig. 4e and f, showing how mutation frequencies and
immune stimulation affect the possible outcomes of the
system.

Results
Minimal mutation rate for an efficient immune response
Before engaging into a full analysis of the complete model,
we can study the behavior of the system for initial phases
of progression. This corresponds to a small tumor of size
c << K = 2 × 109 cells. Under this assumption, the
population dynamics of c(t) simplifies to

dc
dt

= c
(
r(μ) − δ(ρNK + ρT (μ))E − dc

)
(9)

where we have now included a natural death rate −dc that
accounts for growth barriers of initial malignant cells if
away from the microenviroment carrying capacity [33].
From (9) we can isolate a condition for tumor control, i.e.:

dc
dt

< 0 (10)

which leads to a crude estimate of the amount of effector
immune cells required to counterbalance tumor growth,
namely

E(μ) >
r(μ) − dc

δC(ρNK + ρT (μ))
. (11)

The inequality consistently shows that E(μ) will be pro-
portional to the instability landscape of cancer growth
rate divided by both NK and immune-mediated death.
This acknowledges that both NK or T cells can play cru-
cial roles in cancer surveillance. To understand the role
of the adaptive compartment and genetic instability in
controling a growing cancer population, we use validated
data from [20] (Table 1) and consider a healthy adaptive
immune population of T ∼ 107 cells ([29] and follow-
ing sections), to obtain that the immune control condition
is fulfilled for μ > 5.75 × 10−5 mutations per gene
and replication. This can be understood as the minimal
mutation rate required to generate a critical neoantigen
load for T-cell immune attack, not considering here NK
or other innate components away from the scope of the
work. The estimated value is consistend within the range
of genetic instability levels associated to MMR knockout
[47], indicating a connection between mutagenic thera-
pies enhancing genetic instability and a threshold level to
activate the immune response.

Transitions to tumor control and eradication at genetic
instabilities within the mMR-knockout range
For well-formed tumors, no similar approach can be per-
formed, but we can study the effects of changes in genetic
instability in the sytem defined by equations (4) and (5) by
picturing the intersections between nullclines described

in theMethods section. As we are interested in the specific
role of genetic instability and neoantigen presentation, we
will focus here on the adaptive part of immune recogni-
tion, ρ(μ). It is straightforward to see how several tran-
sitions regarding creation and anihilation of steady states
are governed by mutational probability μ (Fig. 4a-d).
As expected from [30] and previous discussions, we

know that the cancer-free attractor will always be present,
but local stability will be ensured if r(μ)/(ρNK +ρT (μ)) <

mδ/d (depicted in Fig. 4f ). Without an innate component,
the condition is only fulfilled at very high instability levels
above 10−4 mutations per gene per division. This implies
that no complete tumor clearance solely by neoantigen
recognition seems possible at realistic mutation rates for
fixed m, meaning that an innate response might also play
a role in complete respondant patients, as many therapies
do elicit total tumor eradication [45]. Additionally, we can
see that a large-tumor solution cL is also present at low
instabilities (Fig. 4a), and it is globally asymptotically sta-
ble. Interestingly, a transition seems to occur as the value
for μ becomes larger: before E2(c) diverges, a smaller sta-
ble attractor cS is created together with its unstable twin
(Fig. 4b), which is often described as a microtumor con-
trolled by the immune system. Furthermore, nullcline 2
diverges at μ ∼ 1.75 × 10−5 (Fig. 4c), and, as the two
values for divergence of E2(c) grow further appart, the
large cancer attractor disappears and only the controlled
microtumor coexists with the cancer free attractor and is
globally asymptotically stable (Fig. 4d). These results are
consistent with those of [30], where such solution is con-
sidered a microtumor controlled by the immune system.
However, both transitions of microtumor creation and
large tumor elimination being a function of themutational
levels of the tumor population are new to the present
work.
At this point it is clear that understanding at what

instability levels these transitions happen is key to the pos-
sible outcomes of the tumor-immune interaction. For the
given parameter region and in the absence of a strong
innate response, a basic computational approach lets us
see that the first transition happens around μ ∼ 1.65 ×
10−5 (Fig. 4b), whereas another transition where the large
tumor attractor disappears happens at higher μ values of
about μ ∼ 4 × 10−5 (Fig. 4d).
Following extensive data, unleashed genetic instabil-

ity after Mlh1 knockout in mice accounts for increasing
mutation frequencies ranging from 10−6 ∼ 10−5 up to
10−4 mutations per gene per division (values assessed
for transgenic mice containing supFG1 or cII from [47]).
Interestingly, instability levels before MMR knockout put
our system within a region where the large cancer attrac-
tor is stable and no controlled microtumor exists. How-
ever, the increase after Mlh1 knockout might be pushing
cancer cells to a region beyond μ∗

1, where the stable
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microtumor attractor appears, or even μ∗
2, where the

stable large cancer attractor has disappeared (Fig. 4e).
The resemblance between the model and experiments

linking genetic instability to adaptive immune surveil-
lance seems intuitive enough. Following [17], we think
that there is a connection between the observed phe-
nomenon of immune reactivity and tumor collapse after
Mismatch Repair knockout and the qualitative behavior
of our model, which depicts a transition of this kind at
high μ values. Furthermore, we have taken advantage of
recent research in order to use quantitative data to build
our model. The fact that our model predicts the range
for which immune surveillance reacts at increased can-
cer instability levels emphasizes the possible existence of
transitions like the ones studied here.
Assessing if these two transitions are in fact well defined

in vitro or if genetic instability can modulate tumor evo-
lution towards controlled states can shed new light into
the precise nature of mutagenic therapy as a mechanism
towards increasing tumor immunogeneicity. Such thera-
pies have produced key results in the field of virology [48],
but, within the context of cancer, recent insight seems to
indicate that increasing the immunogeneicity of a tumor
preludes evolution of subclonal neoantigen heterogeneity
[49–51].

Implications on immune surveillance: the role of tumor size
Besides the possible implications for mutagenic therapy
as a facilitator of immunotherapy effectiveness, the fact
that genetic instability shapes the landscape of the cancer-
immune interaction has further implications on the fate of
tumor growth. Tumor size has been shown to be associ-
ated with response to immunotherapies [52], but several
scenarios, from surveillance to evasion, are known to
occur [31, 53, 54]. Is genetic instability related to the
polymorphic nature of immunotherapy prognosis?
From Fig. 4a we know that, in conditions of low

genetic instability, the large tumor equilibrium is globally
asymptotically stable (GAS), and insufficient presenta-
tion of antigens implies that even small tumors can evade
immune surveillance in the absence of a strong innate
response through NK cells or macrophages. This could
be the case of both initial microsatellite-stable malignan-
cies or clones that have evolved low antigenicity through
genome editing [45].
Increases in genetic instability result in a phase transi-

tion that creates a micro-tumor attractor (Fig. 4b-c). This
state has been previously related to dormancy, where the
adaptive immune system is able to control cancer growth
[31]. However, the large cancer attractor is still present,
and local asymptotic stability ensures that tumor sizes
within its basin of attraction will stil grow towards it.
The implications are revelant to therapy: small tumors of
medium antigenicity can be controled, but large tumors

will still grow towards larger disease. This result is consis-
tent with the notion that therapy reducing tumor mass is
often effective prior to immunotherapy [20, 55].
The second transition, consistent with experiments

of immune surveillance after Mismatch-Repair Knock-
out [17], indicates the disappearance of the large cancer
attractor (Fig. 4d). This implies that highly immunogenic
tumors will always elicit a sufficiently effective immune
response that will drive them towards microtumor con-
trol [31], no matter their initial size. However, the fact
that there is no complete remission implies that evolu-
tionary pressures still act on the remaining rogue popu-
lation, and the small clone can eventually evolve immune
evasion [45].
Mutagenic therapy remains a relevant actor on the

cancer-immune ecology. However, without the coopera-
tive effects of an innate response, through the constant
recognition rate ρNK , or the buffering of immune migra-
tion m, the cancer-free equilibrium is only stable at very
high genetic instability levels that do not seem attain-
able through mutagenic agents. What are the cooperative
dynamics of genetic instability with these immune agents?

Effects of modulating immunemigration and the innate
response
Beyond the relevance of genetic instability as a driver of
tumor antigenicity, the fact that the cancer free attractor
becomes stable at very high mutational levels above 10−4

mutations per gene and division (at least for the data on
adaptive immunity from [20]) implies that further consid-
erations on therapy need to be taken into account. The
overall condition for total disease eradication is

r(μ)

ρNK + ρT (μ)
<

mδ

d
. (12)

If genetic instability alone does not suffice to fulfill this
condition, what other therapeutic schemes are of rele-
vance to our model? A first notion lies on understanding
how does μ alter the minimal innate recognition ρNK nec-
essary for complete disease remission, as defined by the
condition

ρ∗
NK >

r(μ)d
mδ

− ρ(μ) (13)

For microsatellite stable tumors with μ << 10−5,
the necessary recruitment rate of NK cells is within the
10−1day−1 range, an order of magnitude larger than that
measured in [27]. However, increasing genetic instability
decreases ρ∗

NK in a quasi-linear way, so that after a possi-
ble MMR knockout, a recruitment rate within 10−2day−1

would suffice for cancer clearance, indicating the possibil-
ity of a combination therapy enhancing both mutagenesis
and NK cell activation [28].
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Together with the role of innate immunity, another key
observation is considering the rate of immune migration
(m) as a measure of immune activation. The necessary
flow of immune cells to the tumor to achieve complete
remission is

m∗ >
r(μ)d

δ(ρNK + ρT (μ))
(14)

Interestingly enough, the migration rate necessary for
cancer clearance does not decay linearly with genome
instability, as for ρ∗

NK , but in an exponential way,
meaning that increases in genetic instability within the
MMR knockout range rapidly decrease the condition
for immune migration rate (Fig. 4f ). This indicates a
strong synergy between mutagenesis and immune acti-
vation therapies such as Adoptive Cell Therapy (ACT)
[56], consistent with recent discussion on combination
therapies [7, 19].
Moreover, by picturing the bifurcation diagram in stan-

dard μ andm regions as described in the Methods section
(Fig. 4e), it is interesting to see how the first transition
towards microtumor creation, μ∗

1, has a weak dependency
on m, since the appearance of the intermediate attrac-
tors depends mostly on the denominator of nullcline 2
becoming null, so that E2(c) diverges at

δEc + d − ((ρNK + ρT (μ))c/(g + c)) = 0, (15)

which is not a function ofm. On the other hand, the tran-
sition to disappearance of the large-cancer attractor does
depend onm, sincem affects the width of E2(c), so that for
higher m values E2(c) will go faster towards infinity and
not cross E1(c). However, it seems intuitive from Fig. 4f
that the role of genetic instability in increasing neoantigen
production might be crucial even in the presence of high
immune activation.
Mathematical work previous to our instability-driven

model developed interesting considerations on derivation
of cancer vaccines (see e.g. [57]), and introduced time
dependent treatments [58] or time-delays in the immune
response [59] based on the immune migration parameter,
despite mathematical considerations remained somehow
distant from clinical immunology and not many of the
described behaviors after mathematically designed thera-
pies have been observed in vivo [22].
Recent research has highlighted the importance of

genetic instability as a marker for good prognosis in
immune checkpoint inhibition therapies [14–16]. Its role
in neoantigen production is acknowledged as crucial
[10]. Our results describing μ as another driver towards
surveillance complementing m and ρNK reinforce the
relevance of genetic instability in the tumor-immune
dynamics, further supporting the possibility of increas-
ing tumor immunogeneicity by promoting T cell antigen
presentation [7, 9].

Discussion
In the present work we have studied a minimal math-
ematical scenario describing how genetic instability,
by means of enhancing tumor adaptation along with
neoantigen production and immune recognition, can
trigger sharp transitions towards tumor control and
eradication.
Starting from basic considerations, we have asked our-

selves about the ecological interactions between malig-
nant cells and, in particular, effector immune cells able
to respond after neoantigen recognition. Specifically,
we consider how genetic instability, here as a muta-
tion probability, shapes tumor adaptability and immune
response.
Interestingly, genetic instability governs the possible

outcomes of the system. Increasingmutational levels drive
the system across two phase transitions. In the first one,
two attractors are created involving smaller tumors coex-
isting with a larger population of T cells. This state
has been characterized as a controlled, but not totally
eliminated microtumor [30, 31]. The second transition
accounts for the disappearence of the cancer-wins sce-
nario, so that only solutions of immune control are present
at large genetic instability levels.
Recent advances in the field of cancer immunology

have proven that genetic instability is a key ingredient
of the immune response [14–16], and particular research
claims immune surveillance after MMR knockout fol-
lows from this causal relation between high mutational
loads and neoepitope production [17]. In the context
of this research, our model provides a conceptual and
numerical description for how a transition between can-
cer growth and arrest can follow only from damaging
DNA repair mechanisms. More generally, the fact that
microsatellite instability levels govern transitions sepa-
rating cancer growth from immune surveillance might
be indicative of why highly unstable tumors are better
respondants to immunotherapy [10]. Furthermore, we
have used available data to calibrate the model parameters
and to construct the immune recognition function. Using
this information, we consistently explain phase transi-
tions happening at microsatellite instability levels that
resemble those of MMR knockout. However, even if these
transitions could exist in the laboratory, we have dis-
cussed further aspects that need to be accounted when
dealing with increasing tumor immunogeneicity through
mutagenesis [49, 50].
We have also studied the roles of ρNK , the recruit-

ment of NK cells, and m, a parameter refering to
immune migration or an eventual immune therapy. The
model indicates a cooperative effect between thera-
pies affecting mutagenesis together with NK or migra-
tion buffering. The strength of this cooperative effect
is linear for genetic instability and innate immune cell
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recruitment, but the model also predicts that, when
an innate response and T cell recognition alone can-
not control tumor growth, cross-therapies modulating
both m and μ might be exponentially effective in driv-
ing the tumor-immune interaction into a state of total
disease eradication, thus indicating a mathematical vali-
dation for recent insight into combined immunotherapies
[7]. We further suggest that the relevance of m in pro-
ducing transitions to tumor arrest is low, while minor
increases in genetic instability seem much more effective
against large tumors. This indicates that cross therapies
inducing DNA damage prior to immunotherapy might
drive tumors to neoantigen-rich states [18, 19] before
immune editing processes enter at play [45, 60]. We
therefore postulate a possible mathematical description of
recent discussions for novel perspectives on combination
immunotherapy [7].
All the previous conclusions stem from a very mini-

mal mathematical model, whereas the immune system is
known to be complex [45, 61] Additionally, other inter-
actions between immunotherapies and conventional ther-
apies need to be taken into account [19]. In particular,
several cooperative mechanisms between immune popu-
lations might play a role in non-antigenic T cell activation
[27]. Further research should consider the possible non-
linear dynamics stemming from T cell sensitization after
cancer-NK cellular interactions.
Finally, as a result from the lack of heterogeneity, our

model does not yet capture immune editing, a phe-
nomenom at the core of immunotherapy failure, in which
the tumor might develope immune resistance by means of
either buffering the growth of immunosilent cells or edit-
ing its genome to express fewer neoantigens [60]. Within
this view, current research claims that tumor mutational
burden might not be a sufficient biomarker [46, 50].
In the presence of an effective immune response, anti-
genic subclones can be negatively selected, giving rise
to immuno-silent tumors despite its possibly high muta-
tional load. Together with immune editing, recent studies
highlight heterogeneity itself as a source for failure of
the immune response [49, 51] as it directly affects the
spatial and clonal distribution of neoantigens. Further
modeling of the tumor-immune ecology could benefit
from considering heterogeneous populations where anti-
gen frecuencies are taken into account. Despite these
considerations, our results on the cooperative roles of
m and μ indicate that damage on DNA repair mecha-
nisms prior to checkpoint blockade could render tumors
immunogenic before a reactivated immune system pres-
sures towards editing. Using an evolutionary framework
such as adaptive dynamics [37], future work might help to
characterize in which regimes do cancer subclones evade
immune surveillance through evolving their neoantigen
landscape [62].

Conclusions
This work provides a first effort towards modeling the
double-edged effect of genetic instability in both can-
cer adaptation and immune surveillance with the goal of
understanding the specific role of mutational load as a
driver of immune attack. Two main results stem from
the model. First, transitions towards tumor control follow
from increases in mutational levels similar to those after
MMR knockout. Second, genetic instability and immune
activation have a cooperative effect in driving tumor elim-
ination, indicating that combination therapies enhancing
both might be key in the future.
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