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Abstract

Background: Assays of the abundance of immune cell populations in the tumor microenvironment promise to
inform immune oncology research and the choice of immunotherapy for individual patients. We propose to
measure the intratumoral abundance of various immune cell populations with gene expression. In contrast to IHC
and flow cytometry, gene expression assays yield high information content from a clinically practical workflow.
Previous studies of gene expression in purified immune cells have reported hundreds of genes showing
enrichment in a single cell type, but the utility of these genes in tumor samples is unknown. We use co-expression
patterns in large tumor gene expression datasets to evaluate previously reported candidate cell type marker genes
lists, eliminate numerous false positives and identify a subset of high confidence marker genes.

Methods: Using a novel statistical tool, we use co-expression patterns in 9986 samples from The Cancer Genome
Atlas (TCGA) to evaluate previously reported cell type marker genes. We compare immune cell scores derived from
these genes to measurements from flow cytometry and immunohistochemistry. We characterize the reproducibility
of our cell scores in replicate runs of RNA extracted from FFPE tumor tissue.

Results: We identify a list of 60 marker genes whose expression levels measure 14 immune cell populations. Cell
type scores calculated from these genes are concordant with flow cytometry and IHC readings, show high
reproducibility in replicate RNA samples from FFPE tissue and enable detailed analyses of the anti-tumor immune
response in TCGA. In an immunotherapy dataset, they separate responders and non-responders early on therapy
and provide an intricate picture of the effects of checkpoint inhibition. Most genes previously reported to be
enriched in a single cell type have co-expression patterns inconsistent with cell type specificity.

Conclusions: Due to their concise gene set, computational simplicity and utility in tumor samples, these cell type
gene signatures may be useful in future discovery research and clinical trials to understand how tumors and
therapeutic intervention shape the immune response.
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Background
The abundance and composition of the immune cells in-
filtrating a tumor predict both a patient’s prognosis [1–
5] and the optimal immunotherapy for their disease [6].
Therefore techniques to profile tumor infiltrating lym-
phocytes (TILs) in a clinical setting are needed. While
flow cytometry is the current gold standard for quantify-
ing immune cell populations, sample and/or workflow
constraints make it infeasible in many research and

clinical applications, especially those utilizing FFPE tis-
sue. Immunohistochemistry (IHC) has been shown to be
clinically useful [2], but it cannot assay more than a few
immune markers without using up excessive tissue. In
contrast to these older technologies, gene expression
profiling promises a clinically practical way to measure
the full diversity of the tumor immune infiltrate in settings
and sample types where flow cytometry is unworkable,
additionally allowing the simultaneous measurement of
hundreds to thousands of other relevant genes. Therefore,
we propose to identify genes whose expression levels can* Correspondence: pdanaher@nanostring.com
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be used to measure the abundance of various immune cell
populations within the tumor microenvironment.
Previous authors have identified genes specific to puri-

fied immune cell populations [7–9] and used these genes
to quantify immune populations in tumors [9, 10]. How-
ever, these genes were discovered using purified cells
and not immune cells taken from the tumor microenvir-
onment, and so any differences between intratumoral
and in vitro gene expression patterns will compromise
their utility in tumor samples. To address this concern,
we propose a novel computational method for testing
whether previously reported cell type marker genes are
useful in tumor data. We then apply this method to data
from The Cancer Genome Atlas (TCGA) to derive a set
of 60 marker genes for 14 immune cell populations.
Our final gene list exhibits sufficiently strong cell type

specificity to allow measurement of immune cell popula-
tions with scores computed as the simple average log ex-
pression of their marker genes. In data from ovarian
cancer patients, these cell type scores are concordant
with both immunohistochemistry (IHC) and flow cytom-
etry. In replicate RNA samples, they display substantially
better reproducibility than typical IHC readings. In
TCGA data, they enable detailed analyses of anti-
tumoral immunity. In an immunotherapy dataset, they
provide early discrimination between responders and
non-responders and reveal an intricate picture of the im-
mune response to checkpoint inhibition. Due to their
concise gene set, computational simplicity and utility in
tumor samples, these cell type gene signatures may be
useful in future discovery research and clinical trials to
understand how tumors and therapeutic intervention
shape the immune response.

Methods
Derivation of candidate cell type marker genes from the
literature
The first step in our marker gene identification process
is to identify previously reported cell type markers. For-
tunately, the literature is rich in papers measuring gene
expression in isolated immune cell populations. A num-
ber of authors, most notably [7] and [9], have used
meta-analyses of these experiments to discover genes
that are predominantly expressed within a single im-
mune cell population. Our list of candidate marker
genes is primarily drawn from [7], whose cell type-
specific gene lists we took verbatim as the foundation of
our candidate markers list. To derive candidate markers
for cell types missing in [7], we took genes that [9] re-
ported to be highly enriched in one cell type vs. the
maximum seen in all other cell types. We also included
well-known markers for exhausted CD8 cells [11–13]
and FOXP3 for Tregs. Our full list of candidate marker
genes can be found in Additional file 1: Table S3.

Approach to evaluation of candidate cell type marker genes
in tumor gene expression data
The literature on cell type specific gene expression is a
powerful source of candidate marker genes, but there
are a variety of mechanisms by which poor marker genes
may have entered the literature. First, early microarray
studies were frequently underpowered, noisy and rife
with batch effects and therefore could indicate spurious
marker genes [14]. Second, and very significantly, the ex-
pression profile of in vitro purified cells may differ sub-
stantially from these cells’ gene expression in the tumor
microenvironment [15]. Finally, genes that appear spe-
cific to one cell type in a microarray experiment may be
expressed in cell types omitted from the experiment.
Therefore, our literature-derived candidate marker

genes require validation in actual tumor expression data.
Ideally, we would test whether each gene displays two
properties: expression specific to a single cell type, and
stable expression within that cell type. Unfortunately, we
cannot directly measure a gene’s adherence to these
properties in bulk tumor expression data; instead, we
look for genes whose expression patterns are consistent
with these properties. If two genes are both ideal
markers, expressed with perfect specificity to and stabil-
ity within a cell type, their expression levels will be per-
fectly correlated, and the ratio between them will be
constant across samples. Figure 1 demonstrates this
principle. Of the 4 candidate marker genes for a cell
population, Genes 1 and 2 rise and fall at the same rate,
a co-expression pattern consistent with both genes being
driven by abundance of a single cell population. By con-
trast Gene 3 exhibits no such co-expression with Gene 1
and likely does not serve as a marker gene in the tumor
microenvironment. Gene 4 is highly correlated with
Genes 1 and 2, but its slope is different than 1. Thus
while Genes 1, 2 and 4 may be regulated by the same
biological process, that they do not increase at the same
rate means they are not all expressed at consistent levels
within a single cell type. We quantify genes’ adherence
to the marker-like co-expression pattern we seek with a
pairwise similarity statistic, defined in the Methods.
For each set of candidate marker genes for a single cell

type, we sought a subset of genes that exhibited strong
marker-like co-expression patterns in tumor gene ex-
pression data. Candidate marker genes with expression
patterns like Genes 1 and 2 were selected for our final
marker gene list. We discarded candidate markers like
Gene 3 that were uncorrelated with other candidate
markers, and we discarded candidates like Gene 4 that
had non-unit slopes with other candidate markers.
Alone, co-expression patterns are insufficient to estab-

lish a group of genes as markers for a single cell type.
However, when a set of genes has been previously re-
ported to have cell type-specific expression and also
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displays marker-like co-expression patterns in tumor
data, the cumulative evidence supports their use as cell
type markers.

Pairwise similarity statistic for quantifying marker-like
co-expression patterns
If two genes are ideal cell type markers, their log expres-
sion values will be perfectly correlated with a slope of 1.
The below adaptation of Pearson’s correlation metric
measures a pair of genes’ adherence to this pattern:

similarity x; yð Þ ¼
X

x−xð Þ y−yð Þ
n−1ð Þ
2 var xð Þ þ var yð Þð Þ

;

where x and y are the vectors of log-transformed, nor-
malized expression values of the two genes, x and y are
their sample means, and var (x) and var (y) are their
sample variances. This function equals 1 when the two
genes are perfectly correlated with a slope of 1 and de-
creases for gene pairs with low correlation or with slope
diverging from 1. Since many biologically related genes
will exhibit correlation unrelated to a shared cell type,
mere correlation is a weak indicator of cell type markers.
Similarly, gene pairs that exhibit pairwise differences
with low variance are consistent with the hypothesis that
they serve as cell type markers, but unless they retain
this stable pairwise difference over a range of expression
values and thereby achieve high correlation, they provide
minimal evidence for their utility as cell type markers.
The Additional file 2: Methods and Results contain

further characterization of the pairwise similarity statis-
tic, including a short proof of its relevance (S2.5.), a
simulation demonstrating its improved utility over

simple Pearson correlation (S2.6.), and several examples
of its use in our marker gene selection (S2.7.). Co-ex-
pression analyses have long been used to define gene
sets [16–19]; this method departs from this earlier work
by using co-expression as a test of a priori-derived can-
didate gene lists.

Procedure for selecting marker genes with the aid of the
pairwise similarity statistic
Our procedure for deriving a full list of marker genes for
a cell type was as follows. First, we computed the pair-
wise similarity statistic between all pairs of the cell type’s
candidate marker genes within each of 24 TCGA RNA-
Seq datasets. Second, we defined a similarity matrix in
which the similarity between each gene pair was calcu-
lated as the pair’s average pairwise similarity statistic
across all datasets. For most cell types, hierarchical
clustering of this similarity matrix identified an obvious
subset of genes sharing marker-like co-expression, and
we took these obvious subsets as our final marker genes.
In the more challenging cell types we accepted genes
with moderate (>0.4) pairwise similarity, and when bet-
ter genes were available we took only genes with high
(>0.6) pairwise similarity statistics. For some cell types,
we allowed domain knowledge to overrule the results of
this analysis and discard markers with promising co-
expression pattern; details of these instances are in the
Results. Additional file 3: Figures S10–S38 show these
similarity matrices along with the genes we chose.

Using marker genes to measure cell type abundance
Once we have selected a set of marker genes for a cell
type, measuring the cell type’s abundance is straightforward.

a b c

Fig. 1 Simulated example of process for evaluating candidate genes for marker-like co-expression in a tumor dataset. a Example of marker-like
co-expression. Genes 1 and 2 are highly correlated with a slope of 1, a pattern consistent with both genes rising and falling at the same rate.
b Example of two genes which cannot both be markers. Gene 3 exhibits no co-expression with gene 1, showing that Genes 1 and 3 are not both good
markers for the same cell type. c Example of two genes which cannot both be markers. Gene 4 is highly correlated with Gene 1, but with a slope different
than 1, meaning they are not both markers for the same cell type
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Assuming each marker gene is present at a fixed but un-
known number of copies per cell, the average log-
transformed expression of the marker genes is equal to the
log-transformed abundance of the cell type, plus an un-
known constant. Thus we compute cell type scores with
the simple average of their marker genes’ log-transformed
expression values. Because of the unknown constant, these
scores do not provide absolute quantification of cell types;
e.g., we cannot say, “there are 500 CD8 cells in this sample,”
or, without performing some calibration exercises, “this
sample has more B-cells than T-cells.” But they do allow
comparison of cell abundance across samples, e.g., “this
tumor has twice as many CD8 cells as the average tumor,”
or, “sample 1 has twice as many Treg cells per CD8 T-cell
as the average sample,” sufficient information for
most scientific and clinical applications. If our scores
are calculated from log2 transformed data, each unit
increase in a cell score should correspond to a doub-
ling of that cell type’s abundance.
Absolute quantification can be achieved by measuring

our marker genes’ expression in a reference sample for
which the absolute number of each cell type of interest
is known, either through flow cytometry of IHC meas-
urement. Future samples’ cell scores could then be cali-
brated to this reference sample. For example, if the
reference sample had 500 macrophages and a macro-
phage score of 4, a sample with a macrophage score of 5
could be inferred to have 1000 macrophages. Alterna-
tively, cell scores can be placed on a more intuitive scale
by reporting each cell score’s difference from its average
in a group of null or baseline samples. We employ this
method in Fig. 7c, showing cell scores in a selected pa-
tient relative to their average values in immunotherapy-
naïve patients.

Flow cytometry
Whole blood was stained within 30 h of collection with
2 12-color antibody staining panels: a PBMC subset
panel and a T cell subset panel. The PBMC subset panel
antibody cocktail (CD3-PE CF594, CD4-FITC, CD8-
PerCP Cy5.5, CD11c-AlexaFluor 700, CD14-V450,
CD16-APC H7, CD19-PE-Cy5, CD45-AmCyan, CD56-
PE Cy7, CD122 APC, CD123 PE, HLADR-BV605) was
used to stain 100uL whole blood in BD Trucount Tubes
to determine absolute numbers of various peripheral im-
mune cell types, including monocytes, CD4 and CD8 T
cells, NK cells, NKT cells, B cells, plasmacytoid dendritic
cells (pDC) and myeloid dendritic cells (mDC). After
staining, cells were incubated with FACs Lysing Solution
(BD) for 15 min, and stored at−80 °C until acquisition.
For determining activation state, as well as naïve-mem-
ory-effector subsets of CD4 and CD8 T cells, 200 uL of
whole blood was incubated with the T cell subset panel
antibody cocktail (CD3-FITC, CD4-APC-Cy7, CD8-PerCP

Cy5.5, CD25-APC, CD28-PE-CF594, CD45-AmCyan,
CD45RA-BV650, CD127-BV421, CD197-AlexaFluor
700, CD278-PE, CD279-PE-Cy7, HLADR-BV605), and
subsequently lysed with Pharm Lyse solution (BD),
washed, fixed with 1% PFA, and suspended in 10%
DMSO before storage at−80 °C. Samples from both
panels were acquired on a BD LSR II cell analysis
machine and analyzed by FlowJo Cell Analysis software.

TCGA data
Level 3 RSEM-normalized RNASeqV2 data was down-
loaded from TCGA and log2-transformed prior to ana-
lysis. No further preprocessing was applied.

NanoString data
RNA from PBMC lysates (~60,000 cells per assay) and
FFPE tumor biopsy sections (150–300 ng per assay) were
evaluated for gene expression using the nCounter
PanCancer Immune Profiling panel, which interrogates
770 immune-related genes and associated controls.
NanoString gene expression values were normalized

using the best subset of the 40 reference genes included
in the panel, as determined by geNorm [20]. Reference
gene normalization was performed for each sample by
dividing each sample’s raw count profile by the geomet-
ric mean of its reference genes. To transform expression
back to an intelligible count space, all samples were then
multiplied by the geometric mean of all the samples’ ref-
erence gene geometric means. The nSolver software was
used to perform all normalization.
Cell scores were calculated as the average log2 nor-

malized expression of each cell’s marker genes.

Statistical methods: comparison to flow cytometry and IHC
We measured concordance between platforms with
Pearson correlation and Root Mean Squared Error
(RMSE). RMSE between matching measurements from
NanoString and either flow or IHC was calculated by
mean-centering each separate set of measurements and
then taking the square root of the mean squared differ-
ence between matching pairs.

Statistical methods: reproducibility analysis
To measure the proportion of variance due to noise for
each cell score, we used the R package lme4 to fit a lin-
ear mixed model predicting cell score from sample ID,
treating sample ID as a random effect. As a measure of
the proportion of variance due to noise, we report the
estimated residual variance divided by the sum of the
residual variance and the between-sample variance.

Statistical methods: application to TCGA
Cell scores were calculated as the average log2 normal-
ized expression of each cell’s marker genes. Total TILs
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score was calculated as the average of all cell scores
whose correlations with PTRPC (CD45) exceeded 0.6.
This composite score excluded only dendritic cells,
Tregs and mast cells. Cell type enrichment scores were
calculated as follows. Using all TCGA data at once, sim-
ple linear regression was used to predict each cell score
from Total TILs score. Cell type enrichment scores were
defined as the residuals of these regressions. These
scores can be interpreted as measuring the abundance
or depletion of each cell population relative to total
TILs. For example, a macrophage enrichment score of 1
can be interpreted to mean that a sample has twice as
many macrophages as the average sample with the same
total TILs.

Results
Only a small proportion of previously reported cell type
specific genes display marker-like co-expression patterns
in the tumor microenvironment
The Cancer Genome Atlas (TCGA) provides ideal
data for evaluating candidate cell type marker genes
through their co-expression patterns. We evaluated
our literature-derived candidate marker genes in
TCGA RNASeq data from 9986 samples from 32
tumor types. Details of the TCGA download used are
in Additional file 1: Table S1.
TCGA data revealed previously reported cell type

marker genes to have widely varying quality, with
many candidate cell type marker genes displaying co-
expression patterns inconsistent with cell type specifi-
city and stability. However, most cell types had a core
subset of genes with strong marker-like co-expression
(Additional file 3: Figures S10–S38). These highly
concordant gene sets constitute our final selected cell
type markers (Table 1).
Figure 2 illustrates our selection process: of the 26

genes previously reported as being expressed specifically
in B-cells, most have co-expression patterns incompat-
ible with specificity to the same cell type. But a subset of
genes, including the canonical B-cell marker CD19,
share the co-expression patterns we seek, namely high
correlation with a slope near 1 (Fig. 2a). For example, in
the TCGA bladder cancer (BLCA) dataset, BLK and
CD19 show nearly perfect marker-like co-expression
(Fig. 2b), while the putative B-cell marker BLNK is
largely uncorrelated with CD19 (Fig. 2c). BLNK’s unsuit-
ability as a B-cell marker is corroborated by [21]’s find-
ing of BLNK expression in murine macrophages.
In some cell types, prior biological knowledge in-

formed our selection process. For example, we discarded
a cluster of putative Th2 cell marker genes (BIRC5,
HELLS, CDC7, WDHD1, CENPF, NEIL3, DHFR,
DC25C) that showed strong marker-like co-expression
(Additional file 3: Figure S16) but had many genes that

were previously reported to be expressed broadly across
cell types [22–24]. The strongest cluster among the Th1
cell candidate genes included genes known to be
expressed in a variety of cell types, including IFNG and
CTLA4. The strongest cluster in the iDC gene list had
several genes known to be expressed in T cells, including
CD1B, CD1C, and CD1E, which are associated with T
cells. Similarly, the strongest cluster in our CD8 T cell
candidate gene list included CD8A and CD8B, which
had a very high pairwise similarity statistic (>0.7), but
also FLT3LG and GZMM. These other two genes would
have made our final list of markers based on their co-
expression with CD8A and CD8B, but their known ex-
pression in other cell types [25, 26] led us to exclude
them. These results suggest that while domain know-
ledge may be insufficient to identify marker genes on its
own, it can serve as a useful referee for the discoveries
of purely computational procedures.
Cell types varied in the quality of their selected marker

genes (Fig. 3). For example, our selected set of T-cell
genes showed very strong marker-like co-expression,
while our selected T-helper cell genes displayed weak
marker-like co-expression (Additional file 3: Figure S11).
Genes with lower average expression were less likely to
display expression patterns typical of ideal cell type
markers, a pattern consistent with greater measurement
error at low expression values. Noting this pattern, two
clusters of cell types with respectively successful and un-
successful marker genes are apparent (Fig. 3a). We dis-
carded cells in the lower cluster, which we demarcated
with an average pairwise similarity score threshold of
0.4. This threshold is arbitrary by necessity, as marker
genes cannot be partitioned into “good” and “useless”
categories but rather occupy a continuum of adherence
to marker-like behavior. We additionally discarded the
“Normal Mucosa” cell type, which was derived in a
colon cancer study and has uncertain interpretation in
other cancer types.
The wide range of average pairwise similarity statistics

of our admitted cell types is consistent with variability in
marker genes’ adherence to ideal marker-like behavior.
For example, our T-cell markers’ co-expression pattern
suggests they hew closely to the ideal of perfect cell type
specificity and stability, while our NK cell markers’
weaker co-expression suggests they experience some de-
gree of variable expression within NK cells, low-level ex-
pression in other cell types, or increased measurement
error due to low expression.
In three cases, we retained a single gene as a cell type

marker. For Th1 cells, we found no clusters of candidate
genes with marker-like co-expression; thus we selected
TBX21, the gene for the classic Th1 cell marker T-bet.
However, [27] reported T-bet expression in B-cells, so
this marker gene may be influenced by B-cell abundance.

Danaher et al. Journal for ImmunoTherapy of Cancer  (2017) 5:18 Page 5 of 15



Our Treg candidate genes also lacked highly co-expressed
clusters, and so we took FOXP3 as a single marker gene
for Tregs. We also use PTRPC as an unvalidated, single-
gene marker of CD45+ cells, although it is likely expressed
at different levels by different cell types. Given the prom-
inence in the literature of all three of these genes, they
seem appropriate to include in a panel of marker genes,
although our analysis can neither falsify nor provide
additional evidence for their marker status.
The selected marker genes appear to have pan-cancer

utility: each set of marker genes showed similar perform-
ance across TCGA datasets as measured by the pairwise
similarity statistic (Fig. 3b). An important exception is
brain and immune tumors, which showed reduced
marker-like co-expression for all cell types. Poor per-
formance in immune tumors might be expected to result
from tumor-intrinsic expression of immune genes, and
poor performance in brain tumors likely results from the
blood–brain barrier limiting the dynamic range of im-
mune cell abundance and thereby limiting our ability to
resolve marker-like co-expression patterns.

Comparison of gene expression cell type scores to flow
cytometry and IHC
FFPE tissue and PBMCs were collected from ovarian
cancer patients. CD3+ and CD8+ cells were quantified
in FFPE samples using IHC, and numerous cell populations

(Additional file 1: Table S2) were quantified in PMBCs
using flow cytometry. In 19 FFPE and 18 PBMC samples,
we measured expression levels of our 60 cell type marker
genes and of 670 additional genes relevant to the tumor-
immune interaction. Gene expression cell type scores were
broadly concordant with both flow cytometry and IHC
measurements (Fig. 4, Table 2).
For comparison of our cell scores to flow cytometry,

the normalization of gene expression data in PBMCs
required a non-standard method. Changes in the com-
position of PBMCs can influence the abundance of
housekeeping/reference genes, spuriously changing nor-
malized expression values and by extension our cell type
scores. We avoided this problem by normalizing our cell
type scores not to reference genes but to our T-cells
score, which appears to be our most accurate score. This
step removes any concern about housekeeping genes, as
the contrast between any two cell type scores will be in-
dependent of each sample’s normalization factor. Several
of our cell type scores lacked an exact counterpart in the
flow cytometry data and thus could not be validated by
this method.
A notable finding from the flow cytometry data is the

ability of our cell type scores to predict CD4 abundance.
Although we have no explicit CD4 cell score – our ana-
lysis of TCGA data cast doubt on the utility of all the re-
ported T helper cell genes – the difference between our

Table 1 Results of TCGA data evaluation of candidate cell type markers

Cell type # Candidate genes # Selected markers Mean pairwise similarity
statistic in TCGA

Selected marker genes

B-cells 34 9 0.59 BLK, CD19, FCRL2, MS4A1, KIAA0125,
TNFRSF17, TCL1A, SPIB, PNOC

CD45 1 1 aNA PTRPC

Cytotoxic cells 18 10 0.69 PRF1, GZMA, GZMB, NKG7, GZMH, KLRK1,
KLRB1, KLRD1, CTSW, GNLY

DC 7 3 0.46 CCL13, CD209, HSD11B1

Exhausted CD8 5 4 0.44 LAG3, CD244, EOMES, PTGER4

Macrophages 33 4 0.71 CD68, CD84, CD163, MS4A4A

Mast cells 31 5 0.74 TPSB2, TPSAB1, CPA3, MS4A2, HDC

Neutrophils 32 7 0.48 FPR1, SIGLEC5, CSF3R, FCAR, FCGR3B,
CEACAM3, S100A12

NK CD56dim cells 14 4 0.40 KIR2DL3, KIR3DL1, KIR3DL2, IL21R

NK cells 36 3 0.47 XCL1, XCL2, NCR1

T-cells 13 6 0.81 CD6, CD3D, CD3E, SH2D1A, TRAT1, CD3G

Th1 cells 27 1 aNA TBX21

Treg 18 2 aNA FOXP3

CD8 T cells 35 2 0.51 CD8A, CD8B

CD4 cells 20 0 bNA
aOnly one marker gene; quality impossible to assess in expression data alone
bCalculated as the T-cell score minus the CD8 cell score
Cell types lacking acceptable marker genes are omitted. The mean pairwise similarity statistic is a measurement of how well a gene set adheres to the co-expression
patterns expected from a set of perfect marker genes, with a score of 1 indicating perfect marker-like behavior
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T cell and CD8 cell scores correlates (r = 0.65) with
the difference between flow cytometry CD4 and CD3
log2 counts.
The between platform correlations in cell type mea-

surements were in general moderately strong but statis-
tically significant. The near-unit slopes of the lines of
best fit in these plots is important: these slopes mean
that a 2-fold increase in T-cells as measured by gene
expression predicts a 2-fold increase in T-cells as mea-
sured by IHC. Note that each platform returns results
on a different scale, and so it is necessary to mean-
center their measurements before comparing them.

The low reproducibility of IHC measurements [28]
and the variable spatial distribution of immune cells
within a tumor sample place strong upper bounds on
the correlation between IHC and gene expression mea-
surements of cell type abundance. For example, spatial
sampling factors appear to explain the low outlier in
Fig. 4: in this IHC sample, CD3 and CD8 cells were
nearly absent from the tumor interior but were highly
abundant in the invasive margin.
The correlation between gene expression and flow

cytometry is limited by the relatively constant propor-
tions of immune cell populations in PBMCs. The most

a

b c

Fig. 2 Pairwise similarity, a measure of marker-like co-expression, of candidate B-cell marker genes in TCGA. a Pairwise similarity of candidate B-cell
marker genes averaged across 24 TCGA RNASeq datasets. Darker red indicates co-expression patterns consistent with both genes acting as cell type
markers. Values of 1 indicate perfect marker-like co-expression. Green sidebars indicate final selected markers. b Two of the selected B-cell markers,
including CD19, in the bladder cancer dataset, demonstrating strong marker-like co-expression. c In bladder cancer, CD19 and the rejected candidate
marker BLNK, displaying co-expression inconsistent with both genes acting as B-cell markers
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variable comparison, CD4 cells vs. CD3 cells, changed
by less than 30% between its minimum and
maximum. In contrast, IHC T-cell measurements in-
creased by 20-fold between their minimum and max-
imum. The very small root mean squared errors
(RMSE) between gene expression and flow measure-
ments are consistent with high concordance but low
variance. Further discordance between gene expres-
sion and flow cytometry can be attributed to meas-
urement errors in both platforms, gating decisions in
flow analysis, and genuine differences in the biology
captured by the two platforms.

Reproducibility of gene expression cell type scores
To evaluate our cell scores’ technical reproducibility, we
assayed RNA extracted from 12 tumor FFPE samples
(Asterand) in triplicate using the nCounter PanCancer
Immunology Panel (NanoString Technologies). These 12
samples included 2 endometrial carcinomas, 3 cervical
carcinomas, 2 thyroid carcinomas, 2 neuroendocrine
carcinomas, 2 esophageal tumors, and 1 mesothelioma.
Reproducibility for most cell scores was extremely high
(Fig. 5, Table 2), with the median cell score having a neg-
ligible 0.5% of variance explained by technical noise.
Our NK CD56 Dim cell score had notably worse

a

b

Fig. 3 Pairwise similarity, a measure of marker-like co-expression, of selected marker genes in TCGA. Values of 1 indicate perfect marker-like
co-expression. a Mean log2 expression vs. average pairwise similarity of selected cell type markers across TCGA datasets. Cell types in grey have been
discarded from the final panel of markers. b Average pairwise similarity of each cell type’s marker genes in each TCGA dataset
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reproducibility than the rest, with 10% of variance
due to noise.

Application of cell type marker genes to TCGA RNASeq data
Results in TCGA: pan-cancer patterns in TIL abundance
We used our immune cell marker genes to calculate cell
abundance scores in 9986 TCGA RNASeq samples from
24 tumor types. The majority of immune cell scores
tended to rise and fall together, with the average pair of
cell scores having a correlation of 0.61 over the solid
tumor TCGA datasets. This finding suggests that the
primary component of variance in most cell types’ abun-
dance is driven by the amount of infiltrate rather than
its makeup. To capture this primary axis of information,

we defined a “Total TILs” signature as the average of
all cell scores with correlations with PTRPC (CD45)
greater than 0.6, which excluded only dendritic cells,
Tregs and mast cells. Our Total TILs score explained
60% of the variance in our cell scores in TCGA data.
Total TILs score varied widely between and within
tumor types (Fig. 6a).

Results in TCGA: prognostic significance of cell types
In each TCGA dataset, we tested the prognostic utility
of Total TILs score and of each cell type’s enrichment or
depletion relative to Total TILs. We first defined cell
type enrichment scores as the residuals of linear regres-
sions predicting each cell type from our Total TILs

a

b

Fig. 4 Comparison of gene expression cell scores to alternative biomarkers. a In FFPE tumor samples, gene expression cell scores and log2-transformed
IHC measurements of cell type abundance. b In PBMC samples, gene expression and flow cytometry measurements, normalized to T cell abundance
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score. These cell type enrichment scores do not measure
absolute abundance of a cell type but rather its enrich-
ment or depletion within the immune infiltrate. We
found cell type enrichment scores to provide a more in-
terpretable picture of this data than our raw cell scores,
whose high correlation concealed their distinct prognos-
tic relevance in univariate analyses. We ran univariate
Cox regressions predicting survival in each dataset from
these cell type enrichment scores (Fig. 6b.) Eleven tumor
types had statistically significant (FDR < 0.1) [29] associa-
tions between survival and at least one feature of TIL
abundance and makeup.
As others have shown [3, 30], we see that immune cell

populations have different prognostic implications in dif-
ferent tumor types, though some patterns are apparent.
High Total TILs score predicts longer survival in melan-
oma (SKCM) and head and neck (HNSC) tumors but
worse prognosis in lower grade gliomas (LGG) and kid-
ney renal clear cell tumors (KIRC). Enrichment of
T-cells, CD8 T-cells and mast cells also tends to predict
good prognosis. Enrichment of DCs, neutrophils and
macrophages generally indicates poor prognosis, sug-
gesting that these cell types mount a less effective im-
mune response or can serve as suppressor cells.
The melanoma (SKCM) results best match the stand-

ard theory of immunotherapy: increased TILs and an
infiltrate enriched for CD8 T-cells and Th1-induced

IFN-gamma signaling indicate an effective immune re-
sponse. The glioma (LGG) and kidney renal clear cell
carcinoma (KIRC) results are striking: overall TIL abun-
dance is associated with shorter survival, and most indi-
vidual immune cell populations hold further prognostic
importance. The LGG results can be explained by the
danger of inflammation in the brain and by the role of
macrophages in suppressive signaling. The thymoma
(THYM) results are also interesting: although Total TILs
score is not prognostic, there is rich prognostic informa-
tion in the enrichment of various cell populations within
the total infiltrate.
Of the 21 tumor types without evidence for a prognos-

tic role of TILs, 10 lacked statistical power, with fewer
than 33 events. The BLCA, CESC, COAD, ESCA, GBM,
KIRP, LUAD, LUSC, OV, PAAD and STAD datasets all
had at least 49 events, but lacked evidence for a prog-
nostic role of TILs. The negative result in the colon can-
cer (COAD) dataset is a notable divergence from the
prognostic relevance of the Immunoscore [2], though
with only 49 events the dataset had modest power to
establish an association.
Section S2 in the Additional file 2 contains further

analyses of our cell scores in TCGA, including analyses
of total immune abundance across tumor types, immune
cell co-occurrence, correlation between immune popula-
tions and key immune oncology genes, relationships

Table 2 Reproducibility and concordance with alternative cell type quantification methods

Cell type Correlation
with IHC

Root Mean
Squared Error
from IHC

Correlation
with flow

Root Mean
Squared Error
from Flow

Mean pairwise
similarity statistic
in TCGA

SD due to technical
noise (log2 scale)

Proportion
of variance
due to noise

B-cells 0.62 0.064 0.59 0.13 0.0022

CD45 cNA 0.1249 0.0024

Cytotoxic cells 0.69 0.0813 0.001

DC 0.46 0.2307 0.0151

Exhausted CD8 0.44 0.1624 0.0062

Macrophages 0.71 0.0828 0.0013

Mast cells 0.74 0.1949 0.0086

Neutrophils 0.48 0.19 0.0026

NK CD56dim cells 0.47 0.071 0.40 0.2347 0.1073

NK cells 0.51 0.118 0.47 0.1938 0.017

T-cells 0.66 1.3 a0.78 a0.064 0.81 0.1116 0.0021

Th1 cells cNA 0.2212 0.0304

Treg cNA 0.371 0.049

CD8 T cells 0.53 1.5 0.78 0.138 0.51 0.1842 0.0045

CD4 cells b0.65 b0.752
aUsed to normalize the other cell types; 0.78 and 0.064 are the highest correlation and lowest RMSE observed between gene expression and flow for any T-cells
vs. other cell type contrast
bCalculated as the T-cell score minus the CD8 cell score
cOnly one marker gene; quality impossible to assess in expression data alone
Root mean squared errors are calculated from log2-scale abundance measurements. The mean pairwise similarity statistic measures how well a gene set’s co-expression pat-
tern adheres to the co-expression pattern of ideal marker genes, with a value of 1 indicating perfect correlation with a slope of 1. The standard deviation (SD) and proportion
of variance due to noise were calculated from triplicate gene expression assays from tumor sample RNA
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between tumor type and the makeup of the immune in-
filtrate, and associations between mutation burden and
total immune infiltrate.

Application of cell type marker genes to an immunotherapy
dataset
A recent clinical trial collected biopsies from melanoma
patients through checkpoint inhibitor therapy, first be-
fore and during anti-CTLA4 therapy and then before
and during anti-PD1 therapy [31]. We calculated cell
type scores using publically available NanoString data
from 54 of these biopsies. As the study only included 22
of our cell type marker genes, we calculated each cell
type’s score as the average of its available marker genes.
Additional file 1: Table S6 details which marker genes
were available.
Our Total TILs score mirrored the original study’s

conclusions. Before treatment, responders and non-
responders had similar scores. During anti-CTLA4
treatment, the average responder had a 2.58-unit in-
crease in Total TILs score relative to the average
non-responder, which can be interpreted as a 6-fold
increase in total TILs abundance (since 22.58 = 5.97).

During anti-PD1 treatment, the average responder’s
score was 4.41 units higher than the average non-
responder’s, equivalent to a 21-fold difference in TIL
abundance (Fig. 7a). These on-treatment biopsies were
taken before clinical benefit was evident, suggesting
our Total TILs score could provide an early measure
of checkpoint inhibitor success.
Examination of individual cell scores shows that

the individual cell populations do not all increase
equally during clinical response (Fig. 7b). In patients
on anti-CTLA4, most cell scores were between 2.4
and 3.4 units higher in responders than in non-
responders, indicating 5 to 11-fold increases in cell
abundance. Exceptions from this trend were B-cells,
NK cells and neutrophils, which showed negligible
associations with response. Under anti-PD1 therapy,
most cell types were more than 4.2 units higher (18-
fold more abundant) in the average responder than
in the average non-responder, and neutrophils were
the only cell type that was not statistically signifi-
cantly associated with response. Unlike anti-CTLA4
responders, anti-PD1 responders showed increased
NK cell abundance and greatly increased (>20-fold)

Fig. 5 Reproducibility of cell scores derived from triplicate runs of 12 tumor samples. For each cell type, each sample’s individual replicate cell scores
are plotted against its average score. Color denotes tumor type
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B-cell abundance. Figure 7c demonstrates the appli-
cation of our scores to pre- and on-treatment sam-
ples from a single patient. To highlight how this
patient compares to the broader population, we re-
port each cell score relative to its average in the
immunotherapy-naïve samples at the pre-CTLA4
timepoint. All cells but neutrophils become more
abundant during the patient’s clinical response, with
the greatest increases seen in the T cell lineage, mac-
rophages and cytotoxic cells.

Discussion
It is unknown whether our cell type scores track pure
cell type abundance like flow and IHC or whether they
track the product of cell type abundance and activity.
For example, our data cannot rule out the possibility
that highly active CD8 cells have increased expression of
our CD8 marker genes relative to inactive CD8 cells.
Whether cell type abundance or cell type activity levels
have greater clinical relevance cannot be assessed by the
data in this study.

a

b

Fig. 6 Results of analyses of cell scores in TCGA RNASeq data. a Boxplot of Total TILs score across TCGA datasets. Datasets are ordered according
to median score. The vertical axis is log2-scale. b Prognostic information in Total TILs score and in cell type enrichment scores, the residuals of
each cell score when regressed on the Total TILs score. Red indicates cell types whose enrichment within the total infiltrate is associated with
poor outcome; blue indicates association with good prognosis. Only results with FDR < 0.05 are shown, and cancers without any statistically significant
cell types are not shown
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CD4 subpopulations appear to lack sufficiently specific
marker genes: for neither CD4 cells nor for any CD4
subpopulation did we find co-expression patterns among
candidate genes consistent with cell type specificity.
Quantification of these populations may require a de-
convolution approach such as that employed by [9]. The
Additional file 2 section S3.1 contains a discussion of
the relative merits of deconvolution methods versus the
marker gene approach we have taken. Alternatively, CD4
population functions could be measured with their ca-
nonical genes, similar to our use of TBX21 to measure
Th1 cells and FOXP3 to measure Tregs.
Normalizing gene expression data for application of this

method becomes complicated in non-tumor samples like
PBMCs and cultured cells. In PBMCs, for example, it is

likely that the standard reference genes have different ex-
pression levels in different cell types; thus a PBMC sample
with abundant T-cells might be normalized to a different
level than a PBMC sample with depleted T-cells. A work-
around to this problem is to normalize not to reference
genes but to a single immune cell population, yielding rela-
tive measurements of cell types like CD8 cells/CD3 cells
and B-cells/CD3 cells. We apply this approach to our ana-
lysis of a flow cytometry dataset. Alternatively, normalizing
to the average score of the major PBMC components – T-
cells, B-cells, NK cells and macrophages – approximates
normalization to the total number of cells in a sample.
The quality of the list of candidate markers is crucial to

the success of our method and the derivation of our gene
list. We seeded our analysis with candidate markers derived

a b

c

Fig. 7 Application of cell scores to an immunotherapy dataset. a Total TILs score of each biopsy at each timepoint. Total TILs score was calculated as the
average of all cell scores with >0.6 correlations with CD45, a metric that excluded only NK cells and neutrophils. Grey points denote non-responders; colored
points denote responders. b Estimates and 95% confidence intervals for each cell score’s log2 fold-change between responders and non-responders on anti-
CTLA4 (top) and anti-PD1 (bottom). c Cell scores from a single anti-CTLA4 responder before and during therapy. Scores are given as log2 fold changes from
the average patient’s pre-treatment score
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from prominent meta-analyses of separated immune cell
populations. It is likely that future datasets and meta-
analyses will support superior candidate gene lists which
could be used to derive additional markers, including
markers of cell types for which our analysis was
unsuccessful.
We find in all our analyses that the immune cell popu-

lations we measure are correlated, rising and falling
together. Nonetheless, our cell scores’ distinct prognostic
significance in TCGA in Fig. 6b and their differential re-
sponses to checkpoint inhibition in Fig. 7 emphasize that
the cell scores provide non-redundant information and
that analysis of multiple scores returns more detailed in-
formation than a simple measure of total TILs.
To aid other investigators, we provide R code for cal-

culating cell type abundances and for performing QC on
marker genes in new datasets. We also list the candidate
genes we examined (Additional file 1: Table S3) and the
selected genes (Additional file 1: Table S4), and we pro-
vide cell type abundance scores on 9986 TCGA samples
(Additional file 4: Table S5). All data and code used in
these analyses are available as Additional file 5. Nano-
String Technologies has implemented this immune cell
scoring method in a free, open-source analysis tool.

Conclusions
We have identified a set of marker genes with sufficient
cell type specificity that their expression levels can be
used to measure immune cell subpopulations in the
tumor microenvironment. The quality of available
marker genes varies across cell types (Fig. 3, Table 2),
with some cell populations (T-cells, cytotoxic cells, mast
cells, macrophages) having many well-behaved markers
with very high pairwise similarity statistics, with other
cell populations possessing only weak markers (exhausted
CD8 cells, NK CD56 dim cells), and others lacking any
suitable markers (Th17 cells, CD4 cells). Similarly,
our 14 cell type gene lists have different levels of evi-
dence. Our T cell and CD8 cell scores have the high-
est level of evidence: they correlate well with both
IHC and flow, and their marker genes show strong
marker-like behavior in TCGA data. We lack IHC
data that could validate our B, NK, and NK CD56dim
scores, but these cell scores correlate with flow cy-
tometry and their markers behaved approximately as
well in TCGA as our CD8 cell markers. Our mast
cell, cytotoxic cell and macrophage scores have nei-
ther IHC nor flow measurements to support them,
but their marker genes exhibited very strong marker-
like co-expression in TCGA. Finally, our neutrophil
and exhausted CD8 cell markers performed approxi-
mately as well in TCGA as our CD8 cell markers.
The immune cell scores described here can be imple-

mented in a single assay using any gene expression

platform, and any single cell type score can be calculated
with an assay of just a handful of genes. Thus these cell
scores represent a convenient technique for extracting
detailed information about the tumor immune contex-
ture in samples and settings where flow cytometry is
unavailable. Furthermore, given their demonstrated
prognostic value in TCGA, their association with clinical
response to checkpoints in the data of [31], and the in-
creasingly well-understood associations between im-
mune populations and response to immunotherapies [6],
these cell scores may hold information useful for moni-
toring or predicting response to immunotherapy.
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