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Abstract

The culmination of over a century’s work to understand the role of the immune system in tumor control has led to
the recent advances in cancer immunotherapies that have resulted in durable clinical responses in patients with a
variety of malignancies. Cancer immunotherapies are rapidly changing traditional treatment paradigms and
expanding the therapeutic landscape for cancer patients. However, despite the current success of these therapies,
not all patients respond to immunotherapy and even those that do often experience toxicities. Thus, there is a
growing need to identify predictive and prognostic biomarkers that enhance our understanding of the mechanisms
underlying the complex interactions between the immune system and cancer. Therefore, the Society for Immunotherapy
of Cancer (SITC) reconvened an Immune Biomarkers Task Force to review state of the art technologies, identify current
hurdlers, and make recommendations for the field. As a product of this task force, Working Group 2 (WG2), consisting of
international experts from academia and industry, assembled to identify and discuss promising technologies
for biomarker discovery and validation. Thus, this WG2 consensus paper will focus on the current status of
emerging biomarkers for immune checkpoint blockade therapy and discuss novel technologies as well as
high dimensional data analysis platforms that will be pivotal for future biomarker research. In addition, this
paper will include a brief overview of the current challenges with recommendations for future biomarker
discovery.
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Background
The role of the immune system in cancer control has
been debated for over a century. The field of cancer im-
munology has progressed with knowledge obtained from
animal studies, accumulated clinical observations and
translational research. Interestingly, starting in the 1900s
and every 50 years thereafter, three main theories had
been proposed to refine our understanding of the impact

of the immune system on cancer. The first theory was
suggested by Paul Ehrlich’s human protective cancer im-
munity, followed by Burnet and Thomas’s concept of
“cancer immunosurveillance”, and recently by Schreiber,
Old and Smyth’s “cancer immunoediting” [1–4]. “Cancer
immunosurveillance” originally implied that the immune
system was involved at the initial stages of cellular trans-
formation and played a solely protective role. Now, the
term “cancer immunoediting” is used to better describe
the protective activities, positive and negative sculpting
actions of the immune response on developing tumors
in a continuous manner. This process can potentially re-
sult in the complete elimination of some tumors, but it
can also generate a non-protective immune state to
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others that may favor the development of immunologic
evasion. Meanwhile, our perception of cancer has chan-
ged dramatically. In the past, tumors were thought to be
a result of a single, clonal, disordered cell, when in ac-
tuality, most resulted from multiple (pre)malignant cells
[5]. Tumors are comprised of heterogeneous cell popula-
tions, including transformed cells and untransformed
cells (such as stromal, endothelial and immune cells),
which have indispensable functions in their microenvir-
onment [6, 7]. The evasion of immune destruction is
now commonly accepted as a hallmark of cancer [8].
Therefore, understanding the status and interaction be-
tween cancer and the immune system in the tumor
microenvironment (TME) is of importance for cancer
immunotherapy strategies.
T cell infiltration in certain human tumors is associ-

ated with an improved clinical outcome [9, 10]. The
accumulating evidence suggests that tumors can be clas-
sified into two groups: Immunologically-ignorant tumors
and immunologically-responsive tumors (or non-
inflamed tumors vs T cell-inflamed tumors), based on
the presence or absence of immune cell infiltrations
[11]. Clinically detectable tumors have usually already
evolved mechanisms to evade an immune response. The
tumor immune escape mechanism may be different for
each type, which may involve one or multiple steps of
the cancer-immunity cycle [12]. Immunologically-
ignorant tumors may be caused by a low mutation load,
immune tolerance against self-antigens and lack of es-
sential chemokines and other molecules for T cell hom-
ing into tumor sites. In contrast, the progression of
immunologically-responsive tumors with T cell infiltra-
tion indicates an insufficient response that is probably
due to intrinsic T cell immune-inhibition and extrinsic
tumor-related T cell immunosuppression [13]. Intrinsic
T cell immunosuppression involves anergy and exhaus-
tion of activated T cells with endogenous immune
checkpoint molecules including cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4), programmed cell death
1 (PD-1), T cell immunoglobulin mucin-3 (Tim-3) and
lymphocyte-activation gene 3 (LAG-3) [14]. The secre-
tion of extrinsic inhibitory molecules such as TGF-β, IL-
10 and indoleamine 2,3-dioxyenase (IDO) could have a
direct negative impact on T cell function in the TME
and on the recruitment of anti-inflammatory cells, in-
cluding tolerogenic antigen presenting cells, regulatory
T cells (Treg) and myeloid derived suppressor cells
(MDSC). These suppressive immune cells can also in-
hibit the actions of cytotoxic T lymphocytes [13].
It is a promising approach to block these immunosup-

pressive mechanisms to augment the function of endogen-
ous antitumor T cells, which can deliver a robust and
effective clinical response. Blockade antibodies against T
cell checkpoint molecules including CTLA-4 and the PD-

1/PD-L1 axis in mono- or combination therapies have
begun to revolutionize the current standard cancer treat-
ment in various cancer types, such as melanoma,
non-small cell lung cancer (NSCLC), bladder cancer and
Hodgkin’s lymphoma [15–22]. Immunologically-responsive
tumors are more likely to respond to these checkpoint
blockade antibody therapies than immunologically-ignorant
tumors [11]. Moreover, prior interventions to achieve local,
productive inflammation in the TME are required in
combination with these therapies to enhance the clinical
response for immunologically-ignorant tumors. Thus, it is
essential to perform biomarker studies to further characterize
these different classes of tumors and provide guidance for
therapeutic strategies.
Improved high-throughput technologies are provid-

ing feasible tools for analyzing the mutation antigen
profile, the gene signature and epigenetic modifica-
tion of tumor and immune cells, the breadth of anti-
body responses, as well as the magnitude, homing
capacity, cytotoxic function and T cell receptor
(TCR) repertoire of T lymphocytes. These novel
technologies will help advance precision medicine
[23]. New technological approaches will enable us to
identify predictive biomarkers such as immunologic
signatures or profiles for the patients who will most
likely benefit from current immunotherapies. In addition,
they will help patients avoid immune-related adverse
events or adverse events of special interest and reduce
treatment costs for those unlikely to respond [17]. Fur-
thermore, they will enhance our understanding of the
mechanisms underlying cancer immunotherapies and aid
in the development of more appropriate therapies for spe-
cific patient populations. In this paper, we will discuss the
current progress to identify biomarkers for immune
checkpoint blockade therapies as well as novel technolo-
gies and their potential application for future cancer im-
munotherapy biomarker discoveries, as illustrated in
Fig. 1.

Review
Emerging biomarkers for CTLA-4 immune checkpoint
blockade immunotherapy

Immune checkpoint blockade has led to durable antitu-
mor effects in patients with metastatic melanoma,
NSCLC and other tumor types [15, 17, 24–29]. Ipilimu-
mab, an antibody that blocks CTLA-4, was approved by
the U.S. Food and Drug Administration (FDA) for pa-
tients with advanced melanoma in 2011. However, al-
though a subset of patients benefit, it is often with
delayed radiographic response and at the expense of
mechanism-based toxicity [17]. Therefore, it is impera-
tive to identify biomarkers in order to elucidate the
pharmacodynamic changes, understand the potential
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mechanisms of action and to find new correlates associ-
ated with clinical benefits and/or toxicities.
Several serum markers such as lactate dehydrogenase

(LDH), C-reactive protein, vascular endothelial growth
factor (VEGF) and soluble CD25 are associated with
clinical outcome in advanced melanoma patients treated
with ipilimumab [30–34]. In addition, a variety of assays
are available to monitor phenotypic changes in immune
cells such as human leukocyte antigen (HLA)-DR and
activated inducible co-stimulator (ICOS) on T cells, to
measure changes in target immune cell populations such
as MDSC and to assess tumor associated antigen (TAA)
specific responses as well as evaluate the functionality
and gene expression profile of antigen-specific T cell
populations. These assays have led to preliminary find-
ings of potential emerging biomarkers for CTLA-4
blockade therapy as described in the following section.
Ipilimumab augments antitumor immune responses by

activating and increasing the proliferation of T cells [35].
Thus, absolute lymphocyte count (ALC) is a potential
pharmacodynamic biomarker for ipilimumab treatment
in patients with melanoma and other solid tumors [36–38].
Following treatment with ipilimumab, an ALC ≥1000/μL at
week 7 or an increase in ALC between baseline and week
12 was significantly associated with longer overall survival
[33, 39, 40]. Because the ALC contains a variable heteroge-
neous lymphocyte population as a general biomarker, there

has been strong interest in characterizing changes in
specific T cell subsets during CTLA-4 blockade
therapy. Increased levels of HLA-DR, CD45RO, cen-
tral memory markers (CCR7+CD45RA−) and effector
memory markers (CCR7−CD45RA−) on CD4+ and
CD8+ T cells were reported after ipilimumab treat-
ment in several studies [41–45]. However, the eleva-
tion of these T cell markers did not correlate with
clinical response to ipilimumab.
ICOS is expressed on the cell surface of activated T cells

and plays a role in T cell expansion and survival. The fre-
quency of CD4+ICOS+ T cells was shown to increase in a
dose-dependent manner in patients with bladder cancer,
breast cancer and mesothelioma after treatment with ei-
ther ipilimumab or tremelimumab [45–49]. In addition, a
sustained increase in CD4+ICOS+ T cells was observed
over 12 weeks after CTLA-4 blockade therapy and corre-
lated with improved survival in four independent studies
[46, 49–51]. Therefore, an increase in the frequency of
CD4+ICOS+ T cell may be a reproducible pharmacody-
namic biomarker to indicate biological activity for CTLA-
4 blockade therapy [52]. However, it would be worthwhile
to prospectively investigate changes in the frequency of
multiple T cell subsets in relation to CTLA-4 blockade
therapy in a large cohort of patients.
Cancers are immunogenic and express a variety of

TAAs. CTLA-4 blockade was shown to potentiate the

Fig. 1 High-throughput immune assessment for biomarker discovery and personalized cancer immunotherapy. Immunologically-ignorant and
immunologically-responsive tumors are classified by the presence of immune cells in the tumor microenvironment. Potential biomarkers identified
from high-throughput technologies can further differentiate these tumors by the mutation load, gene/protein/antibody signature profile, phenotype
and function of immune cells, and can also provide clinical strategies for personalized cancer immunotherapies. The new and innovative technologies
that can be utilized to identify potential biomarkers include whole exome sequencing, gene signature, epigenetic modification, protein microarray, B/T
cell receptor repertoire, flow/mass cytometry and multicolor IHC. Arrows indicate a decrease (↓) or increase (↑)
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production of TAA-specific antibodies as well as a CD4+

and CD8+ antigen-specific T cell response in patients
with melanoma, ovarian and prostate cancer [45, 53–56].
Moreover, melanoma patients seropositive for the cancer-
testis antigen NY-ESO-1 were more likely to experience
clinical benefit than those who were seronegative [57]. In
contrast, there was no significant association between
humoral response to tumor antigens and clinical benefit
in two other studies [45, 58]. However, because of small
sample size, different response criteria and varying doses
of ipilimumab, it is ultimately difficult to make any specific
conclusions based on these studies alone. CTLA-4 block-
ade has also been shown to actually potentiate a robust
spectrum of tumor specific antibody responses. For ad-
vanced prostate cancer, it was shown that patients who
clinically responded to CTLA-4 blockade also developed
an enhanced antibody response to a greater number of en-
dogenous antigens than non-responders. In this study, the
majority of antibody responses were patient specific,
although there were some shared antibody responses
among clinical responders [56]. Further prospective valid-
ation is warranted to characterize the tumor antigen
specific antibody response as potential biomarker for anti-
CTLA-4 therapy.
The evaluation of TAA-specific T cell response has also

been an intense focus of immune monitoring for anti-
CTLA-4 immunotherapies. A high frequency of Melan-A
or NY-ESO-1 specific CD8+ T cells were detected in mel-
anoma and prostate cancer patients who showed a clinical
response to anti-CTLA-4 therapy [55, 59]. In these pa-
tients, the presence of integrated antibody and the CD8+
T cell response to NY-ESO-1 was associated with a signifi-
cant survival advantage [57, 60]. In addition, a recent
study also reported that ipilimumab induced a significant
increase in the number of newly detected melanoma-
reactive T cells by enhancing T cell priming [61]. More-
over, tumor genetics were shown to be important in
defining clinical benefit in ipilimumab treated melanoma
patients [62, 63]. The expression of immune-related genes
in pretreatment tumor biopsy specimens, especially inter-
feron gamma responsive genes, was correlated positively
with clinical activity in ipilimumab-treated melanoma pa-
tients [64]. A recent study showed that two cytolytic genes
(granzyme A and perforin) in the TME were significantly
enriched in the ipilimumab clinical benefit cohort com-
pared to the cohort that showed no clinical benefit [63].
These new findings suggest that the antitumor effect of
CTLA-4 blockade likely involves the amplification of a
preexisting or the priming and induction of an immune
response against various antigenic targets, especially mu-
tant genes.
MDSC are a phenotypically heterogeneous cell popula-

tion that is comprised of myeloid-cell progenitors and
precursors of myeloid cells. Interestingly, MDSC can

also function as antigen-presenting cells (APCs). Human
MDSC have been identified in patients with pancreatic
cancer, breast cancer, NSCLC and head and neck squa-
mous cell carcinoma [65, 66]. Human MDSC have an
immature phenotype that is typically lineage negative
(Lin−), CD14−, HLA-DR−, CD15+, CD34+, CD11b+,
CD33+ and CD13+ [67, 68]. MDSC exert an immuno-
suppressive function mainly through the production of
suppressive molecules, such as ARG1, cytokines, trans-
forming growth factor-beta (TGF- β) or IL-10. The
common proposed phenotype in humans is CD14
+/HLA-DRlow/-, which is based upon this cell popula-
tion’s ability to suppress lymphocyte function. The num-
ber of CD14+/HLA-DRlow/- cells was shown to be
elevated in melanoma patients and this increase corre-
lated with melanoma disease activity [69]. Therefore,
MDSC have been recently proposed as a potential bio-
marker associated with disease progression or survival
[70]. Ipilimumab treatment induced an early decrease in
the frequency of MDSC [71]. In addition, a lower base-
line MDSC frequency was associated with improved
overall survival [72, 73].
Overall, the biomarkers for CTLA-4 blockade therapy

were mostly identified from small cohort studies. Thus,
ongoing efforts are needed to validate these findings in a
larger cohort of patients in prospective clinical trials and
to determine whether these findings are specific to ipili-
mumab treatment compared with other cancer immuno-
therapies. Ultimately, the development of robust and
validated biomarkers that are predictive and/or prognos-
tic will help guide future clinical trials. Novel high-
throughput technologies, such as exome sequencing,
flow-based phenotyping and multifunctional assays and
T cell receptor analysis, have advanced recent antigen
specific biomarker discovery and will provide more tools
in order to validate the emerging biomarkers for CTLA-
4 blockade therapy. These new technologies and their
potential application will be discussed in details in sub-
sequent sections.

Regulatory T cells as potential biomarkers
The accumulation of Treg and MDSC in human tumors
and their increased frequency in the peripheral circulation
of cancer patients have been widely reported [74, 75].
Many reports, but not all, link these accumulations of
CD4+FOXP3+CD25hi Treg to poor prognosis due to the
suppression of antitumor immune response by the Treg
[74]. However, in human solid tumors such as colorectal
cancer or breast carcinomas, which are often richly infil-
trated with immune cells, the presence and density of
FOXP3+ Treg have been reported to predict favorable out-
come and a better local regional control of the tumor [76].
Given recent emphasis on the tumor “immune signature”
and emerging correlations of the immunohistology data to
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cancer patients’ survival [9, 76], the reliable phenotypic,
and especially functional, characterization of Treg in situ
and in body fluids is of critical importance. To date, most
of the studies examining the association between Treg
phenotype and prognosis or therapeutic response are still
based on the use of FOXP3 as a “specific” Treg marker
[77]. Recent data show that FOXP3 is not a reliable
marker of human Treg and that a collection of several
other markers may be a better option [77, 78].
In general, human Treg have been difficult to study for

the following reasons: (1) they represent only a minor sub-
set of CD4+ T cells (about 5 %) and thus are often limited
in numbers; (2) they lack a specific surface marker, making
their isolation and identification questionable; and (3)
Treg plasticity has made it difficult to differentiate naïve
(nTreg) or thymus-derived Treg (tTreg) from inducible
(iTreg) or peripheral Treg (pTreg). Various marker panels
used to phenotypically identify Treg invariably include ex-
pression of CD25hi and/or FOXP3+. In addition, the ab-
sence of CD127 or CD26 has been useful for Treg typing
and isolation [79, 80].
The following recommendations for Treg flow cytom-

etry panels have recently been made: (1) a minimal def-
inition of Treg should include CD3, CD4, CD25, CD127,
FOXP3 markers with Ki67 and CD45RA to clarify the
Treg activation status; (2) the sole dependence on any of
the three most commonly used flow panels for the Treg
phenotypic definition [(a) CD25+CD127low FOXP3+Treg;
(b) FOXP3+HELIOS+Treg; or (c) FOXP3hiCD45RAneg

vs. FOXP3intCD45RA+ to distinguish activated from
naïve Treg, respectively] leads to an underestimation of
the Treg frequency ranging from 25 to 65 %. Functional
markers, such as CD39 and CTLA-4, denote activated
or iTreg, and thus, may be considered “optional”
markers.
It has been reported that expression of surface

markers on Treg becomes altered in disease [81] and in
patients undergoing conventional therapies or immune
therapies [82, 83]. Therefore, the selection of a panel of
markers for measuring Treg is a critical task that will ul-
timately determine its role as a prognostic biomarker in
cancer and other disease. As in cancer, iTreg are un-
doubtedly the predominant Treg subset in situ and in
the peripheral circulation; their number, localization and
functions are of utmost importance. Thus, “activation”
markers, such as CD39, CTLA-4, latency-associated
peptide (LAP), glycoprotein A repetitions predominant
(GARP), PD-1, PD-L1 and others that are often overex-
pressed on Treg in cancer, emerge as important surro-
gate markers for Treg function and should be included
in the monitoring of Treg in cancer patients. Although
these markers are not specific to Treg, they are useful
when used in combination with CD25hi and FOXP3+ to
assess the functional potential of Treg by flow cytometry

and eliminate the need for Treg isolation that is neces-
sary in conventional carboxyfluoresceinsuccinimidyl
aster (CFSE)-based suppressor assays [84, 85]. Efforts to
identify a specific Treg marker that might distinguish
nTreg from iTreg have recently focused on Kruppel-like
factor 2 (KLF2), a transcription factor that regulates
chronic inflammation and is necessary for the develop-
ment of iTreg but not of nTreg [86]. Although there is
still no consensus on which marker panel (of the several
listed above) is best and which subset of Treg should be
monitored, some investigators prefer to focus on one
functional subset, e.g., the CD4+CD39+CD25+ adenosine-
producing Treg [87]. Based on the principle that function
rather than phenotype determines the biological and clin-
ical significance of Treg, this strategy, while limited in
scope, offers the advantage of following disease-associated
changes in a single subset of Treg and correlating these
changes to disease progression [87].
A number of in vitro suppression assays are available

for human Treg [78]. Among these, flow cytometry
based assays to measure the surface expression of LAP/
GARP on Treg, the intracellular expression of inhibitory
cytokines (TGF-β or IL-10) or the downregulation of
CD69 or CD154 expression in co-incubated responder
cells require a short-term, ex vivo activation of Treg. In
this regard, the flow-based assays are easier and have a
higher throughput potential than the conventional co-
culture assays of Treg with CFSE-labeled responder
cells.
Treg have constitutive expression of FOXP3 and

CTLA-4 on their cell surface and intracellular. Recently,
a study illustrated that anti-CTLA-4 antibody depleted
Treg in tumor lesions through Fc-dependent mechanism
to potentially enhance antitumor immunity in mice [88].
Moreover, the number of Treg (CD4+CD25+CD62L+

cells) in peripheral blood decreased at early time points
but rebounded to a level at or above baseline value at
the time of next dose [89]. In contrast, several studies
reported that ipilimumab in fact induced the prolifera-
tion and expansion of Treg, especially at lower doses,
whereas activated effector CD4+ cells were expanded
only at higher ipilimumab doses [43, 90]. Although the
decreasing FOXP3/Treg was associated with a better clin-
ical outcome in ipilimumab treated melanoma patients
[91], it will be critical to further characterize Treg with
new markers as described above in both peripheral blood
and tumor tissue and explore their correlation with clin-
ical outcome in patients treated with immunotherapies.

Emerging biomarkers for PD-1/PD-L1 immune checkpoint
blockade immunotherapy
The immune checkpoint molecule programmed death-1
(PD-1, CD279) is upregulated on activated T lympho-
cytes and inhibits T-cell function by binding to its
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ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC,
CD272) [92–94]. The PD-1/PD-L1 axis plays a pivotal
role in regulating T cell activation and peripheral im-
mune tolerance. The PD-1/PD-L1 interaction functions
to prevent bystander tissue damage during inflammation,
but it can also maintain an immunosuppressive TME
that allows tumor cells to evade immune surveillance
[95, 96]. Similar to CTLA-4 blockade therapy, monoclo-
nal antibodies that block PD-1 on immune effector cells
or PD-L1 on tumor cells and/or APCs have been
employed to restore immune activation. Several antibodies
against PD-1 (nivolumab, pembrolizumab, MED10680,
pidilizumab) and PD-L1 (BMS-936559, MED14736, atezo-
lizumab, MSB0010718A) are currently under clinical in-
vestigation and have demonstrated generally manageable
safety profiles and remarkable anti-tumor responses in
cancer patients with a wide range of metastatic diseases
[17, 18, 97–102]. As a result of positive clinical results in
early studies, the FDA approved pembrolizumab and nivo-
lumab for patients with advanced melanoma in 2014 and
for patients with metastatic squamous and non-squamous
NSCLC in 2015.
Although both are immune checkpoints, CTLA-4 and

PD-1 have distinct roles in regulating immunity. CTLA-
4 regulates the amplitude of early activation of naïve and
memory T cells, while PD-1 with the corresponding up-
regulation of its ligands PD-L1 and PD-L2 limits the ac-
tivity of T cells in the periphery during an inflammatory
response [95, 96]. PD-1 plays multiple roles in immune
regulation, and it is expressed on a variety of immune
cell types, including T cells (CD8+ and CD4+), B cells,
natural killer cells, monocytes and APCs. The PD-1/PD-
L1 axis can negatively regulate the activation and func-
tion of T and B cells as well as inducing Treg, thereby
inhibiting anti-tumor immunity. Moreover, PD-1 is
expressed with other immune checkpoint molecules
such as LAG-3 and Tim-3 on non-functional CD8+ T
cells, which supports the notion that PD-1 may interact
with other immune checkpoints to control anti-tumor
immunity [99]. In addition to PD-1, PD-L1 also binds to
B7.1 (CD80) and can inhibit T cell proliferation [100].
These distinct inhibitory interactions act more select-
ively within the TME, suggesting that anti-PD-1 and
anti-PD-L1 antibodies may have different clinical activ-
ities and related toxicities compared with CTLA-4
blockade therapy. Research focused on identifying clin-
ical biomarkers is necessary to elucidate the mechanisms
underlying the PD-1/PD-L1 mediated blockade and to
predict patient outcomes following anti-PD-1/PD-L1
therapies. Furthermore, it will also provide key insights
to develop combinatorial therapeutic strategies for fu-
ture clinical trials.
Studies to identify peripheral blood immune biomarkers

have illustrated that PD-1/PD-L1 blockade increases

effector T-cell proliferation (CD8+/HLA-DR+/Ki67+ T
cells), the production of inducible T-cell alpha chemo-
attractant (ITAC), interferon-gamma (IFN-γ) and IL-18.
However, in these studies there was no significant correl-
ation between these markers and clinical response in pa-
tients [28, 29]. Because of the unique expression pattern
and functional characterization of the PD-1/PD-L1 axis
molecules, the local TME may be a key site for identifying
predictive biomarkers for PD-1 pathway blockade. For ex-
ample, the expression of PD-L1 in tumor-infiltrating im-
mune cells analyzed by immunohistochemisty (IHC) is
associated with response to atezolizumab in patients with
bladder cancer [29]. Additionally, elevated expression of
IFN-γ and IFN-γ-induced genes in pre-treatment tumors
is associated with clinical response in patients with melan-
oma, although there was no such association reported in
NSCLC or renal cell carcinoma [28]. Another study illus-
trated that melanoma patients who had a higher number
of pre-treatment CD8+ T cells and TCR oligoclonality ex-
perienced a better clinical response to pembrolizumab
[103]. Furthermore, it has been shown that immune PD-
1/PD-L1 blockade has the capacity to enhance and sustain
endogenous immunity against mutated tumor neoanti-
gens, thereby achieving durable tumor control. Proof of
principle studies in melanoma and NSCLC have shown
that high mutational load is associated with clinical re-
sponse in patients treated with anti-PD-1 antibodies
[62, 104]. A recent study also illustrated that tumor
mismatch repair status predicted the clinical benefit
of immune checkpoint blockade with pembrolizumab
[105]. Tumors with high mutational load are likely
more immunogenic, which can persistently stimulate
neoantigen-specific CD4+ and CD8+ T cells. Thus,
these results suggest that tumor mutational load
could be potential predictive biomarker for PD-1/PD-
L1 blockade therapy.
PD-L1 is upregulated on many different tumor types

to inhibit the local antitumor T cell response. Because it
is functional only through the ligation with its counter-
receptor, the cell surface, or membranous, expression of
PD-L1 is essential for its biologic function. Two major
potential mechanisms, known as adaptive and intrinsic
resistance, can regulate the expression of PD-L1 on
tumor cells [96, 102]. Adaptive resistance occurs when
the tumor co-opts the natural physiology of the PD-1
pathway to enable its own protection. For example, the
expression of PD-L1 is up-regulated on most epithelial
cancers in response to various inflammatory mediators
such as cytokine IFN-γ, IL-4, IL-10, LPS, GM-CSF and
VEGF. Intrinsic resistance refers to constitutive genetic
alternations or the activation of signaling pathways (e.g.,
PTEN loss, activation of MEK/ERK or MyD88 signaling
or EGFR mutations) that drive the expression of PD-L1
on tumor cells [106–109]. Although it has been

Yuan et al. Journal for ImmunoTherapy of Cancer  (2016) 4:3 Page 6 of 25



described, the prognostic significance of PD-L1 expres-
sion on tumor cells remains to be determined.
Both prospective and retrospective analyses in large

Phase I, II and III trials in NSCLC and melanoma pa-
tients have demonstrated the association between
tumor PD-L1 expression and response to anti-PD-1
agents [17, 98]. In addition, a correlation between PD-L1
expression in the TME and clinical responsive to PD-1
blockade has also been shown [28, 29, 110]. Interestingly,
PD-L1 expression on tumor-infiltrating immune cells was
significantly associated with clinical response in NSCLC
patients treated with atezolizumab [28]. However, due to
the complexities of PD-L1 IHC, further studies are needed
to carefully validate these observation and other TME
characteristics in either mono or combinatorial therapy
settings [110]. In addition, due to the temporal changes in
PD-L1 expression during the treatment, the immune pro-
file and tumor signature need to be assessed at baseline.
Moreover, measuring alterations in the TME during treat-
ment will also be critical for future biomarker studies for
PD-1/PD-L1 targeted immunotherapy. Despite these ca-
veats, the current landscape for archival or pre-dose
tumor PD-L1 as a predictive marker of efficacy for PD-
L1/PD-1 targeted agents looks promising. Pembrolizumab
was the first checkpoint inhibitor to get approved with a
companion diagnostic test to measure tumor PD-L1 ex-
pression in 2nd line + NSCLC. Patients with high tumor
PD-L1 expression as defined by a proportional score of
≥50 % (PS ≥50 %) demonstrated improved objective re-
sponse rates of 45 % compared with 19 % in all enrolled
NSCLC patients [111]. Moreover, although it is not re-
quired for patient selection, nivolumab was approved for
non-squamous NSCLC with the first complementary
diagnostic test to measure tumor PD-L1 expression in
order to help identify patients with a greater likelihood of
improved survival [112]. However, because patients with
PD-L1 negative tumors had comparable activity to doce-
taxel with a favorable tolerability profile and the overall
intention-to-treat population in the trial was positive,
nivolumab was approved for 2nd line NSCLC, regardless
of PD-L1 status [113]. PDL1 was not predictive of
outcome for squamous NSCLC patients treated with
nivolumab.
Currently, there are a number of emerging biomarkers

for CTLA-4 and PD-1/PD-L1 immune checkpoint block-
ade therapies. However, progress to identify new and val-
idate current biomarker candidates has been limited by
the use of unstandardized assays that provide limited data
and variable results. Recent technological advances in
high-throughput techniques will not only allow potential
biomarkers to be validated across large prospective stud-
ies, but will also facilitate the discovery of novel
biomarkers and enhance our understanding of the mecha-
nisms underlying cancer immunotherapies. Therefore, the

remainder of this paper will focus on novel technologies
and highlight the potential impact of each technology on
current biomarker validation and future biomarker
discovery.

Whole exome sequencing for neoantigen discovery
Cancer is a genetic disease. The accumulation of genetic
mutations in a tumor leads to a change in its proteome.
A “cancer anti-genome” generated during this process
can be recognized by T cells [114, 115]. Somatic muta-
tions in cancer may give rise to mutated proteins that
are degraded into peptides (neoepitopes) presented in
the complex with major histocompatibility complex
(MHC) molecules on the cell surface as neoantigens.
There is a long standing interest in mutated antigens as
discussed in a landmark review by Dr. Gilboa in 1999
[116]. Heroic efforts were made by multiple groups to
assess reactivity against such antigens using DNA library
screens. Although these studies illustrated proof of
principle, it was not practically feasible to assess this
class of antigen in a systemic manner. Only a minority
of mutations are shared between patients; thus, the vast
majority of mutated antigens are patient-specific. There-
fore, the assessment of neoantigens needs to be based
on the genome of individual tumors. The revolution in
next-generation sequencing technology at affordable
costs along with the progress in bioinformatics has now
made it feasible to describe the full mutation load (i.e.,
the ‘genetic landscape’) of human tumors [117–120].
Specifically, a comparison of the genomic sequence of
cancer tissue to that of non-transformed cells from the
same patient can be used to reveal the full range of gen-
omic alterations within a tumor, including nucleotide
substitutions, structural rearrangements and copy num-
ber alterations [117].
Several preclinical and clinical reports underscore the

importance of understanding the immunogenicity of
neoantigens and their potential application in cancer im-
munotherapies. Two studies in mouse models provided
the first evidence that cancer exome based approaches can
be utilized to identify neoantigens recognized by CD8+ T
cells [121, 122]. Moreover, a recent study showed that
tumor specific mutant antigens are important targets of
immune checkpoint blockade therapy [123]. Subsequently,
it has likewise been demonstrated that similar approaches
can be utilized in the clinical setting to identify immuno-
genic neoantigen specific CD8+ T cells in patients treated
with tumor infiltrating lymphocyte (TIL) therapy and
checkpoint targeting therapies [124, 125]. Two human
studies reported that neoantigens were recognized by
intratumoral CD4+ T cells in patients with epithelial can-
cer and melanoma [126, 127]. This accumulating evidence
suggests that the immune response to mutant neoepitopes
plays a dominant role in tumor rejection. Due to the
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uniqueness of neoantigens, research into tumor immuno-
genicity has shifted the interest from TAAs (differentiation
antigen, cancer/testis antigen and overexpressed self-
antigen) to patient-specific mutation antigens.
The studies in both mouse models and human mater-

ial used exome sequencing, computer algorithm-guided
epitope prediction and the tandem minigene library ap-
proach to identify MHC Class I- or II-binding neoepi-
topes that were processed and presented by APCs and
recognized by neoantigen specific CD8+ and CD4+ T
cells. A tumor harbors hundreds of putative neoepitopes
per the analysis of the current TCGA database. It is im-
perative to differentiate and identify actual tumor pro-
tective neoepitopes from the putative neoepitopes
defined in silico. There are two major factors that can be
subject to variability when identifying tumor specific
mutated antigens using these novel approaches. First,
multiple computational tools to identify tumor specific
mutations have been developed simultaneously. Differ-
ent mutation calling tools such as EBcall, JointSNVMix,
MuTect, SomaticSniper, Strelka and VarScan 2 have
been developed to compare tumor samples with normal
tissue samples at each variant locus in order to increase
the accuracy of somatic single nucleotide variant (sSNV)
calling. These tools used to identify mutations have a
high degree of overlap [128, 129]. As a next step to iden-
tify neoepitopes, algorithms to predict binding affinity to
patient specific HLA alleles can be used together with
predictions on proteasomal processing. The accuracy of
the prediction algorithms mostly depends upon calculat-
ing the score of binding to the MHC complex. Recent
studies showed that combined use of multiple tools gave
a better prediction [130–132]; however, more work is
needed to accurately assess the immunoprotective prop-
erties of mutation-derived neoepitopes. Second, it has
been demonstrated by unbiased screens that not all mu-
tations result in neoantigens that are recognized by au-
tologous T cells. Therefore, it would be valuable to have
robust pipelines to filter whole exome data, especially
for tumors with high mutation loads. Multiple groups
have made significant efforts to establish such pipelines.
The filtering steps that have been applied are based on
the expression level of the mutations, e.g., RNA sequen-
cing data, and the likelihood that a given mutated epi-
tope will be processed by the proteasome and presented
by patient specific MHC molecules [123, 125, 131, 133].
The two latter filtering steps can be assessed using algo-
rithms that are already established to identify pathogen-
derived epitopes. Currently, the data is still too sparse to
know which of these filters is most relevant and how to
accurately apply thresholds these filters to include im-
munogenic and exclude non-immunogenic neoepitopes.
However, the most significant improvement in these pre-
dictions might be on the T cell side; the establishment of

algorithms that can identify the subset of epitopes that
are most likely to be recognized by TCR repertoire.
The development of robust in vitro T cell culture proto-

cols, high-throughput combinatorial encoding of MHC
multimer flow staining and high-throughput TCR gene
capture allows us to assess the frequency, phenotype and
polyfunctionality of the particular neoantigen specific T cell
response [134–136]. These high-throughput technologies
further reduce the large number of potential neoepitopes
to a small number of real immunogenic neoepitopes.
Therefore, these technologies will help us reevaluate the
accuracy of computational tools as well as select candidate
neoepitopes for vaccines and subsequently monitor the
neoepitope specific T cell response during therapy. We will
discuss the potential application of these high-throughput
assays in the corresponding section. Overall, this approach,
despite being in its early stages, has shown that the level of
mutation load as a potential biomarker can correlate with
clinical outcome to checkpoint blockade therapy in pa-
tients with advanced melanoma, colorectal cancer and
NSCLC [62, 63, 104, 105, 137]. Patients with highly muta-
genized tumors are most likely to respond to ipilimumab
treatment. However, some melanoma patients with low
mutation load have also experienced long-term clinical
benefit. In addition, similar observations were reported in
patients with NSCLC treated with anti-PD-1 antibody
[104].

Gene signature/pattern
Tumor immune biology is a complex interplay of many
immunosuppressive and immune stimulatory components
involve in connected pathways that define the inflamma-
tory state of the TME. Single molecule perturbation in
quantity and quality can induce a ripple effect under a
given condition at a cellular and more importantly mo-
lecular level. Treatment induced coordinated changes or
the natural course of the tumor can only be appreciated
when all key components are examined simultaneously as
a whole temporally and longitudinally. Evaluation of this
complex interaction with respect to treatment outcomes
in cancer have led to the identification of novel cell types
that drive or contribute to the efficacy of or resistance to
therapy and biomarkers that can predict clinical outcome
or drive mechanisms of rejection [138–140]. A holistic
evaluation of immune intervention in tumors can be
achieved by a system biology approach using gene expres-
sion technology with high dimensional data analysis. As
the technology become more affordable and reproducible
with minimal input material, the type of sample that can
be used for gene expression analysis ranges from fine nee-
dle aspirates, punch biopsies and needle sticks to laser
capture microdissected (LCM) samples and archived sam-
ples with degraded RNAs. In addition, it makes the types
of tissue usually available from clinical trials, such as
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formalin fixed paraffin embedded (FFPE) tumors, applic-
able. Combined with multiplexing IHC technologies, which
allow for the comprehensive interrogation of multiple cell
types as well as their location within the same tumor, gene
expression is frequently used as a reasonable surrogate to
identify the immune status of tumors [141–143].
However, reproducible and reliable expression data

can only be achieved when the type of sample collection,
timing of collection, sample processing and storage,
standard laboratory procedures and platform selection
are carefully planned. Several critical factors need to be
considered when using gene expression as a tool for im-
mune profiling. Two such factors are described below,
including the platform technology and definition of gene
signatures that signify the various immune cell subsets.

Sample quality and quantity
Because they most accurately represent directly ex vivo
tissues, fresh samples should be the first choice for gene
expression analysis. Because of advances in sample col-
lection tools, the collection of fresh samples is now
much less challenging. In order to monitor alterations in
the peripheral blood immune profile, PAXgene RNA
tubes (PreAnalytix GMbH, Hombrechtikon, Switzerland)
or other similar products are ideal due to the direct
preservation of the sample without the need for process-
ing. For large volume blood collection, peripheral blood
mononuclear cells (PBMC) should first be isolated
followed by direct lysis into an RNA isolation reagent,
such as QIAzol or Buffer RLT (QIAGEN, Venlo,
Netherlands), depending on the isolation kit used. Alter-
natively, a cell pellet can be directly frozen in an RNA
stabilization reagent. Ideally, tissue samples should be
collected at bedside, immediately processed and sub-
merged in an RNA stabilization reagent (e.g., RNAlater,
AMBION, Inc.). Time is a critical factor in sample col-
lection, and this common step often introduces bias.

The technologies
For excisional biopsies, depending the tumor type and
lesion, immune infiltrating cells are often quite diverse
and comprise only a fraction of the total tumor mass.
Consequently, RNA from immune infiltrating cells is
generally poorly represented when enrichment methods
such as LCM are not applied. Therefore, technologies
that are capable of reliably detecting low abundance
transcripts are the most suitable for the immune tran-
scriptional profiling of human tumors.
RNA from FFPE tissues is often degraded and thus,

poses a challenge for gene expression analysis. Recent
advances in technology circumvent this challenge with
the development of methods specialized for degraded
RNA analysis. Of the various technologies available, the
three most frequently used are digital PCR, single cell

real-time PCR (using the Fluidigm BioMark or Nano-
string nCounter analysis systems or Cytoseq technology),
or whole transcriptome RNA sequencing. Each has its
limitations and advantages [144–146]. The cDNA ampli-
fication step makes PCR the most sensitive technique
listed above for measuring gene expression in immune
cells. However, multiplex PCR is a tedious process and
may consume significant amounts of RNA from precious
tumor material. In contrast, digital PCR utilizes nano-
droplet technology and makes multiplexing effortless.
Alternatively, the Fluidigm BioMark system and Cytoseq
technology utilize either a nanofluid approach or a com-
binatorial library of beads bearing cell- and molecular-
barcoding capture probes and makes semi high-throughput
real-time PCR possible and single cell profiling achievable.
Although RNA or PCR amplification have been extensively
used in molecular biology, amplification bias introduced
during the multiple steps and enzymatic reactions can still
affect data reproducibility. Given the lack of an amplifica-
tion step, the Nanostring nCounter platform is the closest
to representing the true copy number of mRNA and per-
forms well for detection of RNA derived from FFPE tissues
[147]. However, the lack of amplification may affect the
sensitivity of the platform in detecting key immune cell
transcripts particularly from cells that are poorly repre-
sented in tumors. The emerging front of high resolution
whole transcriptome RNA sequencing is rapidly becoming
the platform of choice for RNA profiling due to the afford-
able cost and in-depth resolution of data. It provides not
only transcript copy number information, but also poly-
morphism information as well as transcript splicing variant
information. The importance of splicing variants is becom-
ing more and more appreciated and understood in terms of
functional diversity and in relation to pathophysiology.
Consequently, RNA sequencing of tumor samples is in-
creasingly being used to identify neoantigens presented by
MHC Class I molecules [148].

The definition of gene signatures
The power of gene expression platforms is in the ability
to analyze genes in multiple cell types within a single ex-
periment and to identify intrinsic immunosuppressive
molecules and extrinsic inhibitory signatures, which may
be predictive biomarkers and the targets for future im-
munotherapies. A simple strategy to evaluate multiple
cell types is to incorporate lineage markers as represen-
tatives of the individual cell types. For example, CD20
and CD8 transcripts adequately represent B cell and
CD8+ T cell densities, respectively. Cell types including
tumor-associated macrophages, Th2 cells, and Treg
among others are constantly changing both temporally
and in response to changes in the microenvironment.
These characteristics may be best studied using a gene
signature approach. However, the ever changing
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microenvironment and cell dynamics makes generating
reproducible gene signatures a moving target. Transcript
analysis is a single snapshot of molecular activity at the
point of sample collection and determined by multiple
factors including the host’s genetic makeup, somatic
genetic alterations, comorbidities, treatment procedures,
protocol and time. Despite the evolving nature of the
TME, common patterns of up or down regulated gene
sets have been identified and validated in independent
studies [140]. Gene analysis has evolved from pure gene
signatures to identifying expression patterns based on
pathway connections and molecules that are coordinated
and associated with specific cellular phenotypes. Genes
that are abundantly expressed in cells of interest tend to
cluster together, thereby providing a surrogate readout
for those cells. These gene signatures are often derived
from the expression analysis of distinct individual cell
types, representing the phylogeny of immune cells in
terms of their differentiation [149]. One of the chal-
lenges of this approach in human tumors is the promis-
cuous expression of these genes in multiple cell types.
For example, markers like perforin and eomesodermin
(eomes) may represent both activated T cells as well as
NK cells. Therefore, the preferred analysis method is to
integrate data from multiple assays by correlating the
results from different technologies, such as complement-
ing gene expression analysis with flow cytometry stain-
ing and T and B cell receptor deep sequencing with
multiplex IHC. Thus, this integrated approach yields a
powerful method to accurately evaluate the immune
profile of human tumors. The standardization of gene
signatures that represent distinct immune cell types may
be an important step in ensuring consistent interpret-
ation of data from gene expression. Meta-analyses based
on similar diseases and treatment regimens using public
databases have been very fruitful in data validation and
confirmation. Although a greater understanding of can-
cer biology and molecular immunology has been
achieved, developing biomarkers to use in clinical prac-
tice would require further testing in large clinical studies
and a broader database available for public access. To do
so, extensive cross validation is necessary not only at a
technological level, but also in interdisciplinary clinical
trials.

Epigenetic-differentiation based measurement of immune
cell and other cell frequencies in blood and tissue using
quantitative real-time PCR assisted cell counting
Epigenomics investigates key functional components
that regulate gene expression in a cell, by providing
information about patterns in which molecules such
as methyl groups label DNA and histones. Epige-
nomic modifications provide a common set of in-
structions to achieve a cell type specific identity,

despite sharing the same DNA sequence with all
other cells in the body. Therefore, comprehensive epi-
genomic analyses can provide the missing link be-
tween genomic variation and cellular phenotype [150].
Epigenomic organization with cell type specificity is a
major determinant of the cancer mutation landscape
[151]. The National Institutes of Health (NIH) Road-
map Epigenomics Consortium established global maps
of regulatory elements and defined regulatory mod-
ules of coordinated activity together with their likely
activators and repressors. Thus explaining how cell-
specific programs of gene expression are achieved and
transcriptional and translational control is ensured.
These data are a valuable resource for understanding
the relationships between cells and tissues and inter-
preting the molecular basis of human disease [152].
One of these epigenetic modifications, the methylation

status of either actively expressed or silenced genes, is
the basis of a novel cell identification and quantification
technology. Selective addition and removal of a methyl
group to the 5′-carbon of the cytosine base occurs ex-
clusively in the dinucleotide cytosine phosphate guanine
(CpG). DNA methylation is a non-random event and
often associated with inactive gene expression, if the tar-
get CpGs are located in the proximity of coding regions.
In contrast, demethylation of CpG in regulatory ele-
ments is commonly accompanied by activation of gene
expression. Recent discovery of cell type specific epigen-
etic CpG demethylation markers permits precise and ro-
bust quantification of immune cells from only small
amounts of human blood or tissue samples.
These epigenetic biomarkers located on genomic DNA

are stably associated with a cell type of interest. The cell
quantification methodology is based on quantitative
real-time PCR (qPCR), targeting differentially demethy-
lated CpG marker regions in the genomic DNA revealed
after a bisulfite conversion (BSC) step. During initial
assay development, the cell type and subtype-specific
epigenetic marker regions are identified through genome
wide differential CpG demethylation analysis of highly
purified reference cell populations of interest. The re-
gions are selected based on specific DNA sequences with
digitally differential BSC properties between different
cell types. During BSC, unmethylated cytosines are con-
verted to uracil, while methylated cytosines do not
change. Therefore, respective CpG dinucleotides must
be fully demethylated in the cell type of interest and
methylated in all other cell types. Resulting determin-
ation of a cell type specific demethylation status in rele-
vant loci is the basis for the development of segregating
primer and probes. The readout technology is qPCR of
the bisulfite converted DNA. Cell type specific qPCR as-
says are designed so that only the demethylated DNA is
amplified. This facilitates subsequent fast quantification
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of various leukocyte and other cell populations in a
given DNA containing sample by simple qPCR.
Representative examples are the complete demethylation

of the Treg cell-specific demethylated region (TSDR) in
Treg [153, 154], the demethylated region in the intergenic
region of CD3D/CD3G in T cells [155] and the demethyla-
tion within the CCR6 locus in CCR6-positive cells [156].
Epiontis has identified, characterized and validated various
epigenetic immune cell biomarkers, including those for
Treg, Th17, Tfh, CD4+, CD8+ and CD3+ T cells, B cells,
monocytes, NK cells and granulocytes. Results have an
intra-assay coefficient of variation (CV) ≤15 % and inter-
assay CV ≤20 %. Available assays cover the major leukocyte
types and can be evaluated in regulated, clinical studies re-
quiring a total of 2 ml or less whole blood for all markers
combined. The amount of sample required for such studies
is being lowered in the near future by a factor of 20 to
about only 100 μl for all available assays together. Frozen
tissue material requires 250 μg to 1 mg tissue to measure
12 markers, less for fewer markers. The exact material
needed is less defined compared to blood because the
number of cells and therefore DNA content in tissue by
weight or volume varies significantly.
Due to the inherent stability of DNA and its markers,

epigenetic assays have a distinctive advantage over assays
that require intact or viable/functional cells in blood and
tissue samples. This allows for a significantly broader
range of acceptable sample conditions collected by clinical
sites. By simply freezing and shipping the collected whole
blood or tissue samples without any other additional steps,
it allows for routine monitoring of patients and immune-
monitoring during clinical trials, multicenter studies and
retrospective studies as well as the comparison of results
across different studies [157, 158]. A common application
of this standardized, epigenetic-based, immune diagnostic
technology is monitoring cell-mediated immunity during
immune-modulatory clinical trials for cancer patients or
inflammatory diseases. Because these tests can be applied
on both blood and tissue, standardized measurements and
a comparison of circulating and tissue-infiltrating immune
cells can be obtained as an alternative to flow cytometry
for peripheral blood samples and IHC for solid tissues. Fu-
ture publication and extensive clinical studies are needed
to validate the potential application of this novel technol-
ogy for disease diagnosis and biomarker discovery for can-
cer immunotherapy. A Phase II immune modulation
study has shown utility of Treg and CD3 cell monitoring
in peripheral blood of patients in the SELECT trial [159].

Protein microarray (seromics)
Proteomics, analogous to genomics, is the large-scale
study of proteins, such as their structure, interactions
and functions [160, 161]. Immunoproteomics is an ex-
tension of the proteomics field that studies immune

related proteins and peptides. The release of tumor-
derived proteins initiates an immune response that in-
volves antigen-specific T and B lymphocyte targeting
peptides binding to self-MHC molecules and generating
specific antibodies to corresponding proteins. An auto-
antibody is an antibody that recognizes one or more
proteins from an individual’s own cells. Autoantibodies
in the peripheral blood are associated with autoimmune
disorders, infectious diseases and cancer. An effective
cancer immunotherapy would destroy tumor tissues,
thereby releasing proteins and consequently priming T
and B cells against additional tumor antigens that were
not a part of the original therapy. This phenomenon is
referred to as antigen spreading, or also known as epi-
tope or determinant spreading [162, 163]. Therefore, the
magnitude and spectrum of autoantibodies and their in-
tegration into the T cell response may be a feasible sur-
rogate marker for measuring the adaptive immune
response to cancer and a potential promising clinical
biomarker.
Several immunoproteomics approaches, such as Sero-

logic Proteome Analysis (SERPA), Serological analysis of
recombinant cDNA expression libraries (SEREX) and pro-
tein microarrays, have been investigated to identify TAAs
and their cognate antibodies [164, 165]. SERPA is a clas-
sical immunoproteomic approach that provides a robust
way of screening an antibody reactivity profile in sera from
patients with various diseases. SEREX was used to dis-
cover tumor specific antigens that elicit a high titer im-
munoglobulin G (IgG) antibody in sera from patients with
different types of cancer [166]. NY-ESO-1 was the first
cancer testis antigen discovered by SEREX technology
[167]. However, the application of SERPA and SEREX
technologies is limited due to the assay specificity and the
complexity of the assay preparation and procedure.
With the development of microarray techniques and

thousands of purified proteins immobilized on a solid
surface, protein microarrays have been employed to
identify proteins, detect various protein binding proper-
ties, study protein posttranslational modifications and
define potential biomarkers in a high-throughput man-
ner. There are three major types of protein microarrays
that are classified based on their technology and applica-
tion: analytical, reverse-phase and functional protein mi-
croarrays [168]. The broader application of the first two
types of protein microarrays is restricted by the specifi-
city and availability of antibodies. Therefore, we will
focus on the functional protein microarrays, especially
commercial protein microarrays, to describe the advan-
tages, current application and drawbacks of this technol-
ogy in basic research and clinical studies.
Protein microarrays have several advantages compared

with other techniques, including a reduction in sample
volume used, high sensitivity and specificity and high-
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dimensional data generation. For example, Gnjatic et al.
[169] reported that the sensitivity and specificity of a
329 full-length protein microarray had a 94 % concord-
ance with a standard ELISA. Another commercial pro-
tein microarray, ProtoArray® (Life Technologies) offers a
unique way to assay the serological response against
thousands of proteins (~9,000) simultaneously. ProtoAr-
ray® does not have full coverage of the proteome, but
serological analysis of this protein microarray represents
a substantial portion of the human proteome (seromics).
Integration of these types of high-dimensional data bet-
ter representing the dynamic processes of the immuno-
logic response associated with the development of the
disease, related toxicity and clinical outcome to cancer
immunotherapies. Specific autoantibodies have been
shown to correlate with the status and tumor progres-
sion in patients with prostate, lung, ovarian and breast
cancer [170–172]. In addition, humoral antigen spread-
ing induced by Sipuleucel-T therapy was associated with
improved overall survival [173]. Moreover, CTLA-4
blockade induced a broader antibody response in pros-
tate cancer patients who responded to therapy compared
with non-responders [56]. However, in another report, a
prostate cancer patient who experienced a sustained
complete response to CTLA-4 blockade mounted a strong
humoral response against a small number of proteins, in-
cluding one that is mutated in 5.5 % of prostate cancers
[27]. Thus, further research using advanced methods will
be necessary to fully understand the role of autoantibodies
as a biomarker for cancer immunotherapy.
Similar to DNA microarrays, proper serum collec-

tion, sample storage and careful standard lab proced-
ure for protein microarray analyses are required to
avoid the inter- and intra-assay variation and improve
data reproducibility. In addition, bioinformatics is crit-
ical for handling and processing the large datasets
arising from these experiments. The analysis of pro-
tein microarray data involves six steps: data acquisi-
tion, pre-processing, visualization, differential analysis,
result verification and computational feature annota-
tion and network analysis [174]. Several software
packages and computational tools have been devel-
oped for signal detection, data preprocessing, quality
control and data normalization (see details in Table 1).
A recent study proposed appropriate improvements
on the default data analysis workflow [175]. Despite
the ability of protein microarrays to generate sub-
stantial amounts of data for immune profiling in in-
dividual patients, the limitations of this technology,
such as large-scale protein and antibody production,
lack of label-free detection systems and relatively
high cost, need to be overcome in the future. In
addition, the target antibody/antigen identified from
protein microarrays need to be validated by other

technologies such as Western blot, ELISA, Luminex
assays or mass spectrometry.

Flow cytometry and mass cytometry
Since its inception, flow cytometry has been a powerful
technique for the field of immunology because of its
unique ability to analyze large numbers of single cells
with multiple parallel probes. This allows for the identi-
fication as well as the deep phenotypic and functional
analysis of rare subpopulations of cells. The lack of
standardization in flow cytometry has traditionally hin-
dered its application in multicenter clinical trials. How-
ever, there have been recent efforts to recommend best
practices for such multicenter studies [176]. Standard-
ized panels have also been published for PBMC or whole
blood immunophenotyping [177, 178], and for leukemia
and lymphoma diagnoses [179]. Moreover, the number
of available fluorochromes for flow cytometry has stead-
ily increased. Recent years have seen the advent of so-
called “Brilliant” dyes, or π-conjugated polymers, which
are bright (due to cooperative energy transfer) and have
tunable emission wavelengths [180]. These dyes have
fostered a quantum leap in the ability to do multicolor
flow cytometry, making 12–15 colors not only feasible,
but routine.
During the same timeframe, mass cytometry (or

CyTOF, for Cytometry by Time of Flight) has emerged
as a competitive platform for high-dimensional single-
cell analysis [181, 182]. This technology uses probes that
are labeled with heavy metal ions via covalently coupled
chelation polymers, rather than fluorescent probes. The
subsequent readout by mass spectrometry allows for the
simultaneous detection of many more unique probes,
with little or no spillover between detector channels
[183]. The current state of the art is about 40 parameters
per cell, with both phenotypic and functional assays de-
veloped [184–189].
The main drawbacks of mass cytometry include slow

collection speed (about 300 events/s), low recovery of
cells in the instrument (typically 30 %), and expense. To
some extent, these drawbacks are mitigated by the ability
to stain a single tube rather than create a panel of sev-
eral tubes for conventional flow cytometry, which re-
quires more cells, time, and reagents. While the
sensitivity depends on the choice of label, instrument
setup, and other factors, there are limitations to the sen-
sitivity of CyTOF, as no channel can provide an equiva-
lent resolution sensitivity to the brightest conventional
fluorophores. This, too, may be mitigated by the ability
to resolve populations in many more dimensions, but it
remains a limitation at the single-marker level.
One application of highly multiparameter cytometry,

especially mass cytometry, is for the broad analysis of
immune competence in cancer patients. Given the
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Table 1 Summary of novel technologies

Technology Suggestions and potential biomarkers Sample preparation Bioinformatic tools References and recommended reading

Whole exome
sequencing for
neoantigen
discovery

• Mutation load for CTLA-4
and PD-1 blockade therapy

• Neoantigen-specific T cell response

DNA from tumor and normal
cells

EBcall, JointSNVMix, MuTect,
SomaticSniper, Strelka, VarScan 2, BIMAS,
RNAKPER SYFPEITHI, IDEB, NetMCHpan,
TEPITOPEpan, PickPocket, Multipred2,
MultiRTA

Van Buuren et al., 2014 [248]; Duan et al., 2014 [130];
Snyder et al., 2014 [62]; Snyder et al., 2015 [131]; Rizvi
et al., 2015 [104]; Le et al., 2015 [105]; Van Allen et al.,
2015 [63]

Gene signature
and pattern

• MAGE-A3 gene signature
• Chemokine

expression in melanoma
• Neoantigen signature

DNA and RNA from tumor,
lymph node and PBMCs

BRB-ArrayTools, LIMMA, SAM, PAM, Partek,
Genomic Suite, GSEA, Ingenuity IPA

Quackenbush et al., 2002 [231]; Simon et al., 2013
[249]; Simon et al., 2007 [250]; Subramanian et al.,
2005; Smyth et al., 2005; Tusher et al., 2001 [251];
Tibshirani et al., 2002 [252]; Leek et al., 2010 [243];
Gaujoux et al., 2013 [245]; Ulloa-Montoya et al., 2013
[142]; Brown et al., 2014 [148]

Epigenetic-
differentiation
based immune
cell
quantification

• Immune cell lineage specific epigenetic
modification

• Leukocyte ratios in blood and tissue

Genomic DNA from fresh or
frozen whole blood, PBMC,
lymph node and fresh tissue or
FFPE tissue and blood clots

HOMER package Motif Finder algorithm
findMotifGenome.pl, MatInspector
(Genomatix), Mendelian randomization

Wieczorek et al., 2009 [154]; Sehouli et al., 2011 [155];
Schildknecht et al., 2015 [253]; Steinfelder et al., 2011
[156]; Lavin et al., 2014; Gosselin et al., 2014; Liang et
al., 2015

Protein
microarray
(seromics)

• TAA antibody response
• Broad antibody signature
• New antigen discovery

Fresh or frozen serum and
plasma

Prospector, LIMMA package, PAA package,
Spotfire package

Gnjatic et al., 2009 [254]; Kwek et al., 2012 [56];
Turewicz et al., 2013 [175]; Graff et al., 2014 [27]

Flow Cytometry
and Mass
Cytometry

• Use best flow practices and recommended
flow panels

• Multimers for T cell epitope screening
• TAA-specific T cell response for CTLA-4

blockade therapy
• CD4+ICOS+ T cells for CTLA-4 blockade

therapy
• Baseline MDSC for CTLA-4 blockade therapy

Whole blood; Fresh or frozen
PBMCs and TILs; Fresh or
frozen cells from ascites or
pleural effusion

Computational algorithm-driven analysis
for MDSC, Cytobank, FlowJo, SPADE, Phe-
noGraph, PCA, viSNE, Citrus, ACCENSE, Iso-
map, 3D visualization

Maecker et al., 2010 [176]; Maecker et al., 2012 [177];
Streitz et al., 2013 [178]; Kvistborg et al., 2012 [255];
Chang et al., 2014 [190]; Yuan et al., 2011 [57];
Carthon et al., 2010 [50]; Kitano et al., 2014 [72];
Levine et al.,2015 [189]

T and B cell
receptor deep
sequencing

• CD3 T cell count
• T Cell clonotype stability for CTLA-4 blockade

therapy
• Baseline T cell clonality in tumor in PD-1

blockade therapy

DNA from FFPE; Frozen cells
from tumor, lymph node or
PBMCs; Fresh or frozen cells
from ascites or pleural effusion

Shannon Entropy, Morisita’s distance,
Estimated TCR gene rearrangements per
diploid genomes, Clonality, ImmuneID,
Adaptive ImmunoSeq software

Cha et al., 2014 [205]; Tumeh et al., 2014 [103];
Howie et al., 2015 [202]

Multicolor IHC
staining

• CD3 Immune score
• CD8/FOXP3 ratio for tumor necrosis
• PD-L1 expression on tumor in PD-1

blockade therapy

FFPE tissue; Fresh or frozen
tissue

TissueGnostic system, PerkinElmer system Galon et al., 2006 [10]; Hodi et al., 2008 [54];
Taube et al., 2014 [110]

Abbreviations: PBMC peripheral blood mononuclear cells, TAA tumor associated antigen, MDSC myeloid derived suppressor cells, TILs tumor infiltrating lymphocytes, IHC immunohistochemical staining, TCR T cell receptor, FFPE
formalin-fixed, paraffin-embedded, PD-1 programmed cell death-1, PD-L1 programmed cell death ligand −1
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present rise in use of immunotherapy and its reliance on
the immune system to provide a response, it is surpris-
ing that comprehensive and standardized measures of
immune competence are not more frequently per-
formed. By simultaneously probing the phenotypes and
functions of multiple immune cell subsets in a single
PBMC sample, mass cytometry can provide a “finger-
print” of immune responsiveness, which may eventually
yield correlates of responsiveness to therapy [190]. Even-
tually, this concept could be expanded from measure-
ment of mitogen-stimulated responses to parallel
measurement of specific T cell responses to multiple
tumor antigens. It could also be used to measure im-
mune cell phenotypes and functions in tumor biopsies,
which are likely to be more informative than PBMC for
predicting patient responsiveness.
The delineation of T cells into distinct functional pop-

ulations defines the quality of immune response which is
crucial to disease outcome [191]. Multiple functional pa-
rameters including cytokine, chemokine and degranula-
tion in response to antigen specific stimulation can be
simultaneously detected by flow cytometry. Polyfunc-
tional T cell responses have been demonstrated to cor-
relate with clinical response in patients with infectious
disease and in cancer patients treated with immunother-
apy [192–194]. Another attractive application of multi-
parameter cytometry is the use of peptide-MHC
multimers to identify T cells of a given specificity or to
screen for multiple specificities. To date, combinatorial
multimer analyses have been performed using both flow
and mass cytometry and allowed screening for 145 and
109 T-cell specificities, respectively [135, 195]. The strat-
egy was key to demonstrate that treatment with ipilimi-
mab enhanced the priming of new T-cell responses
rather than boosting preexisting responses [61]. Simi-
larly, the usage of MHC multimers is also likely to be-
come a powerful tool for epitope discovery, allowing
high-throughput identification, enumeration and profil-
ing of neoantigen-specific T cells.

T and B cell receptor deep sequencing
Advances in high-throughput sequencing have enabled
the development of a powerful new technology for prob-
ing the adaptive immune system called immunosequen-
cing [196–199]. Millions of B or T cell receptor (BCR or
TCR) sequences can be read in parallel from a single
sample. Each B or T cell clone has a unique (or nearly
unique) adaptive immune receptor generated through a
highly regulated process of somatic DNA rearrangement.
When the BCR or TCR of a clone binds its target anti-
gen as part of an immune response, the clone divides
rapidly, called clonal expansion. Unlike sequencing hu-
man (or human cancer) genomes, immunosequencing
must be quantitatively accurate, because the adaptive

immune system works by the principle of clonal
expansion.
Despite the new challenge of quantitatively sequencing

a highly variable, complex locus, the field has developed
quite rapidly. A few techniques have been developed to
accomplish the quantitative sequencing of the loci and
standardize the methods, even between laboratories
[200–202]. In the next year or two, the use of immuno-
sequencing for diagnosis and monitoring of lymphoid
malignancies is expected to achieve FDA approval and
CE mark [203, 204].
There are many potential applications of immunose-

quencing in immunotherapy. Because each clone has a
nearly unique sequence, T cell clones can be tracked
over time, between tissues and between phenotypic sub-
sets. This technology is helping researchers understand
the mode of action and differences between therapeutic
agents. For example, when comparing melanoma tumor
samples before and after anti-PD-1 therapy, the primary
T cell clonal expansions are from clones present prior to
therapy [103]. This suggests that anti-PD-1 therapy pri-
marily enhances and/or unblocks a pre-existing immune
response in the tumor as opposed to inducing a new re-
sponse. Although, this was suggested as a mode of ac-
tion, immunosequencing was required for solid
evidence.
A set of potential immunosequencing biomarkers in

immunotherapy are presently being explored. These in-
clude predictors of response to therapy as well as moni-
toring of pharmacodynamics changes, drug efficacy and
side effects. The predictive biomarkers can be dividing
into two groups. The first group is measuring immuno-
sequencing of tumor infiltrating lymphocytes (TIL). A
recent study has shown that both the number of TIL
and degree of specific clonal expansions (a telltale sign
of an adaptive immune response) in pre-treatment mel-
anoma samples is predictive of response to anti-PD-1
therapy [103]. There is ongoing work to confirm the
findings in larger cohorts and other tumor types. Add-
itionally, similar biomarkers are being evaluated for dif-
ferent immunotherapeutic agents [205]. Importantly,
such biomarkers have the potential to help guide com-
bination therapies or dose regimens [206]. If a particular
TIL signature is needed for efficacy of anti-PD-1 ther-
apy, then other therapies that can generate the TIL sig-
nature would be likely combination candidates. The
advantage of immunosequencing is that the activation of
infiltrating killer T cells are thought to be the mode of
action for checkpoint inhibitor therapy, so TILs are a
causative biomarker, not just a correlative biomarker.
Many of the practical issues associated with tumor sam-
ples have been (or are presently being) addressed.
Tumor heterogeneity (sampling) does not appear to be a
significant issue relating to TIL [207, 208]. With the

Yuan et al. Journal for ImmunoTherapy of Cancer  (2016) 4:3 Page 14 of 25



proper controls, FFPE can be readily utilized in this
assay.
Less direct, although potentially practical and broadly

applicable, is the second group of biomarkers, which are
blood based. There is increasing evidence that the distri-
bution of T cell clones in the blood is a correlate of im-
mune competence. If a patient’s immune system is not
functioning properly, an immunotherapy is unlikely to
be successful. In addition, unregulated responses, such
as autoimmune reactions are more likely [209].
For other types of immunotherapy, such as adoptive T

cell transfer or chimeric antigen receptor T cell (CAR-T)
therapy, immunosequencing is used to monitor the ther-
apy itself by tracking the injected T cells. Moreover,
when the target is a lymphoid malignancy, immunose-
quencing is commonly utilized to monitor minimal re-
sidual disease post treatment [210]. The breadth of
potential immunosequencing biomarkers in immuno-
therapy is very large. Immunosequencing is a molecular,
reproducible tool for evaluating the adaptive immune
system in humans, which has opened many avenues of
biomarker research.

Multicolor IHC staining
The detection of structural and functional proteins along
with their spatial localization within cells or extracellular
compartments in tissue samples is achieved by immuno-
labeling with specific antibodies. The antibody binding is
then detected with the application of either an enzymatic
reaction that induces chromogen precipitation at the site
of antibody-antigen binding (immunoenzyme method)
or by using fluorescent dyes (fluorochromes, fluorescent
quantum dot nanocrystals), conjugated either to primary
or secondary antibodies (direct or indirect immunofluor-
escence, respectively).
For routine histopathological diagnosis, the immu-

noenzyme methods offer the advantage of permanent
staining by using panels of antibodies (1 reaction/sec-
tion) specific for a tumor subtype, while optimal morph-
ology is maintained. Rarely, double staining protocols
are applied to evaluate the ratio of two different cell
types or to evaluate pairs of antigens localized in differ-
ent intracellular compartments, e.g., the cytoplasm or
nucleus. However, in order to maximize the information
that can be acquired from the intact tumor anatomy and
delineate any spatial and temporal (pre- versus post-
treatment) heterogeneity that influence tumor biology
and could be used as a biomarker, multiplexed staining
approaches and imaging systems are required. Practic-
ally, multiplex approaches constitute repetitions of indi-
vidual immunolabeling methods, either applied in one
step or in sequential rounds [211]. These methodologies
suffer from inherent problems that have to be overcome,
such as cross-reactions between individual stains and

limitations regarding the color (chromogens or fluoro-
chromes) combinations. Aside from using primary anti-
bodies from different species, cross-reactions are prevented
in immunoenzyme methods by heat-induced removal of
primary antibodie(s) from the previous staining round,
whereas the heat-stable chromogen remains and tags the
antigen target. For these chromogenic methods, 3–4 colors
appear to be the multiplex limit.
Alternatively, for multiplexed immunofluorescence one

can perform the tyramide signal amplification technique,
in which fluorophore-labeled tyramide, upon activation by
horseradish peroxidase, covalently binds to tyrosine resi-
dues of proteins adjacent to HRP-conjugated antibodies.
Following the heat-induced removal of antibodies from
the previous round, a new individual stain can be applied,
with a minimal risk of cross-reaction. This technique is
important for fluorescent multiplexing. After the comple-
tion of the multiplexed staining procedure, up to 5 fluor-
escent dyes can be evaluated using common fluorescent
microscopes with standard optical filter cubes or up to 8
fluorescent dyes can be evaluated using microscopes
equipped with a multispectral camera [212].
Other multiplexed methods that could circumvent the

limitations of overlapping emission spectral of fluores-
cent microscopy are based on successive cycles of anti-
body tagging, imaging and removal/bleaching of the
fluorophore(s) [213, 214]. With dedicated software, these
hyperplexed approaches have been used to characterize
multiple analytes (>100) in the same section. Interest-
ingly, recently described multiplexed methodologies have
been performed with antibodies labeled with metal iso-
topes and analyzed by mass cytometry-based approaches
[215, 216].
Overall, these in situ multiplexed methods add greater

depth to our understanding of tumor pathogenesis. Fur-
thermore, when applying these methods to immunity-
related analytes in the TME by combining phenotypic
and functional markers with specific spatial point-
pattern analyses, these methods will increase our know-
ledge of underlying mechanisms that could be used to
optimize the efficacy of immunotherapy protocols.

Three-dimensional (3D) cell culture models
Traditionally, cell-based assays to explore cell biology
and drug efficacy have been aimed at growing cells
on two-dimensional (2D) plastic surfaces or in single
cell suspensions [217]. However, the cellular biology
is profoundly influenced by the microenvironment.
Thus, cell based assays are needed that reflect the ef-
fects of factors such as the extracellular matrix, cell-
cell contacts, and cell-matrix interactions [218–221].
Not only the cell morphology but also the drug sensi-
tivity of cancer cells in 2D systems have been shown
to be different compared with 3D cell cultures [6, 7].
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Cells cultivated on plastic surfaces usually exhibit an
increased sensitivity to cytotoxic drugs, while com-
pounds targeting cell-cell adhesions, cell maturation,
epithelial-mesenchymal transition and stemness often
show a decreased efficacy in 3D cell culture systems.
Thus, 3D cell culture models reflect in vivo tumor
growth more reliably and may provide better readouts
for drug testing [222–224].
The hanging drop technique is a well-established

cell culture method to form spherical microtissues
from immortalized and primary cell lines [225–227].
In contrast to most liquid overlay technologies, the hang-
ing drop method allows the precise control over the initial
cell composition in each microtissue [228, 229]. In
addition, to generate multicellular co-culture microtissues,
neither additional supplements nor artificial scaffolds
mimicking extracellular matrix components (e.g., collagen
matrigel) are required. A 3D hanging drop system has
been established for cancer cell lines that are cultivated ei-
ther alone or together with a lung fibroblast cell line to in-
vestigate tumor stroma interaction [230]. In this model,
IHC, flow cytometry, epifluorescence, confocal and scan-
ning electron microscopy can be performed to assess al-
terations not only in protein expression and viability but
also in microtissue aggregation. The addition of endothe-
lial cells to these co-cultures of cancer cells and fibroblasts
can further mimic an in vivo environment.
Upregulation of mesenchymal markers and down-

regulation of adhesion molecules can be observed in
multicellular microtissues compared with 2D mono-
cultures. Moreover, a difference in Ki67 expression in-
dicates different states of high metabolic activity. In
addition, changes in the morphology of tumor cells
can be achieved, particularly in microtissues cultured
with endothelial cells. Immune cells from freshly iso-
lated PBMCs can be added to microtissues in the 3D
hanging drop technology. After short or long term
co-incubation, the microtissues are “harvested” and
immune cell penetration into the spheroids is ana-
lyzed. In this model, cytokine stimulation (e.g., IL-2)
of immune cells leads to a significantly increased abil-
ity of immune cell migration into the microtissue and
induction of cellular cytotoxicity.
The 3D cell model represents a promising approach

for defining and analyzing immune-based biomarkers,
as it provides an ex vivo approach to measure im-
mune cell function in an organotypic culture model.
In addition, this method is uniquely advantageous in
that primary tumor cells and autologous immune cells
from individual patients can be used in this model.
Although there is a certain limitation to this system
as it does not fully model a whole organism, the 3D
culture system could be combined with studies in
mouse models to overcome this disadvantage.

Bioinformatic tools and data analysis for high-throughput
data
As high-throughput technologies become more stan-
dardized and widely available, bioinformatics tools to
analyze, interpret, and visualize data will be in high de-
mand. Several tools and software packages have been de-
veloped to mine data and extract useful information
from large datasets. A list of commonly used bioinfor-
matics tools for different high-throughput technologies
is summarized in Table 1.
There are many key steps involved in the analysis of

high-throughput data. For example, data normalization
is a critical step to reduce the intra- and inter-array vari-
ability caused by systematic artifacts without losing use-
ful biological information. Different normalization
approaches have been extensively studied for data gener-
ated from various high-throughput platforms, e.g., gene
expression arrays, miRNA arrays, protein microarrays,
and RNA-sequencing experiments. For each high-
throughput platform, comparisons have been made be-
tween the different normalization methods, such as glo-
bal normalization, Lowess normalization, quantile
normalization or conditional quantile normalization,
variance stabilizing normalization, Z-Score
normalization and robust linear model normalization
[231–241]. For epigenomic data such as the epigenetic
regulation of immune cells, data preprocessing and
normalization includes inverse normal transformation or
Z-score normalization. In general, it is recommended
that the assumptions that underlie each normalization
method are carefully considered and evaluated in order
to determine which method is most appropriate for the
experimental setting. In addition, more than one
normalization approach should potentially be considered
in order to determine the sensitivity of the results to the
normalization method used.
Batch effects are commonly found in high-throughput

technologies due to the influence of laboratory condi-
tions, reagent lots and personnel differences. When
batch effects correlate with an outcome of interest, they
can be very difficult to detect and remove, which can
easily lead to false conclusions. Several approaches have
been proposed to correct for batch effects, and many,
such as ComBat or SVA, have been shown to be effect-
ive [242, 243]. In order to manage a potential batch ef-
fect, the first step is to identify and quantify it using
principle components analysis or visualization tech-
niques, such as hierarchical clustering or multidimen-
tional scaling. Once strong batch effects are identified,
the subsequent analyses must be adjusted to account for
these effects.
Because the tissue samples used for mRNA extraction

are often a heterogeneous mix of cell types, identifying
biologically relevant, differentially expressed genes in
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order to develop and validate predictive models is very
difficult. Thus, several statistical approaches have been
proposed to deconvolute gene expression profiles ob-
tained from heterogeneous tissue samples into cell-type-
specific subprofiles [244–246]. CellMix is one such pack-
age designed for the R statistical suite that incorporates
state of the art deconvolution methods into an intuitive
and extendible framework to explore, assess and disen-
tangle gene expression data from heterogeneous samples
[245].

The challenge for future biomarker discovery
We have discussed the challenges in individual high-
throughput assays and in the subsequent bioinformatic
analysis of high-throughput data above. Therefore, we
would also like to highlight a few general challenges for
future biomarker study in the following section.

Specimen type
Peripheral blood is commonly used for biomarker stud-
ies because of its easy accessibility. Several emerging, po-
tential biomarkers discussed in this paper were
identified in peripheral blood using validated assays.
One of the advantages of using peripheral blood is that
pharmcodynamic changes can be measured at multiple
time points before and after mono or combination ther-
apy. However, there is still a major question as to
whether what we learn from PBMCs is relevant to solid
tissues. For example, T cell clonal expansions are local
due to the enriched selective lymphocyte population and
immunological response to immunotherapies. Thus, ex-
panded T cells that can be detected in the tumor may
not be present in the peripheral blood.
In general, fresh tumor tissue is of higher quality com-

pared with frozen tissue. However, getting access to
fresh tissue, especially prior to treatment, is challenging.
A pre-treatment tissue biopsy may be a requirement for
enrollment in a clinical trial, but this is not always done.
In addition, tissue obtained in second-line therapies may
not be the most informative due to the impact of mul-
tiple chemotherapies. The amount of tissue required for
TCR analysis (a few micrograms or approximately
20 μm of slices) is relative low. However, the number of
TIL in a tissue block is highly variable, which can make
it difficult to obtain statistically robust results.

Standardizing procedures and assay validation
The application of a potential biomarker in a clinical set-
ting requires several layers of validation as described
above, including a standardized specimen banking pro-
cedure as well as assay validation and confirmation in a
randomized, large-scale clinical study. The importance
of the immunoprofile in colon cancer and other malig-
nancies is evident. Thus, well-validated, consistent

protocols for the collection and cryopreservation of
tumor material are necessary to avoid introducing po-
tential variation during sample collection and storage.
Preserving an adequate amount of fresh tissue is the key

to obtaining a sufficient amount of immune cells. In the
past, a major limitation was the size of the fresh tumor
sample and the number of cells that could be extracted
(with or without enzymatic digestion) from it. Therefore,
it was essential to calculate the minimum number of vi-
able cells needed in order to receive reliable results for
each type of assay or biomarker being studied. Recent ad-
vances in novel high-throughput technologies have pro-
vided a solution to this problem. These new technologies
can decrease the amount of tissue needed while still pro-
viding reliable results and a vast amount of data. One slide
can provide plenty of information with the use of new
programming systems that can quantify and present dif-
ferent types of cells based on markers in standard flow cy-
tometry plots [247]. Conventional flow cytometry assays
require approximately 5 × 106 cells. However, microfluidic
devices may eventually be able to handle very small cell
numbers, e.g., 500 cells, without significant loss. These
novel flow-based technologies can assess the phenotype
and multifunctionality of tumor-specific T cells in samples
containing few cells and correlate these findings with clin-
ical outcome. However, it is challenging to standardize
and validate all of the developing high-throughput tech-
nologies, especially across multicenter clinical trials. Thus,
a cooperative effort will be necessary for future biomarker
validation.

Funding, resources, and collaboration
In order to advance future personalized cancer immuno-
therapies, there is a trend toward high quality,
mechanism-based translational research using well-
validated, high-throughput immune assessments. How-
ever, this type of research requires specialized equip-
ment, well-trained staff, professional statistical analysis
and data sharing that all come at a high cost. Therefore,
a continuous effort is needed to generate public aware-
ness about the importance of supporting this research
through increased funding from governmental and non-
profit organizations. In the last several years, results
from prior translational biomarker studies have provided
valuable guidance for late-phase clinical trials. In
addition, the pharmaceutical and biotech industry has
recognized the importance and value of biomarker-
based research, emphasizing the need for proper sample
collection procedures, well-validated high-throughput
assays and experienced scientists for accurate data inter-
pretation. Productive translational collaborations be-
tween academia and industry have advanced biomarker
development and the clinical development of cancer im-
munotherapies. One particular future area of interest
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would be a cross-sector collaboration to develop a co-
operative proposal in order to standardize biomarker re-
search in clinical trials.

Conclusions and recomendations
As a result of over a century’s efforts to understand the
role of the immune system in controlling cancer, immu-
nomodulation by checkpoint inhibitors (targeting both
CTLA-4 and the PD-1/PD-L1 axis) induced a durable
tumor response in a wide range of malignancies. In
addition to the FDA approvals of single immune check-
point blockades for cancer immunotherapy, the FDA has
granted accelerated approval to the combination of nivo-
lumab and ipilimumab to treat advanced melanoma, the
first approval of any immunotherapy combination to
treat cancer. These therapies are revolutionizing thera-
peutic concepts and changing the standard of care for
cancer treatment. Immunotherapy is now widely ac-
cepted as a key component of the therapeutic strategies
to control and potentially cure cancer. Moreover, im-
munotherapy has the potential to cure or convert cancer
from a fatal disease into a non-life threatening or
chronic disease. The concept of a “clinical cure” is emer-
ging as a description of long-term tumor control. The
broad potential for a clinical cure is now being exten-
sively explored by both mono and combination cancer
immunotherapy.
The complexity and heterogeneity of the interaction be-

tween the immune system and tumor cells, particularly in
the TME, underlies the immune status (i.e., immunologic-
ally responsive or immunologically ignorant) of each indi-
vidual tumor for every patient. Biomarker-based research
is an essential approach to understand both intrinsic and
extrinsic tumor escape mechanisms. Recent advances in
technologies have provided tools that will facilitate an in-
depth understanding of this interaction and will help
guide the development of future personalized cancer im-
munotherapies. Whole exome sequencing allows muta-
tion load to be assessed in each individual tumor;
prediction algorithms and the tandem minigene library en-
ables the identification of both class I and II neoepitopes,
respectively. Novel gene expression technologies can be
used to accurately identify the immune status of tumors
from properly collected and processed specimens. B and
T cell receptor deep sequencing provides the full spectrum
of the B and T cell receptor repertoire and can be used to
potentially identify immunosequencing biomarkers in
both peripheral blood and tumor tissue. Classic immune
monitoring assays, such as ELISpot, tetramer and intracel-
lular cytokine flow cytometry staining, are still useful to
assess tumor antigen specific T cell response, especially
neoantigen specific T cell responses after neoantigen vac-
cination or immune checkpoint blockade therapy. Multi-
color IHC staining provides spatial localization and

distribution of phenotypic and functional biomarkers
within the TME. Gene microarray, deep sequencing tech-
nologies, flow cytometry staining and IHC staining can
typically be performed by core facilities in academic cen-
ters or biotech companies. However, novel technologies
that are at earlier stages of development, such as mass cy-
tometry, are not widely accessible yet.
High-dimensional data generated from these novel in-

novative technologies can be generally classified into
three types: function, phenotype and signature/pattern.
It is of importance to evaluate the function of cytolytic T
cells, especially in the TME. Phenotype data provides the
frequency and status of different immune cells and their
potential impact on cytolytic T cells. Signature/pattern
results will help elucidate the potential mechanisms of
action and guide future biomarker research. Currently,
the high cost of these technologies limits the number of
assays that can be performed for each study. However, in
order to obtain multidimensional data to get a complete
picture of the immune status of the TME, it may be best
to perform a combination of assays in order to obtain
these three types of data as described above.
The potential biomarkers and new technologies dis-

cussed here from exploratory studies need to be validated
in future clinical studies. Overall, the ideal biomarker
should be convenient to use in a clinical setting and pro-
vide an accurate prediction of a patient’s clinical response.
In addition, new knowledge obtained from ongoing stud-
ies and emerging technologies will refine our strategy for
the practical clinical application of biomarker research.
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