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Abstract

Gold Standard allergen-specific immunotherapy is associated with low efficacy because it requires either many
subcutaneous injections of allergen or even more numerous sublingual allergen administrations to achieve amelioration
of symptoms. Intralymphatic vaccination can maximize immunogenicity and hence efficacy. We and others
have demonstrated that as few as three low dose intralymphatic allergen administrations are sufficient to effectively
alleviate symptoms. Results of recent prospective and controlled trials suggest that this strategy may be an effective
form of allergen immunotherapy.
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Introduction
Specific immunotherapy (SIT) is the only disease modify-
ing therapy for IgE-mediated allergic diseases. Subcutane-
ous immunotherapy is still considered the gold standard.
One of the more recent developments is intralymphatic
immunotherapy.
Frey and Wenk proved in 1957 [1] with a series of ele-

gant skin flap experiments that antigens need to reach
lymph nodes via afferent lymph vessels to induce a T-
cell response. More recently experiments in spleenless
(Hox11−/−) and alymphoplastic (aly/aly) mutant mice
have confirmed the importance of secondary lymphoid or-
gans, or neo-lymphoid aggregates [2], for elicting immune
responses [3].
Early in lymphocyte development T- and B cell receptors

are randomly rearranged resulting in T and B cells carrying
a diverse repertoire of receptors. While this provides the
ability of specific recognition of all possible antigens,
it also requires antigens to be presented to approxi-
mately 107 T- and B cells before eliciting an immune
response. Therefore, only antigens that are washed into sec-
ondary lymphoid organs, where exposure to high numbers
of T and B cells can occur, will generate an immune re-
sponse. Antigens, however, that bypass secondary lymphoid
organs have a reduced likelihood to encounter specific T or
B cells, and are thus largely ignored. The phenomenon is
termed the “geographic concept of immunogenicity” [4-6].
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This concept remains valid although it may appear rather
simplistic in the light of current understanding of immune
regulation by dendritic cells and T cells. Being aware of the
complexity of immune regulation we should none the less
remember that the key trigger and regulator of the immune
response is the antigen.
The lymph vessels role has evolved to drain pathogens

into lymph nodes, thus enabling the immune system to
generate an immune response at the earliest. Small parti-
cles of 20–200 nm size, i.e. the size of viruses, are quite
efficiently drained in a free form from peripheral injec-
tion sites into lymph nodes. Usually, however, only a few
percent of the injected particles reach the lymph nodes
[7]. Larger particles in the size range 500–2000 nm are
mostly carried into lymph nodes by DCs [7]. Non-
particulate antigens, however, are much less efficiently
transported into lymph nodes. Only a very small fraction,
i.e. between 10−3 and 10−6, of the injected doses arrive
there. Many of today’s vaccines and immunotherapeutic
agents are non-particulate, therefore the injection dir-
ectly into a lymph node should boost antigen presen-
tation in the lymph node and thence improve the immune
response.
Review
As early as in 1977 a first review on intralymphatic vac-
cination was published [8]. In the early 1970s Juillard
et al. used this method to enhance tumor cell based can-
cer vaccines in dogs. Ten years later, researchers were
looking for the most efficient route of immunization for
producing antibodies against purified proteins which
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were available in only very small amounts. In the 1980s re-
ports were published of nanogram quantities of protein
eliciting immune responses when injected into lymph
nodes [9,10]. Thereafter in various fields where conven-
tional routes of administration produced insufficient re-
sults or where maximizing the immune response was the
goal, such as in cancer vaccines, intralymphatic vaccin-
ation was performed.
Intralympatic vaccination has been shown to improve

the efficacy of various vaccines, e.g.

– BCG vaccines in dogs [8] and mice [11].
– DC-based cancer vaccines [12-18],
– Immunostimulating complexes (ISCOMS) [19],
– MHC class I binding peptide vaccines [20,21],
– Naked DNA vaccines [21-27],
– Protein based vaccines for immunization of

macaques against SIV [28-34],
– Protein based vaccines in cows [35],
– Tumor cell-based cancer vaccines [4,8,36-40],
– Vaccines in cats against feline immunodeficiency

virus using a protein based vaccine [41],

Moreover, lymph node targeting can also enhance the
efficacy of adjuvants. Intralymphatic administration of the
adjuvant CpG required 100 times lower doses of antigen
compared with subcutaneous administration. Lower doses
avoid undesired systemic adverse effects of the adjuvant
[42]. This is in line with reports of enhanced efficacy of
CpG and a better safety profile when targeting particles to
lymph nodes [43,44].
Biodistribution studies in mice revealed that after direct

lymph-node injection 100-fold higher antigen doses reached
the lymph nodes than after subcutaneous injection in the
drained area of a lymph node [45]. Intralymphatic and
subcutaneous injections of radiotraced proteins in humans
s.c. 

i.l

20 min

Figure 1 Biodistribution after intralymphatic administration. Biodistrib
side) and subcutaneous (right abdominal side) injections. Radio tracing wa
panel) after injection. Arrows indicate the site of injection (s.c., subcutaneou
gave similar results. A 99mTc-labeled protein was injected
directly into a superficial inguinal lymph node on the right
abdominal side. On the left side, the same dose was
injected subcutaneously 10 cm above the inguinal lymph
nodes. Figure 1 shows that only a small fraction of the
subcutaneously administered protein had reached the
lymph nodes after 4 hours, and that this fraction had not
increased after 25 hours. In contrast, after intralymphatic
injection the protein had drained into the deep subcutane-
ous lymph nodes and already after 20 minutes it was
detected in a pelvic lymph node. Intralymphatic injec-
tion could efficiently pulse five lymph nodes with the
full amount of the protein.

Intralymphatic immunotherapy with allergen extracts
IgE-mediated allergies, such as allergic rhino-conjunctivitis
and asthma today affect up to 35% of the population in west-
ernized countries [46-49]. Subcutaneous allergen-specific im-
munotherapy (SIT) is the gold standard treatment, i.e. the
administration of gradually increasing quantities of an aller-
gen [50-52] over years. The immunotherapy confers long
term symptom improvement [53-56], but the 30–80 visits
of a physician over 3–5 years compromizes patient compli-
ance. SIT is also associated with frequent allergic side ef-
fects and with a risk of anaphylaxis and death [57-59].
Allergen immunotherapy induces a phenotype shift in

the T-cell response from Th2 to Th1 [60,61] and stimu-
lates the generation of allergen-specific T-regulatory cells
[60-62]. Serum titers of allergen-specific IgG antibodies,
particularly IgG4, rise [63]. It is a matter of debate as to
which of these immunological mediators is ultimately re-
sponsible for improving the allergic symptoms.
Intralymphatic administration of allergens to mice sig-

nificantly enhanced the efficiency of immunization by
inducing 10–20 times higher allergen-specific IgG2a
antibody responses with as little as 0.1% of the allergen
25 h

ution of 99mTc-labelled human IgG after intralymphatic (left abdominal
s made by gamma-imaging 20 min (left panel) and 25 hours (right
s, i.l., intralymphatic).



Figure 2 Intralymphatic injection. A sand blasted needle, being
inserted into the lymph node from the right was used for better
reflection and therefore visibility in the ultrasound. The dark,
hypoechoic area represents the paracortex of the lymph node,
which is approx. 15 mm long and 5 mm under the skin surface.
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dose [45]. Intralymphatic injection of allergens also en-
hanced the secretion of IL-2, IL-4, IL-10 and IFN-γ
compared to subcutaneous injection. This may indicate
that intralymphatic administration does not polarize the
response to the allergen, but overall generates a stronger
Th1, Th2, and T-regulatory response [45].
Four separate clinical trials of the authors’ group have

meanwhile demonstrated the feasibility, efficacy and safety
of intralymphatic allergen immunotherapy. In the first
clinical trial, eight patients allergic to bee-venom were
given three low-dose injections of bee venom directly into
their inguinal lymph nodes, whereas they would normally
have received 70 subcutaneous injections. In this proof of
concept trial seven of eight treated patients were protected
against a subsequent bee sting challenge (Senti et al.,
manuscript in preparation). Similar results were achieved
in a larger multi-center clinical trial with 66 bee venom-
allergic patients (Senti et al., manuscript in preparation).
In an other randomized controlled clinical trial, 165 pa-
tients with grass pollen-induced hay fever were adminis-
tered either 54 subcutaneous injections with high dose
pollen extract within three years or three low-dose intra-
lymphatic injections over eight weeks. The three low-dose
intralymphatic allergen injections reduced treatment time
from three years to eight weeks and enhanced safety and
efficacy of the treatment [64]. The results based on ques-
tionnaires and by combining patients treated with one of
two allergens/seasons (grass and birch pollen) have been
independently confirmed in a double-blind placebo-
controlled trial using intralymphatic administration with
the same dose, immunization regimen and grass pollen
extract, and with tree pollen extract [65]. One trial with
intralymphatic administration of grass pollen extract,
however, only detected immunological alterations without
clinical efficacy [66]. In that trial the time interval between
injections was reduced to 2 weeks, whereas in the success-
ful trials [64,65] the antigens were administered every
4 weeks. It is a well known fact of basic vaccine immun-
ology that time intervals between injections of less than
4 weeks interferes with memory B cell formation and mat-
uration of affinity [67,68]. Some authors, however, main-
tain that the time intervals argument is only valid for
preventive vaccines, and that comparisons of low-power
trials are strongly influenced by differences in endpoints
and ways of assessment of clinical efficacy [69].

Targeting intralymphatic vaccines to the MHC class II
pathway
As intralymphatic vaccination brings the antigen directly
to the lymph node DCs, the CD4+ T cell response may
be enhanced by intracellular translocation sequences
and sequences further targeting the antigen to the MHC
class II pathway. Such allergy vaccines can be targeted to
MHC class II molecules located in the endoplasmatic
reticulum by fusing allergens to a tat-translocation
peptide derived from HIV and to a part of the invari-
ant chain. Several experimental studies have shown that
such targeting not only bypasses the inefficient pinocytosis
process but also the enzymatic degradation in phagolyso-
somes. Both can significantly enhance immunogenicity
[45,70,71,72]. A first clinical trial has already proved this
concept in a double blinded placebo-controlled setup [73].

Intralymphatic immunotherapy is not painful
Subcutaneous lymph nodes are readily located by sonog-
raphy since their paracortical area is hypoechoic (Figure 2).
Injection into a superficial lymph node in the groin is usu-
ally performed in a few minutes and does not require
great expertise in sonographic technique. What the pa-
tient feels during intralymphatic injection is solely the
penetration of the skin, as lymph nodes carry few pain re-
ceptors. The pain of an intralymphatic injection thus is
comparable with that of a subcutaneous injection. In the
trials patients have rated intralymphatic injection less
painful than venous puncture [64].

Conclusions
Clinical trials indicate intralymphatic immunotherapy to
be not only efficient and safe, but also more convenient for
the patient, as well as associated with a lower risk of sys-
temic adverse effects, including anaphylaxis and lethal con-
sequences. With as little as 3 injections within 12 weeks, a
relief of symptoms can be achieved that is comparable to
that obtained with standard subcutaneous immunotherapy
necessitating up to 100 injections over 3 to 5 years. As
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clinical evidence so far is available for grass pollen and bee
venom, more clinical trials are required to assess the clin-
ical usefulness of intralymphatic immunotherapy for other
common allergens.

Consent
Written informed consent was obtained from the patient
for the publication of this report and any accompanying
images.
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