
CASE STUDY Open Access

Applying user-centered techniques to
analyze and design a mobile application
Adriana Lopes1* , Natasha Valentim1, Bruna Moraes1, Renata Zilse2 and Tayana Conte1

* Correspondence:
adriana@icomp.ufam.edu.br
1USES Research Group, Instituto de
Computação – Universidade Federal
do Amazonas, Av. General Rodrigo
Octávio, 6200, Coroado I –, Manaus,
Amazonas, Brazil
Full list of author information is
available at the end of the article

Abstract

Introduction: Techniques that help in understanding and designing user needs
are increasingly being used in Software Engineering to improve the acceptance
of applications. Among these techniques we can cite personas, scenarios and
interaction models. Personas are fictitious representations of target users.
Scenarios provide various types of information at different levels of abstraction.
Interaction models help in design of an adequate user interaction with the
system.

Case description: This paper presents a research that reports a set of practical
activities applied by a software team using techniques in the analysis and
design phases of a mobile application. In the analysis phase, we created
personas and scenarios for the extraction of requirements. In the design phase,
we created interaction models for describes the behavior between user and
system during the interaction. We employed these interaction models to
develop other artifacts, such as prototypes. In addition, we presented a
technique developed by the analysis and design team for the inspection of
interaction models. This technique reduced the spread of defects in the
interaction models.

Discussion and evaluation: From the results of this research, we suggest: (i)
employing personas and scenarios to understand the requirements; (ii)
employing interaction models to understand the behavior between user and
system; and (iii) using interaction models as basis to develop other artifacts.

Conclusions: Through the reporting of this set of practical activities, we hope to
provide support for software engineers willing to adopt techniques that support
the analysis and design of applications aiming at better quality of use for their
users.

Keywords: Requirements specification, Communication model, Communication
practices, Software engineering

1 Background
User involvement in the development process can provides satisfaction and accept-

ance of the software (Bano and Zowghi 2015). In this context, the software indus-

try has applied appropriate techniques to provide a more positive user experience.

Therefore, the users’ satisfaction and the software acceptance may be related to

the positive experiences.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Lopes et al. Journal of Software Engineering Research and Development
 (2018) 6:5
https://doi.org/10.1186/s40411-018-0049-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-018-0049-1&domain=pdf
http://orcid.org/0000-0002-0072-6958
mailto:adriana@icomp.ufam.edu.br
http://creativecommons.org/licenses/by/4.0/

Among the specific techniques for understanding the users’ needs in the analysis

phase, we can cite personas and scenarios. These techniques serve to identify the

needs of different types of users (Castro et al. 2008). In the design phase, inter-

action models can describe the structure and behavior of the system during user

interaction (Trætteberg 2008). According to Meixner et al. (2011), interaction

models should include a high-level of abstraction about the interactive system to

be developed. Interaction models can contribute to the quality improvement of the

developed system, as they allow the detection of eventual problems in the user-

system interaction (Lopes et al. 2015).

One of the methods that can assist the verification of artifacts developed during the

software project is the software inspection. Software inspection has a rigorous and

well-defined process (Fagan 1976; Taba and Siew 2012). Through an inspection in the

analysis and design phases, it is possible to identify defects in the early phases of the

development process to reduce costs and improve software quality (Qazi et al. 2016).

Through such inspection, the propagation of defects in interaction models can be mini-

mized, reducing the cost of correcting such defects in other artifacts, such as use case

specifications and prototypes.

This paper presents a research conducted following the action research methodology

(Wohlin and Aurum 2014). In this research, industry and academy worked together for

the development of software, reporting the activities of an analysis and design team de-

veloping an application with user-centered techniques. The team applied techniques,

such as personas and scenarios, for understanding the user and identifying require-

ments in the analysis step. In the design phase, the team used interaction models for

user-system interaction and other artifacts. For the interaction modeling, we developed

a technique which contributed to the reduction of defects in interaction models. This

technique assists the inspection of interaction models and comparing the interaction

modeling with the requirements. We did not find a technique with this purpose in the

literature.

Our main contribution with this paper is to present the results obtained with the

set of practical activities for the analysis and design of user-centered systems in

Software Engineering and the technique for inspection of defects in interaction

models. In addition to this section, this paper has the following sections: Section 2

describes the case description with: the description of the methodology we applied

in this research, and the description of the theoretical basis of the techniques and

notation used in the analysis and design phases. This section also presents some

information on the mobile application and the activities of the analysis and design

phases in this research. In addition, this section presents a technique that assists in

the verification of interaction models. Section 3 presents a discussion of the results

from this research and provides a set of practices that can be adopted by other

software engineers in future projects. Finally, Section 4 presents the conclusions

and future perspectives.

2 Case Description
This research was conducted using action research methodology, a methodology used

when the researchers attempt to solve a real-world problem while simultaneously

studying the experience of solving the problem (Wohlin and Aurum 2014). We used

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 2 of 23

the structure from action research provided by Susman and Evered (1978), in five

stages:

� Diagnosing

We observed the analysis and design team of a mobile application with user-centered

techniques, such as personas, scenarios, interaction models, and others necessary arti-

facts. When creating the artifacts without having a model as basis, the design team had

rework due to the lack of consistency between the artifacts (e. g. we analyzed whether

the information in the prototypes was in agreement with the use case and the activity

diagram).

� Action planning

We selected interaction models because they can be used as a basis for the development

of other artifacts, such as prototypes (Bueno and Barbosa 2007; Marques et al. 2016).

Interaction modeling provided the necessary understanding of the system interactions.

� Action taking

we used the interaction modeling as a basis for the development of other necessary

artifacts, such as prototypes and UML (Unified Modeling Language) use cases. Based

on the interaction modeling, the modifications for the consistency among the artifacts

were finished in a simpler way.

� Evaluating

we identified that interaction models may contain defects which can impair the un-

derstanding of the practitioners that developed other artifacts. In this context, it is im-

portant to perform inspections in interaction models before they are used by other

practitioners in the design of a mobile application.

� Specifying learning

Figure 1 presents a set of practical activities that we proposed during the

analysis and design of a mobile application. We evaluated the set of practical

activities presented in Fig. 1 and the results show that the proposal is feasible (as

presented in the following section). We developed a technique called Inspecting

MoLIC Interaction Diagrams (IMID) based on the defects that impaired the

understanding of information from the interaction models. This technique proved

to be feasible for the inspection and for reducing the propagation of software

defects.

2.1 Background on the user-centered techniques to analyze and design an application

Requirements engineering has used different techniques for the requirements elicitation

focusing on the user (Aoyama 2015), such as personas and scenario. Personas, origin-

ally presented by Alan Cooper (Cooper 1999), are fictitious, specific and concrete rep-

resentations of target users. These are described like real people (i.e. they contain

information such as names, ages, formations, skills, goals, and concerns) (Sima and

Brouseb 2015). Scenarios describe sequences of interactions between systems and users

(Carroll and Rosson 1992). They can be employed to illustrate how a user might

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 3 of 23

accomplish particular tasks with the system. According to Benner et al. (1993), scenar-

ios can supplement and support the activities that software engineers perform mentally

on scenarios at the present time, such as uncovering system requirements and evaluat-

ing design alternatives. Scenarios can take many forms and provide various types of in-

formation at different levels of abstraction (Lombriser et al. 2016).

In the design phase, interaction models describe the communication between the

user and the system, specifying when the user can perform specific tasks to achieve

certain goals (Marques et al. 2016). One of the alternatives to support the develop-

ment of interaction models is through MoLIC (Modeling Language for Interaction

as Conversation) (Barbosa and Paula 2003). With the MoLIC models, all inter-

action paths can be represented, including alternative paths for the user to reach

the same goal (Souza and Barbosa 2015). Thus, interaction models can support the

software design with a focus on quality of use, since software engineers can design

all interaction alternatives in the system.

Figure 2 presents an example of a MoLIC diagram, which represents an interaction

model for a mobile educational game. Overall, the game helps teaching the software in-

spection. Software inspection of artifacts during development has shown to improve

the quality of the system and reduce development costs in the Software Engineering

(Travassos et al. 2001). Table 1 presents a description of the types of defects that can

be found in software artifacts (De Mello et al. 2014).

We used the concepts presented in Table 1 for the design of the MoLIC diagram

shown in Fig. 2. The game aims to teach the detection of types of defects that can be

found in an artifact through a playful environment. Thus, students (users) may practice

the concepts regarding inspection that were listed during their classes. The game can

be used by professors that teach software inspection as a practical exercise. The MoLIC

diagram has the following elements:

� Opening point

Indicates where the interaction can start, i.e., when the user select game. A filled black

circle represents the Opening Point (the numbers in the blue circles) in the Fig. 2.

Fig. 1 Set of practical activities for the analysis and design of software that focuses on the user

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 4 of 23

� Scene

Represented in the Fig. 2 as a rounded rectangle. The scene shows the moment in

the interaction where the user decides how the conversation should proceed. The top

compartment contains the topic of the scene and represents the user’s goal. The second

compartment details the following elements:

� Signs

represent the information involved in the utterances issued by the user (i.e., user in-

put) and by the designer’s deputy (i.e., system output) during the dialogues. In Fig. 2,

we have the following signs in the “Play phase” scene: “omission, ambiguity, incorrect

fact, inconsistency, extraneous information”.

� Dialogues

compose a conversation about a topic, and consist of utterances on signs. In Fig. 2,

one example of dialogue is “select ambiguity defect” (in “Play phase” scene).

Table 1 Defects taxonomy for software artifacts

Types of Defects Description of Defects

Omission Omission of any information necessary in the artifact.

Ambiguity Unclear definition of certain information in the artifact, which may lead to multiple
interpretations.

Incorrect Fact Misuse of the artifact elements.

Inconsistency Conflicting information between the artifact and the information needed to solve the
problem.

Extraneous
Information

Unnecessary information included in the artifact (e.g., information that is not needed to
solve the problem).

Fig. 2 A MoLIC diagrams example

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 5 of 23

� Structures of dialogues

the dialogues can be composed of other dialogues according to some structure.

In these cases, these structures can be represented by the reserved words SEQ,

XOR, OR or AND. The SEQ structure represents the dialogues that must be ex-

changed in the specified sequence. The XOR structure represents mutually exclu-

sive dialogues. The structure OR represents the choice of exchanging one or more

dialogues. The structure AND represents the use of all dialogs, but not in a prede-

fined sequence. In Fig. 2, the AND structure represents the use of all dialogs, such

as “select omission defect” and “select ambiguity defect”.

� Transition utterance

Represents turn-taking, or rather turn-giving, where either the user or the system

gives the turn to the other, for instance, to change the topic of the conversation. It is

represented by an arrow in the diagram, labeled with a user utterance indicator (u:) or

designer utterance indicator (d:), e.g. “u: play again” in Fig. 2.

� System process

It is represented through a black box in the diagram. It represents the internal pro-

cessing (of a user request) which needs to provide adequate feedback to the user when

there are different outcomes possible, e.g. “See positive ending” and “See negative end-

ing” in Fig. 2.

� Breakdown recovery utterance

is a type of utterance provided to help the user recover from a communication

breakdown. It is represented by a dashed arrow in the diagram, e.g. “see scenario

again” in Fig. 2.

� Ubiquitous access

represents an opportunity for the user to change the topic of the conversation from

any other scene. It is represented through a gray rounded rectangle, e.g. “exit the game”

in Fig. 2.

� Closing point

represents the end of the interaction. A filled black circle within a circle with no pad-

ding represents the Closing Point in the Fig. 2.

Interaction models can be used as a basis for the development of other artifacts,

such as prototypes (Bueno and Barbosa 2007; Marques et al. 2016). In addition,

software engineers can discuss the user-system interaction represented in the

MoLIC diagram in order to collaborate on improving the represented information.

Prototypes in the design phase are interface sketches that reflect customer needs

with regards to more concrete aspects of presentation, from the point of view of

requirements expressed in written language (Luna et al. 2010). The prototypes can

be developed based on the interaction modeling to reflect the decisions of

designers about the paths that the user can follow in the application. Figure 3 pre-

sents prototypes of a mobile application (the educational game) built based on the

MoLIC diagram shown in Fig. 2. We will now describe the decisions for the

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 6 of 23

mapping of the MoLIC diagram to the prototypes (numbers in orange circles in

Fig. 3 correspond to the descriptions below):

1. The “View game scenario” scene has been mapped to the “initial game” screen.

2. The utterance transition “u: start game” was represented by the “START GAME”

button.

3. The breakdown recovery utterance “u: see scenario again” was represented by

the “See scenario again” link for the user to be directed to the “initial game”

screen.

4. The transition utterance “d: display positive score” after the system processing was

represented in the prototypes as user feedback, in the case of the final positive

scenario of the game.

5. The “d + u: omission, ambiguity, incorrect fact, inconsistency, extraneous

information” signs were mapped, respectively, to represent information and buttons

in which the user can classify the defects.

Fig. 3 Mapping the MoLIC diagram to the prototypes

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 7 of 23

2.2 Developed application and practices adopted for the development of artifacts in the

analysis and design phases

The research presented in this phase refers to the work of the analysis and design team

of an application called HCDP (Home Care Development Project). The motivation for

the development of this application is the difficulty of family members trying to manage

the routine activities of an elderly person. The HCDP application was developed to

support a group of people, being family members and caregivers of the elderly, who

took care of an elderly in a collaborative way. This application was part of a cooper-

ation project among the Federal University of Amazonas, Pontifical Catholic University

of Rio Grande do Sul and Samsung Research Brazil. Three distributed teams worked in

the development of the HCDP application. The management team (Customer) defined

all the functionalities to be developed and the artifacts that should be delivered. An-

other team performed the activities related to the application coding. The remaining

team performed the activities related to the analysis and design of the application. The

analysis and design team was composed of five software engineers and a project

manager.

The authors of this paper were part of the analysis and design team of the HCDP ap-

plication. In order to develop the HCDP application, we adopted the Scrum method-

ology (Scrum Alliance 2016). Scrum focus on collaborative teamwork and explicitly

acknowledge the importance of self-organization and is the most often employed agile

methodology (Hron and Obwegeser 2018). We adopted some practices from the Scrum

methodology, such as: (i) the products are delivered in increments called “Sprints”. The

duration of each sprint was four weeks. Each sprint starts with a (ii) sprint planning

meeting and a (iii) retrospective meeting may be scheduled to assess the team. We

chose Scrum methodology because the management team requested the iterative and

incremental development of the artifacts; and the team adopted transparency in the

progress of activities.

We divided the analysis and design phases of the application into fixed duration

Sprints of four weeks. The project lasted six months and was divided into six Sprints.

Table 2 presents a summary of the activities carried out during the execution of the

project.

In the analysis phase (Sprint 1), the analysis and design team applied the personas

and scenarios techniques to identify the needs of different types of users (Castro et al.

2008). Then, the personas were validated by the engineers through interviews with

potential users. Based on the personas and scenarios, the requirements were identified

and the use case diagram was developed, relating use cases to requirements. After that,

the analysis and design team met with the management team and prioritized the devel-

opment of the use cases in the later Sprints. In the design phase (Sprints 2, 3, 4 and 5),

the artifacts requested by the management team were:

� Interaction Models - In the interaction modeling, the team developed the MoLIC

diagrams to represent all interaction paths between the user and the system;

� Use Case Specification - In the use case specification, the team described the use

cases considering the different execution flows;

� Prototypes - The prototypes necessary to represent the interface were also

developed;

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 8 of 23

� Activity Diagrams – UML activity diagrams were developed to provide an

overview of the system behavior through the sequence of actions in the activities

(Czopik et al. 2014).

After the development of the artifacts, these were reviewed by different software engi-

neers, i.e. the software engineer who created the artifact was not the same that carried out

the review. This practice aimed to identify inconsistencies in the information represented

in the artifacts. The analysis and design team was hoping to get insight into the analyzed

and designed features from the HCDP application. As for Sprint 6, improvements were

made in some of the artifacts from previous Sprints. At the end of each Sprint presented

in Table 2, the analysis and design team held a retrospective meeting and discussed the

lessons learned. At these meetings, the PABC-Pattern (Problem, Action, Benefit and Con-

text – Pattern) approach was used to code lessons learned by the team (Rabelo et al.

2014). The purpose of the PABC-Pattern is the knowledge codification and sharing on the

form of lessons learned. The main elements of the PABC-Pattern are:

� Title - description of the lesson’s name;

� Situation - details of the situation in the project;

� Cause of the Situation - reason for the occurrence of the situation in the project;

� Consequence of the Situation - description of the consequences of the situation

in the project;

� Action - details the solution to the situation, i.e. providing details of an activity that

was applied to solve such a situation;

� Benefit - describes the effects that were caused by the action or situation in the project.

Table 2 Analysis and design activities performed on each sprint from the HCDP application

Sprint Tasks Description

Sprint 1 Sprint Planning Meeting

Personas Specification

Scenarios Specification

Extraction of Requirements from the Personas and Scenarios

Development of Use-Case Diagrams

Use Case Prioritization

Retrospective Meeting between the Analysis and Design Team and Management Team on
Lessons Learned

Sprint 2
Sprint 3
Sprint 4
Sprint 5

Sprint Planning Meeting

Interaction Modeling for Use Cases: A (Sprint 2), B (Sprint 3), C (Sprint 4) and D (Sprint 5)

Use Case Specifications: A (Sprint 2), B (Sprint 3), C (Sprint 4) and D (Sprint 4)

Development of Prototypes for Use Cases: A (Sprint 2), B (Sprint 3), C (Sprint 4) and D
(Sprint 5)

Development of Activity Diagrams for Use Cases: A (Sprint 2), B (Sprint 3), C (Sprint 4)
and D (Sprint 5)

Retrospective Meeting between the Analysis and Design Team and the Management
Team on Lessons Learned

Sprint 6 Sprint Planning Meeting

Improvements in the Artifacts of the Previous Sprints

Retrospective Meeting between the Analysis and Design Team and the Management
Team on Lessons Learned

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 9 of 23

2.2.1 Activities of the analysis phase of the development process of the HCDP application

In Sprint 1, personas and scenarios were created with the purpose of understand-

ing the different types of user of the application to be designed. The HCDP ap-

plication should control the activities of an elderly person (e.g. go to the doctor,

take medication, meals, and others). Therefore, the created personas represented

family members and caregivers of the elderly. For the creation of personas, we

used a template containing the following information: identification data, housing

conditions, degree of experience with technologies, degree of responsibility, learn-

ing style, acceptance of change and the context of use of the application. After

that, scenarios were developed with the details of the relationship between the

personas and the mobile devices.

The scenarios show the relationship between the personas, which are related to

the activity of notifying family members and caregivers about the elderly’s

appointments. To prepare the scenarios, we used a template composed of the

following information: Context, goals, events and actions. From this scenario, the

following requirements for the development of the application were identified: “To notify

that the activities of the elderly routine have been fulfilled” - Requirement 1; “To notify

that the activities of the elderly routine have not been fulfilled” - Requirement 2.

Based on these requirements, we developed the HCDP use case diagram. After

performing these activities, the management team of the HCDP project and the

analysis and design team prioritized together the development of use cases that

would be developed in the other Sprints.

2.2.2 Activities of the design phase of the development process of the HCDP

Sprint 2 began the activities of the design phase. First, the analysis and design team

selected one of the use cases according to the priority order defined in Sprint 1. After

that, all the artifacts requested by the management team were developed. Different

engineers were responsible for the development of interaction models, prototypes, use

case specification and activity diagrams. The activities are described below.

A. Analysis of the development of artifacts in Sprint 2

In Sprint 2, the order for developing prototypes, MoLIC diagrams, specification of

use cases and activity diagrams is presented in Fig. 4. We highlight that the devel-

opment of the prototypes, MoLIC diagrams and use case specification was carried

out in parallel, based only on the use case diagram, requirements and scenario.

Fig. 4 Activities performed for the development of artifacts in Sprint 2

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 10 of 23

The use case diagram, requirements and scenario were discussed prior to the de-

velopment of the prototypes, MoLIC diagrams and the use case specification. The

project manager requested the development of these artifacts separately in order to

assign different responsibilities to the software engineers and facilitate the process

of developing the artifacts. Then, the engineers analyzed the consistency between

created artifacts regarding the information with respect to the functionalities

(dashed arrow in Fig. 4). The activity diagram was created, based on the three

previously developed artifacts (prototypes, MoLIC diagrams and use case specifi-

cation). At the end of Sprint 2, after the development of all artifacts, a retro-

spective meeting of the analysis and design team was held. The following are

some of the lessons learned from Sprint 2.

In Sprint 2, there were 15 documents that reported the lessons learned that were

coded using the PABC-Pattern approach, with a total of 7 documents related to the de-

velopment of artifacts. The main three lessons learned that report problems in the de-

velopment of the artifacts were selected. One of these lessons learned has the Title:

Rework by maintaining the artifact pattern, which was generated by the following

Situation: “When developing the separate artifacts after the meeting, there is a lot of

work in standardizing the use cases, prototypes, interaction modeling and activity

diagram”. The analysis and design team defined the following Action strategy: “A joint

analysis where the main idea of the requirements will be defined before creating the

artifacts through a formal document”. Thus, the team concluded that rework can be

reduced with regards to inconsistencies between such artifacts.

The lesson learned that has the Title: Dependence between activities can cause

delays in the project, occurred due to the following Situation: “The improvement of the

use case depended on the delivery of the prototypes. The delivery of the prototypes was

delayed”. As a result, the following Consequence of the Situation was observed:

“Rework. Delay of the next activity that should be delivered to another participant”. There-

fore, we can notice that there was a delay in the specification of use cases, since such an

artifact should represent the same information in the prototypes and MoLIC diagrams.

The lesson learned that has the Title: Lack of traceability between the prototypes

and the use case, occurred due to the following Situation: “Lack of traceability or

mapping to understand what is in the prototypes and what it represents in the use case”.

The analysis and design team defined the following Action strategy: “To verify which

prototypes are represented in the use case and integrate the two artifacts”. Therefore,

there was a lack of understanding of some software engineers regarding the under-

standing of the requirements for the development of different artifacts. As a result,

there were inconsistencies about the information of the HCDP application among the

developed artifacts based on the requirements, use case diagram and scenario.

We highlight that in Sprint 2 the MoLIC diagrams were not used as basis for the de-

velopment of the other artifacts. Therefore, there was no artifact that represented the

essential information in the user-system interaction for the development of the other

artifacts. For this reason, there was rework of the analysis and design team with regards

to the consistency of the artifacts. This rework was due to the team’s lack of knowledge

regarding the most appropriate order for the development of artifacts. To mitigate this

problem, the team made a change in the order of development of the artifacts. This

change is shown in the next subsection.

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 11 of 23

B. Analysis of the development of artifacts in Sprint 3

In Sprint 3, the order of developing the MoLIC diagrams, prototypes, use case spe-

cification, and activity diagrams is presented in Fig. 5. This order of development

is different with regards to the design activities in Sprint 2. The development of

prototypes, activity diagrams and use case specifications was based on the MoLIC

diagrams, requirements, use case diagrams and scenario. The project manager

adopted this approach based on the lessons learned from Sprint 2 and the litera-

ture suggestions (Bueno and Barbosa 2007; Marques et al. 2016) on using the

interaction modeling as a basis for the development of other artifacts. In similar

way to Sprint 2, the engineers analyzed the consistency between these artifacts

developed about their information (dashed arrow in Fig. 5).

In Sprint 3, the analysis and design team carried out a joint elaboration of the interaction

modeling, that is, the software engineer responsible for the interaction modeling developed

the MoLIC diagrams, while the other engineers discussed the interaction solutions. After

doing this, the prototypes, activity diagram and case specification were developed, using

the MoLIC diagrams as basis. At the end of Sprint 3, a retrospective meeting of the HCDP

project was also held. Here, we present some of the lessons identified in Sprint 3.

Regarding the lessons learned from the Sprint team, there were 12 documents that

report a coding of lessons learned, with a total of 4 documents related to the develop-

ment of the artifacts. We selected the main three lessons learned on the use of MoLIC

diagrams as the basis for the development of the other artifacts.

A lesson learned about the use of MoLIC in Sprint 3 has the Title: Using

MoLIC diagrams at the beginning, which was caused by the following Situation:

“The use of the MoLIC diagrams at the beginning made it possible to think about

the use case. Also, it enabled seeing that it is necessary to use the diagrams along

with the interface”. This coded lesson learned was assigned to the following Conse-

quence of the Situation: “Based on the MoLIC diagrams, the team ended up gain-

ing time and, at the end of the sprint, the modifications were finished in a simpler

way”. However, the modifications in the prototypes made the analysis and design

team think on modifications that must be made in the MoLIC diagram, since such

models can be designed together (Lopes et al. 2015). Regarding the Action strat-

egies, for this codification, there was no action planned to be defined, because the

experience was considered positive.

Fig. 5 Activities performed for the development of the artifacts in Sprint 3

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 12 of 23

Another selected lesson that has the Title: Thinking about time consumption

in the project activities, which occurred as shown by the following Situation:

“Benefits in activities that consumed design time and were not well understood by

the participants”. The analysis and design team defined the following Action strat-

egy: “Participants have to think that when there is no interface pattern, starting

with the interaction modeling makes sense”. Therefore, the analysis and design team

concluded that the use of initial interaction modeling is useful to understand the

system’s functionalities. Furthermore, in this project there was a better understand-

ing of the functionalities from the MoLIC diagrams together with the prototypes.

Based on these lessons learned, we can identify the following positive aspects: (a) the

use of MoLIC diagrams in the beginning to understand the functionalities and (b) their

use as a basis for the development of other artifacts.

C. Analysis of the use of interaction models as basis for the development of other

artifacts in Sprint 3

Besides the documents with the coded lessons learned, the document containing the

review of the interaction model was analyzed in Sprint 3. Only the document with the

interaction model review from the Sprint was chosen for this analysis because it was

used by the software engineers as the basis for creating other artifacts. This document

included the MoLIC diagrams and other information necessary to understand what

problems may have occurred after defining the interaction model at the beginning of

the sprint.

We carried out the review of the MoLIC diagrams based on the taxonomy presented

by De Mello et al. (2014) in Table 1. The MoLIC diagrams review document identifies,

for example, an inconsistency defect of the message displayed to the user. The defect

could impact in development of the prototypes and the specification of use cases, since

the information would be mapped inconsistently with the system requirements. In

addition, we identified an omission defect of information about the description for de-

tails of the user. These defects could impact in development of the prototypes, since

the information would not be mapped. The defects presented were found in the case

study presented in the work by Lopes et al. (2015), based on the taxonomy presented

by De Mello et al. (2014). Consequently, it is important to review the interaction

models, because the defects may undermine the practitioners’ understanding of the ar-

tifacts that were developed based on the MoLIC diagrams. This practice was performed

in the interaction modeling document and in the other artifacts before being delivered

to the analysis and design.

Although the review activity was performed on the MoLIC diagrams by another soft-

ware engineer, we highlight that such review was not performed with a specific tech-

nique for reviewing MoLIC diagrams. Possibly, the use of a specific technique could

have aided in identifying more defects prior to the development of the prototypes and

use case specification. Thus, it was necessary to correct the MoLIC diagrams, specifica-

tion of use cases and prototypes due to such defects.

2.3 A technique for inspecting MoLIC interaction diagrams

An inspection helps identifying defects during the development process (Taba and

Siew 2012). The main purpose of an inspection is to identify defects in software

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 13 of 23

development to reduce costs and improve software quality (Qazi et al. 2016). The

importance of conducting inspections during the development process is broadly

cited in the literature (Aurum et al. 2002; Misra et al. 2014). Regarding the MoLIC

diagrams, these diagrams should be also verified regarding their consistency and

completeness to reduce the number of defects and to prevent them from propagating

defects to derived artifacts. As suggested by Lopes et al. (2015), MoLIC diagrams may

contain defects, which can impair the understanding of the practitioners.

We developed a technique for Inspecting MoLIC Interaction Diagrams (IMID) based

on the different types of defects found in the MoLIC diagram for the HCDP application

from Sprint 3, such as Omission, Ambiguity, and others (De Mello et al. 2014). Table 3

presents the IMID technique. The verification items assess both the consistency of the

MoLIC diagrams with the requirements and their completeness. The IMID technique was

developed because we did not find a technique in the literature for the inspection of

MoLIC diagrams with regards to the requirements. We believe that these verification

items can be instantiated for other interaction modeling notations, as long as the elements

have the same purpose in the interaction modeling. We applied this technique in Sprints

4 and 5, as follows: After the software engineer responsible for the interaction modeling

finished the diagram, the reviewer responsible for the verification of the interaction model

used the IMID technique with the aid of a defects reporting form.

We analyzed the use of the IMID technique for the inspection of MoLIC dia-

grams in the Sprint 4 and 5. In the Sprint 4, the MoLIC diagrams contained a

total of 5 defects; and, in the Sprint 5, the MoLIC diagrams contained a total of 6

defects. Figure 6 presents examples of some of the identified defects found with

the technique by the reviewer of interaction modeling. In this sense, we present:

the identifier of the defect (e.g. “Verification item 1”), the verification item descrip-

tion of the IMID and the type of identified defect. The number of defects, the in-

spection time and the indicators of effectiveness and efficiency of each subject

(software engineer responsible for the verification of the interaction model used

the IMID technique) are described in Table 4 (for Sprint 4 and 5). The indicators

of effectiveness and efficiency that were adopted, this is often used in studies

investigating inspection techniques, such as inspection techniques for models

(Fernandez et al. 2012). The effectiveness was calculated using the number of de-

fects found by the subjects divided by the total number of defects from the oracle.

The efficiency was calculated on the number of defects found divided by the time

of inspection of each subject. We refer to the subjects using the letter S#, where

is a number that uniquely identifies each software engineer.

Analyzing the effectiveness indicator, we can see that each single subject was able

to identify more than 40% of the defects. This is a good result in terms of effect-

iveness when compared to the indicators achieved by other inspection techniques

(Valentim et al. 2015) and, as such, it indicates the feasibility of IMID. However, it

is still necessary to perform a controlled experiment to compare the effectiveness

of IMID with other techniques for identifying defects in interaction models.

Regarding efficiency, the subjects found between 2 and 5.71 defects per hour.

However, the number of defects is directly dependent on the inspected models, is

not suitable to compare the results of efficiency from this study with the results of

other techniques. As an overall result, these identified defects were not propagated

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 14 of 23

Table 3 Technique for Inspecting MoLIC Interaction Diagrams (IMID)

E# Verification Items for the MoLIC Element vs Software Requirements

Opening point Closing point Verification item 1: Was the element used in the model to represent the
start/end of the interaction? If not, report it as an Omission defect.
Generated problem: This defect may impair understanding the beginning/
ending of the interaction by the team members.
Verification item 2: If the previous item occurs, does the element represent
the beginning / end of the interaction according to the requirements? If
not, report it as an Inconsistency defect. Generated problem: This defect may
impair the consistency of requirements with the appropriate start/end of the user
interaction in the system (e.g. incorrect sequence of interaction scenes with regards
to what was described in the requirements).

Scene, Signs, Dialogues and
Structures of dialogues

Verification item 3: Are all requirements represented in the interaction model?
If not, report it as an Omission defect. Generated problem: This defect may
hinder the development of a necessary requirement (e.g. the software engineer did
not capture all of the goals that the user could have, considering the requirements
used as basis).
Verification item 4: Are there inconsistent requirements in the interaction
model? If so, report it as an Inconsistency type defect. Generated problem:
This defect may make the software inconsistent with the requirements (e.g. in
a sequence of dialogues that should be structured with XOR, the AND structure
was used).
Verification item 5: Is there information in the interaction model that is not
in the context of the requirements? If so, report it as an Extraneous
Information defect. Generated problem: This defect may make the software
present irrelevant information (e.g. scenes that were not described in the
requirements can be represented in the prototypes).
Verification item 6: Is it possible to understand all the information about
the requirements in the interaction model in a clear way? If so, report it as
an Ambiguity defect. Generated problem: This defect may cause the insertion
of other defects in the developed artifacts, since each team member may have
a different interpretation (e.g. description of similar scenes provided multiple
interpretations about the user goals.)
Verification item 7: Have all requirements been correctly represented in the
interaction model? If not, report it as an Incorrect Fact defect. Generated
problem: This defect may hinder the development of correct requirement
(e.g. the sign issuers can be attributed to the user or to the designer’s
deputy in an incorrect manner with what was described in the requirements -
confusion between “d:” and “u:”).

Transition Utterance and
Breakdown recovery utterance

Verification item 8: Are there any omissions on interactions required for
the software features? If so, report it as an Omission defect. Generated
problem: This defect may impair the user interaction with the system
(e.g. lack of transitional utterance when switching from one scene to
another, impairing the interaction sequence).
Verification item 9: Is the content of the interactions between the
features consistent with the requirements? If not, report it as an
Inconsistency defect. Generated problem: This defect may make the
user interaction inconsistent from the requirements point of view
(e.g. the content “u: play again” regarding the scene that is outside
the context of the interaction in the game, such as the “see positive
ending” scene).
Verification item 10: Is the content of the interactions between the
functionalities in the context of the requirements? If not, report it as
an Extraneous Information defect. Generated problem: This defect can
also impair the user interaction from the point of view of the requirements
(e.g. the content “u: search hotel” is outside the context of the game).
Verification item 11: Does the content of the interactions between the
features provide multiple interpretations? If so, report it as an Ambiguity
defect. Generated problem: This defect may provide for the insertion of
other defects in the developed artifacts, since each team member may have
a different interpretation (e.g. the use of two user transition utterances for
the same goal, which provided multiple interpretations about the user
transition).
Verification item 12: Have all interactions been correctly represented in
the interaction model? If not, report it as an Incorrect Fact defect.
Generated problem: This defect may hinder the development of correct
interactions (e.g. in the breakdown recovery utterance, solid lines can be
used, instead of the dashed lines).

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 15 of 23

to artifacts that were developed based on the MoLIC diagram, thereby reducing

analysis and design rework.

After Sprints 4 and 5, we conducted an interviewed with two software engineers

(subjects) who used IMID during the design phase. We asked the following ques-

tion was for software engineers: Please report your perceptions about the IMID

technique? Regarding the positive aspects of the technique, the software engineers

quoted the following: “I believe that the items guided me well to find defects in the

diagram” (S1) and “I consider that this technique helps finding defects in the dia-

gram before creating other artifacts” (S2). However, S1 also reported a negative as-

pect of the technique: “I had trouble in remembering the difference between the

Table 3 Technique for Inspecting MoLIC Interaction Diagrams (IMID) (Continued)

E# Verification Items for the MoLIC Element vs Software Requirements

System process Verification item 13: Was the element required for the interpretation
of an applied user action? If not, report it as an Omission defect.
Generated problem: This defect can impair proper user interaction in
the system after a certain action (e.g. an interpretation for the game
results regarding the positive ending or negative ending).

Ubiquitous access Verification item 14: Can the features associated with this element
be accessed at any time in the user-system interaction? If not,
report it as an Inconsistency defect. Generated problem: This
defect may make the user interaction inconsistent from the
requirements point of view (e.g. there is not opportunity for the user
to change the topic of the conversation from any other scene for the
game exit. Therefore the ubiquitous access element should not be
related to closing point element).

Fig. 6 Example of the inspection results from a software engineer responsible for verifying the
interaction modeling

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 16 of 23

types of defects” (S1). Concerning the opinion from S1, we identified the difficulty

of understanding the types of defects described in the technique. To solve this

problem, we describe the definition of each type of defect (as defined in Table 1)

so practitioners can understand the classification of defects that the technique

helps to identify. The final version of the technique can be accessed elsewhere

(Lopes et al. 2017).

Through the use of the IMID technique in Sprints 4 and 5, we noticed that the tech-

nique achieved the goal of detecting defects in interaction models. With this technique,

the interaction models are improved so that defects cannot propagate from the defects

found within the model, as observed in the design phase of Sprint 3. Therefore, this tech-

nique can help practitioners, since it was useful for the inspection of MoLIC diagrams.

3 Discussion and evaluation
We adopted some practices from the Scrum methodology (Scrum Alliance 2016) for

development of artifacts produced in the analysis and design phases of a mobile appli-

cation called HCDP. These practices refer to the products delivered in Sprints, sprint

planning meeting and retrospective meeting. The use of the Scrum methodology, with

its emphasis in incremental development and constant monitoring, provided the team

the opportunity to improve the order of developing artifacts in the design phase, as also

increased the team collaboration on all Sprints.

We analyzed the use of interaction modeling in Sprints 2 and 3 and the devel-

opment of other artifacts (from the artifacts and lessons learned that were dis-

cussed at the retrospective meeting). From this analysis, we developed the set of

practical activities presented in Fig. 1 for analyzing and designing a mobile appli-

cation. Regarding this set of activities, practitioners should acquire knowledge

about personas, scenarios and interaction modeling. Scenarios and personas are

developed with textual descriptions, and there are some personas techniques that

help introduce personas to development teams with little training time (Ferreira

et al. 2016). For instance, Ferreira et al. (2016) reported the use of PATHY Perso-

nas technique after a one-hour training, and Ferreira et al. (2017) described a

forty minutes training to enable participants using a personas technique. Regard-

ing interaction modeling, the development team needs training on a specific

modeling language, such as MoLIC (Barbosa and Paula 2003). There are many

Computer undergraduate courses that include interaction modeling as a topic in

a Human-Computer interaction class (Lopes et al. 2015), therefore some devel-

opers might already know how to use these modeling languages. The duration of

a specific training about interaction modeling varies between four to six hours

(Marques et al. 2016).

Table 4 Results per Subjects

Sprint Subjects Number Defects Time Hours Effectiveness
(%)

Efficiency

Sprint 1 S1 2 0,83 40% 2

S2 3 1 60% 3,61

Spint 2 S1 4 0,7 66% 5,71

S2 3 0,6 50% 5

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 17 of 23

Although there is a learning curve, such activities provide a better support for the de-

velopment of user-centered applications. In addition, the adoption of these activities

provides better team communication regarding users and their needs during the whole

design process; and helps teams on decision-making about efficient design (Mashapa et

al. 2013; Marques et al. 2017).

The set of practical activities was used in Sprints 3, 4 and 5; and caused the re-

duction of rework in Sprints 3, 4 and 5 when compared with the rework from

Sprint 2. We applied a Focus Groups (FG) (De França et al. 2015) to evaluate

the perceptions from the analysis and design team perceptions about the set of

practical activities presented in Fig. 1. FG is a qualitative technique for collecting

data by organizing group interviews to discuss a certain object of study. It determines

how a researcher has to choose moderators, questions and participants. All software engi-

neers participated in the FG, including the software engineers who used IMID to inspect

the MoLIC diagrams (S1 and S2). The software engineer responsible for the interaction

modeling and manager of the design team were the moderator in the FG. We also refer to

the software engineers using the S# for identifies each software engineer. The following

question was asked to the software engineers to them answer: Please report your percep-

tions about the set of practical activities used in the HCDP. In the FG discussion, the team

reported in the FG board that:

“I found it great to have the interaction model for developing prototypes. I mapped

the information in the prototypes from the diagram, which improved my performance

in this activity” (S3).

“I believe that the definition of these activities helped each team member carry out

his/her tasks and improved our communication. The team was already aware of

what they would do; and we found fewer errors in evaluating the consistency of the

developed artifacts” (S4).

“The dependency between activities can cause rework, as in Sprint 2. With the set of

activities, we did not have this problem. In addition, we do not become idle” (S2).

“The interaction modeling meetings provided a better understanding of the artifacts

to the team members” (S1).

members in the FG, it was possible to obtain indications about the benefits of using the

set of practical activities proposed in this research. However, if the MoLIC diagrams

have defects, this will prejudice the understanding of the involved practitioners. These

defects can cause rework in both the MoLIC diagrams and the artifacts developed

based on the diagrams. For this reason, we suggest that the developed interaction

models are inspected before being used as basis for the development of other artifacts.

Through this research, we observed the experience of this analysis and design

team when applying user-centered techniques, we suggested personas and scenarios

for the understanding of requirements; and we carried out interaction modeling at

the beginning of the design phase in order to develop other software artifacts, such

as the specification of use cases, prototypes, and activity diagrams. Through the

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 18 of 23

use of interaction models it is possible to design and detect possible problems in

the user-system interaction during the design phase of the system. Thus, it is pos-

sible to develop user-centered software.

In addition, we highlight the importance of carrying out meetings on the lessons

learned for the team’s understanding of the project’s analysis and design activities.

Regarding the lessons learned from Sprint 2, there was a rework of the design

team with regards to the consistency of the artifacts developed. This was due to

the lack of an artifact that represented the essential information in the user-system

interaction for the development of the other artifacts. Based on the lessons learned

from Sprint 2 and the literature suggestions (Bueno and Barbosa 2007; Marques et

al. 2016), the design team adopted the interaction modeling as a basis for the de-

velopment of other artifacts. The use of interaction modeling provided the neces-

sary understanding of the system interactions and the modifications for the

consistency among the artifacts were finished in a simpler way. These lessons

learned can help software engineers understanding our proposal of a set of prac-

tical activities. Thus, it is possible to improve the execution of activities when ana-

lyzing and designing applications.

3.1 Related work

Regarding the practice with the user-centered techniques used in the HCDP, we did

not find any other works on how software engineers used these techniques together in

the initial stages of the development process. In general, studies assess the techniques

individually for specific contexts.

Choma et al. (2016) used Personas to facilitate the communication between the

UX and Scrum teams due to differences in vocabulary. Furthermore, personas are

recognized by UX practitioners as a good practice to keep the software develop-

ment focus on the users’ needs. In their development process, they created user

stories based on the created personas. In our work, we created scenarios and use

cases based on the created personas.

Regarding the interaction modeling with MoLIC, Silva et al. (2006) proposed the

Extreme Designing methodology for interaction design through the use of prototypes

and MoLIC diagrams. The methodology aims to unify the vision represented by the

prototypes. In our work, in addition to analyzing the use of interaction models and

prototypes, we verified that it is possible to use it for UML diagrams. Sangiorgi and

Barbosa (2009) developed the MoLIC Designer tool to support the creation of MoLIC

diagrams, avoiding the insertion of syntax defects. We used the MoLIC Designer tool

in our research. However, we identified the need to inspect defects that affect the rela-

tionship between the MoLIC diagrams and the application domain. As a result, we have

developed the IMID technique, which allows the inspection of different types of defects

between the MoLIC diagrams and the application requirements.

3.2 Threats to validity and limitations

During the analysis, we tried to mitigate the “researcher bias” about the interpretation

of the software engineers’ perceptions. Therefore, to address the threats to valid inter-

pretation of the results, the questions regarding the set of practical activities and IMID

were formulated to encourage the interviewees to express his/her own opinion. In

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 19 of 23

addition, we discuss the validity threats according to the classification provided by

Wohlin et al. (2000). We analyzed the following threats that may affect the validity of

the results from this experience report, which are:

� Internal validity

The expectation of the software engineer responsible for the MoLIC diagrams regard-

ing the benefits of carrying out interaction modeling: This may have influenced the de-

signer responsible for building the MoLIC diagrams to obtain positive results in the

design phase. However, we emphasize that none of the team’s designers had any rela-

tionship with the authorship of the MoLIC diagrams. In addition, the lessons learned

were codified by a team member who had not participated in the development of the

MoLIC diagrams. Therefore, the results of the lessons learned address only the team’s

conclusion for each Sprint.

� External validity

MoLIC diagrams as a basis artifact for the development of other artifacts for a mobile

application: It is not possible to state that the same benefits can be generalized to dif-

ferent types of applications, such as web or desktop. It is important to understand the

use of diagrams for different types of applications. However, the focus on this research

is to increase the understanding of the user-centered techniques in the software

development.

� Conclusion validity

Small sample: Regarding the analysis and design team, these results were obtained

from a single team. Therefore, the results are not generalizable, but are considered valid

for the project context.

4 Conclusions
This paper described a research about the analysis and design team with user-centered

techniques, such as personas, scenarios and interaction modeling. In this research, indus-

try and academy worked together for the development of a mobile application. On the

analysis phase, the personas and scenarios provided the understanding of the users of the

HCDP application and the extraction of its requirements. In the design phase, the inter-

action modeling provided the team with the necessary understanding of the system inter-

action alternatives for the users. Therefore, we used the interaction modeling as a basis

for the development of other required artifacts of the application. Based on our research,

we suggest this set of practical activities for the analysis and design of user-centered sys-

tems in Software Engineering. This set of practical activities can help the software engi-

neers regarding the quality in use of applications and the development of other artifacts.

Regarding interaction modeling, we highlight its use at the beginning of the design.

During Sprint 2 there was a lot of rework in the correction of the inconsistencies

among the artifacts developed based on the requirements, use case diagram and sce-

nario. The rework in Sprint 2 was mitigated through a discussion of the interaction

model when designed by the Sprint 3 team, which was later used as basis for the devel-

opment of the other artifacts in the other sprints. In addition, we suggest inspecting

the interaction models before using them as the basis for the development of other

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 20 of 23

artifacts. To do so, we developed a technique for Inspecting MoLIC Interaction Dia-

grams (IMID) based on the defects that impaired the understanding of the information

from the MoLIC diagrams. This technique has proven to be feasible for the inspection

of the HCDP diagrams and may help to reduce the propagation of software defects.

Our main contribution with this paper is to present the results obtained with the set

of practical activities for the analysis and design of user-centered systems and the IMID

technique for inspection of defects in interaction models. We expect that the set of

practical activities and the IMID technique become widely adopted by software engi-

neers for understanding the user in the software development. Although there is a

small learning curve for practitioners that have no knowledge of personas, scenarios

and interaction modeling, the benefits of the set of practical activities provide the de-

velopment of user-centered applications and a better team communication. With this

understanding, it is possible to develop software focused on the quality in use and with

greater acceptance of the users.

In future applications, it is important to understand the artifacts of the design phase

that may contain redundancies in the representation of information to understand the

artifacts necessary for the development of high quality software. However, we stress

that all of the elaborated artifacts in the design phase of the HCDP application were re-

quested by the management team. In addition, it is also important to understand other

technologies that are used for a better understanding of the software, based on the

identified requirements.

Abbreviations
HCDP: Home Care Development Project; IMID: Inspecting MoLIC Interaction Diagrams; MoLIC: Modeling Language for
Interaction as Conversation; UML: Unified Modeling Language

Acknowledgments
We thank the cooperation project among the Federal University of Amazonas, Pontifical Catholic University of Rio
Grande do Sul and Samsung Research Brazil. We acknowledge the financial support granted by the Large Scale
Qualification Program on MOBILE Technologies, which is supported by Samsung Electronics of Amazonia Ltda, under
the terms of the Information Technology Law 8387/91; and FAPEAM project: 062.00578 / 2014.

Funding
The financial support was granted by “Large Scale Qualification PROgram on MOBILE Technologies”, which is
supported by Samsung Electronics of Amazonia Ltda, under the terms of Information Technology Law 8387/91.

Availability of data and materials
We do not provide data because the HCDP application deals with confidential information.

Authors’ contributions
Authors participate in drafting the paper and study case execution. We following describe the name of the authors
who contributed in this research: Study Case Execution - AL, NV, BM, RZ and TC. Data Collection - AL, NV and BM. Data
Analysis and Interpretation - AL, NV, BM, RZ and TC. Drafting of manuscript - AL, NV, BM, RZ and TC. Critical review of the
case study and paper - RZ - Project manager of the Management team (Samsung Research Brazil) and TC - Project
manager of the Analysis and Design team (Federal University of Amazonas). All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 21 of 23

Author details
1USES Research Group, Instituto de Computação – Universidade Federal do Amazonas, Av. General Rodrigo Octávio,
6200, Coroado I –, Manaus, Amazonas, Brazil. 2Samsung Research Brazil, Av. Cambacica, 1200 - Building 1, Parque
Resedás - Campinas, São Paulo, Brazil.

Received: 25 April 2017 Accepted: 13 April 2018

References
Aoyama M (2015) Persona-scenario-goal methodology for user-centered requirements engineering. In: Proceedings of

the 15th IEEE international requirements Engineering Conference, pp 185–194
Aurum A, Petersson H, Wohlin C (2002) State-of-the-art: software inspection after 25 years. Journal of Software, Testing,

Verification And Reliability 12(3):133–154
Bano M, Zowghi D (2015) A Systematic Review on the Relationship Between User Involvement and System Success. Inf

Softw Technol 58(1):148–169
Barbosa SDJ, Paula MG (2003) Designing and evaluating interaction as conversation: a modeling language based on

semiotic engineering. In: Interactive systems. Design, specification and verification, 10th DSV-IS workshop, pp 16–33
Benner KM, Feather MS, Johnson WL, Zorman LA (1993) Utilizing scenarios in the software development process. In:

Proceedings of the working conference on information system development process, pp 117–134
Bueno A, Barbosa S (2007) Using an interaction-as-conversation diagram as glue language for HCI design patterns on

the web. In: Proceedings of the tasks models and diagrams for users Interface design, pp 122–136
Carroll JM, Rosson MB (1992) Getting around the task-artifact cycle: how to make claims and design by scenario. ACM

Trans Inf Syst 10(2):181–212
Castro JW, Acuña ST, Juristo N (2008) Enriching requirements analysis with the personas technique. In: Proceedings of

the international workshop on: interplay between usability evaluation and software Development, pp 13–18
Choma J, Zaina LA, da Silva TS (2016) SoftCoDeR approach: promoting software engineering academia-industry

partnership using CMD, DSR and ESE. Journal of software engineering research and Development 4(1):8–28
Cooper A (1999) The inmates are running the asylum. Sams Publishing Company, Indianapolis
Czopik J, Košinár MA, Štolfa J, Štolfa S (2014) Formalization of Software Process Using Intuitive Mapping of UML Activity

Diagram to CPN. In: Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing
and Applications (IBICA 2014), pp 365–374

De França BB, Ribeiro TV, Santos PSM, Travassos GH (2015) Using focus Group in Software Engineering: lessons learned
on characterizing software Technologies in Academia and Industry. In: Proceedings of the 18th Conferencia
Iberoamericana en software engineering (CIbSE 2015), pp 351–364

De Mello RM, Teixeira EN, Schots M, Werner CML, Travassos GH (2014) Verification of software product line artefacts: a
checklist to support feature model inspections. Journal of Universal Computer Science 20(5):720–745

Fagan ME (1976) Design and code inspections to reduce errors in Program development. IBM J Res Dev 15(3):182–211
Fernandez A, Abrahão S, Insfran, Matera M (2012) Further analysis on the validation of a usability inspection method for

model-driven web development. In: Proceedings of the ACM-IEEE international symposium on empirical software
engineering and measurement (ESEM '12), pp 153–156

Ferreira BM, Barbosa SDJ, Conte T (2016) PATHY: using empathy with personas to design applications that meet the users.
In: Proceedings of the 18th international conference on human-computer interaction (HCI, I2016), pp 153–165

Ferreira BM, Santos G, Conte T (2017) Identifying possible requirements using personas - a qualitative study. In:
Proceedings of the 19th international conference on Enterprise information systems (ICEIS 2017), vol 64-75, p 2017

Hron M, Obwegeser N (2018) Scrum in practice: an overview of Scrum adaptations. In: Proceedings of the 51st Hawaii
International Conference on System Sciences (HICSS 2018), pp 5445–5454

Lombriser P, Dalpiaz F, Lucassen G, Brinkkemper S (2016) Gamified requirements engineering: model and
experimentation. In: Proceedings of the 22nd international working conference on requirements engineering:
Foundation for Software Quality, pp 171–187

Lopes A, Marques AB, Barbosa SDJ, Conte T (2015) Evaluating HCI design with interaction modeling and prototypes: a
case study. In: Proceedings of International Conference on Enterprise Information Systems, pp 79–87

Lopes A, Valentim N, Ferreira BM, Zilse R, Conte T (2017) TR-USES-2017-0008. A Technique for Inspecting MoLIC
Interaction Diagrams. USES Research Group Technical Report. Available: http://uses.icomp.ufam.edu.br/wp-content/
uploads/2016/02/TR-USES-2017-0008.pdf

Luna ER, Panach JI, Grigera J, Rossi G, Pastor O (2010) Incorporating usability requirements in a test/model-driven web
engineering approach. Journal of Web Engineering 9(2):132–156

Marques AB, Barbosa SDJ, Conte T (2016) A comparative evaluation of interaction models for the design of interactive
systems. In: Proceedings of the 31st annual ACM symposium on applied computing (SAC '16), pp 173–180

Marques AB, Barbosa SDJ, Conte T (2017) Defining a notation for usabilityoriented interaction and navigation modeling
for interactive systems. SBC Journal on interactive systems 8(2):35 - 49

Mashapa J, Chelule E, Greunen V, D e Veldsman A (2013) Managing user experience–managing change in. Human-Computer
Interaction, INTERACT, pp 660–677

Meixner G, Paternò F, Vanderdonckt J (2011) Past, present, and future of model-based user Interface development.
I-com – journal of interactive. Media 10(3):2–11

Misra S, Fernández L, Colomo-Palacios R (2014) A simplified model for software inspection. In: Journal of software:
evolution and process, 26(12), pp 1297–1315

Qazi AM, Shahzadi S, Humayun M (2016) A comparative study of software inspection techniques for quality
perspective. In: International journal of modern education and computer science, 10 (1), pp 9–16

Rabelo J, Viana D, Santos G, Conte T (2014) Using PABC-standard to code the knowledge: an experimental study. In:
Proceedings of the 8th Brazilian software quality symposium (in portuguese), pp 1–15

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 22 of 23

http://uses.icomp.ufam.edu.br/wp-content/uploads/2016/02/TR-USES-2017-0008.pdf
http://uses.icomp.ufam.edu.br/wp-content/uploads/2016/02/TR-USES-2017-0008.pdf

Sangiorgi U, Barbosa SDJ (2009) MoLIC Designer: Towards Computational Support To HCI Design with MoLIC. In: roceedings
of the 1st ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2009), pp 303–308

Scrum Alliance (2016) http://www.scrumalliance.org/, Accessed 25 Mar 2017
Silva B, Aureliano V, Barbosa SDJ (2006) Extreme designing: binding sketching to an interaction model in a streamlined

HCI design approach. In: Proceedings of the VII Brazilian symposium on human factors in computing systems
(IHC’06), pp 101–109

Sima WW, Brouseb P (2015) Developing ontologies and persona to support and enhance requirements engineering
activities – a case study. Procedia Computer Science 44(1):275–284

Souza LG, Barbosa SDJ (2015) Extending MoLIC for collaborative systems design. In: Proceedings of the 17th
International Conference on Human-Computer Interaction, pp 271–282

Susman GI, Evered RD (1978) An assessment of the scientific merits of action research. Adm Sci Q 23(4):582–603
Taba NH, Siew HO (2012) A scenario based model to improve the quality of software inspection process. In: Proceedings of

the 4th international conference on computational intelligence, modelling and simulation (CIMSIM '12), pp 194–198
Trætteberg H (2008) Integrating dialog modeling and domain modeling – the case of Diamodl and the eclipse

modeling framework. Journal of Universal Computer Science 14(19):3265–3278
Travassos GH, Shull F, Carver J (2001) A software design process based on inspections for the unified modeling

language. Advances in. Computer 54(1):35–98
Valentim NMC, Rabelo J, Oran AC, Marczak S, Conte T (2015) A controlled experiment with usability inspection

techniques applied to use case specifications: comparing the MIT 1 and the UCE techniques. In: Proceedings of the
18th international conference on model driven engineering languages and systems, (MODELS 2015), pp 206–215

Wohlin C, Aurum A (2014) Towards a decision-making structure for selecting a research Design in Empirical Software
Engineering. Empir Softw Eng 20(6):1427–1455

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software engineering: an
introduction. Kluwer Academic Publishers, Norwell

Lopes et al. Journal of Software Engineering Research and Development (2018) 6:5 Page 23 of 23

http://www.scrumalliance.org

	Abstract
	Introduction
	Case description
	Discussion and evaluation
	Conclusions

	Background
	Case Description
	Background on the user-centered techniques to analyze and design an application
	Developed application and practices adopted for the development of artifacts in the analysis and design phases
	Activities of the analysis phase of the development process of the HCDP application
	Activities of the design phase of the development process of the HCDP

	A technique for inspecting MoLIC interaction diagrams

	Discussion and evaluation
	Related work
	Threats to validity and limitations

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

