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Abstract

Background: Extended Finite State Machines (EFSMs) provide a powerful model for
the derivation of functional tests for software systems and protocols. Many EFSM based
testing problems, such as mutation testing, fault diagnosis, and test derivation involve
the derivation of input sequences that distinguish configurations of a given EFSM
specification.

Method and Results: In this paper, a method is proposed for the derivation of a
distinguishing sequence for two explicitly given or symbolically represented, possibly
infinite, sets of EFSM configurations using a corresponding FSM abstraction that is
derived based on finite sets of predicates and parameterized inputs. An abstraction
function that maps configurations and transitions of the EFSM specification to
corresponding abstract states and transitions of the abstraction FSM is proposed.
Properties of the abstraction are established along with a discussion on a proper
selection of the sets of predicates and parameterized inputs used while deriving an
FSM abstraction. If no distinguishing sequence is found for the current FSM abstraction
then a refined abstraction is constructed by extending the sets of predicates and
parameterized inputs. Simple heuristics for the selection of additional predicates are
discussed and application examples are provided.

Conclusions: The work can be applied in various domains such as EFSM-based test
derivation, mutation testing, and fault diagnosis.

Keywords: Model based conformance testing, Mutation testing, Model transformation,
Extended finite state machines, Predicate abstraction, Distinguishing sequences

1 Introduction, background and related work
Model based test derivation is now widely used for deriving functional tests for various

systems including communication protocols and other reactive systems. Several ap-

proaches have been proposed for deriving conformance tests when the system specifi-

cation is represented by an Extended Finite State Machine (EFSM) (Bochmann &

Petrenko 1994; Bourhfir et al. 2001; Cavalli et al. 2003; Ramalingom et al. 2003;

El-Fakih et al. 2003; Petrenko et al. 2004; El-Fakih et al. 2008; Sugeta et al. 2004;

Jia & Harman 2011; Keum et al. 2006; Wong et al. 2009). The EFSM model extends

the classical (Mealy) Finite State Machine (FSM) model with input and output parameters,

context variables, operations (or update functions) and predicates (or guards) defined over
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context variables and input parameters. The EFSM model is used as the underlying model

for a number of popular specification techniques, such as Statecharts (Harel & Naamad

1996), SDL (ITU-T 1994) and UML (OMG 2002). EFSM based related testing problems,

test derivation approaches, and applications domains are given in several papers such as

(Bochmann & Petrenko 1994; Bourhfir et al. 2001; Cavalli et al. 2003; Ramalingom et al.

2003; El-Fakih et al. 2003; Petrenko et al. 2004; El-Fakih et al. 2008; Sugeta et al. 2004; Jia &

Harman 2011; Keum et al. 2006; Wong et al. 2009). Furthermore, an extension of the EFSM

model to specify and test timed systems is considered in (Merayo et al. 2008).

In one way or another, almost all related work for EFSM based test derivation relies on

distinguishing two or more configurations of the specification EFSM. A configuration of an

EFSM is a pair of a (control) state and a valuation of the context variables (called context).

In this paper, we consider the problem of deriving input sequences that distinguish

two, possibly infinite, sets of configurations of the specification EFSM. A sequence de-

fined over (parameterized) inputs of an EFSM is a distinguishing sequence for two sets

of configurations if this sequence is defined for each configuration and the output re-

sponses to this sequence for each pair of configurations of different sets are different.

Our work can be used in various EFSM based testing problems. For instance, in test der-

ivation, checking if a transition of the black-box Implementation Under Test (IUT) transfers

wrongly from a current state involves distinguishing a next reference configuration from

some other configurations of the specification EFSM as described in (Bochmann &

Petrenko 1994; Bourhfir et al. 2001; Ramalingom et al. 2003; Petrenko et al. 2004; El-Fakih

et al. 2008). The set of configurations that one would like to distinguish from a given config-

uration is called a “black-list” of “suspicious configurations” in (Petrenko et al. 2004). The

work can also be applied to EFSM based mutation testing to distinguish the initial configur-

ation of a given specification machine from the initial configuration of a mutant EFSM de-

rived from the specification, with respect to some selected types of faults as described in

(Bochmann & Petrenko 1994). Further, if the initial configuration is unknown or the reset

input is not reliable then the work can be applied for distinguishing the set of possible initial

configurations of the specification machine and the set of configurations of their possible

mutants. Another application is the fault localization using approaches similar to those in

(El-Fakih et al. 2003; Ghedamsi et al. 1993). In this case, given an EFSM specification, an ini-

tial test suite derived against this specification and a faulty EFSM implementation under test

(IUT), a set of possible so-called candidates can be derived using the given specification

and observed behavior of the IUT to the test suite. Afterwards, the method given in this

paper can be used for deriving distinguishing sequences, called diagnostic tests, that when

applied to the IUT can eliminate the candidates that do not behave as the IUT and thus,

eventually locate the faulty candidate with a behavior similar to that of the given IUT.

Here we summarize closely related work on distinguishability. As an EFSM can be

regarded as a condensed version of an FSM, an EFSM can be unfolded to an equivalent

FSM by expanding inputs and states with the values of input parameters and context

variables when all the domains are finite. Thus, generally speaking, deriving a sequence

that distinguishes two EFSM configurations can be done by unfolding the EFSM speci-

fication into an equivalent FSM and then deriving a distinguishing sequence for the

corresponding FSM states. However, this approach is practically impossible due to the

state explosion problem. Furthermore, this approach cannot be applied when the EFSM

specification cannot be unfolded into an equivalent FSM since the domains of some
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variables and/or input parameters of the specification are infinite. Accordingly, some

model checking techniques have been tailored and used for solving distinguishability

problems at the EFSM level using appropriate product machines (Wang et al. 1994;

Cho et al. 1991; Clatin et al. 1995; Fernandez et al. 1996; Okun et al. 2002). In all these

works, a product of two machines (Petrenko et al. 2004) has been used, where one of

these machines represents a given specification while the other represents a faulty IUT

derived by either mutating the given specification to reveal a certain type of faults or is

derived by a test engineer to satisfy a test purpose. The concept of a product machine

is used and extended in (Petrenko et al. 2004) to handle distinguishing one EFSM con-

figuration from a black-list of several “suspicious” configurations. More precisely, in

(Petrenko et al. 2004), a method is given for computing so-called configuration identifi-

cation sequences that can distinguish two configurations of a given EFSM. The deriv-

ation of these sequences is done by deriving a special product EFSM, called a

distinguishing machine, where for two given configurations of two EFSMs M and N,

the product machine starting from the pair of given configurations contains the com-

mon and uncommon behavior, i.e. parameterized input/output sequences or traces, of

M and N. In the distinguishing machine, uncommon behavior terminates at designated

states with a fail component. An input sequence that takes the distinguishing machine

to a fail state is a distinguishing sequence for the two initial configurations. The work

can also be applied to distinguishing one configuration of a deterministic EFSM from a

set of suspicious configurations of a possibly non-deterministic EFSM. However, in this

case, many product machines, depending on the number of suspicious configurations,

have to be constructed and this is cumbersome when the number of suspicious config-

urations is not small. In addition, in fact, there is a need to determine the parameter-

ized input sequence (with input parameters values) that can be used to take the

distinguishing machine into a fail state. This problem by itself is not trivial for EFSMs;

a process for determining such a sequence may have to be repeated many times until

an executable input sequence to a fail state is derived. Moreover, opposed to the work

presented in this paper, the above listed approaches for distinguishing EFFSM configura-

tions are based on deriving product machine(s) and cannot be applied when the set of

suspicious configurations is infinite and/or symbolically described over the EFSM context

variables. We note that in the context of testing from Labeled Transitions Systems, the

construction of models that can treat data (or/and time) symbolically is done in several

papers, see for example in (Rusu et al. 2000) and (Andrade & Machado 2013).

The work presented in this paper can be regarded as another extension to solving the

distinguishability problem at the EFSM level; however, employing a different verifica-

tion technique than that used by other related work, namely, predicate abstraction

(Graf & Saidi 1997). This special form of abstraction was introduced by Graf and Saidi

in (Graf & Saidi 1997) for constructing a finite state abstraction from a large or an in-

finite system using a finite set of predicates and this abstraction has been used in vari-

ous verification tools to analyze software, hardware, and high-level protocols (see e.g.

(Das 2003)). Generally speaking, in many cases, the number of suspicious configura-

tions in a black-list can be large or even infinite; for example, testing a transfer fault re-

quires a black-list of at least (n – 1) suspicious configurations, where n is the number

of states of the given EFSM specification. A transition of an EFSM (implementation)

has a transfer fault if it transfers to a state different than the specified one. In addition,
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in some cases, it is necessary to distinguish not only one configuration from a set of

many configurations; but two sets of many configurations. This happens, for example,

in EFSM based fault diagnosis (El-Fakih et al. 2003) where different types of faults are

considered, such as transfer and predicate faults. Diagnosing if an IUT has a transfer or

predicate fault requires in fact distinguishing two sets of configurations, namely, one

for transfer faults and another for predicate faults. Furthermore, in some situations, the

list of suspicious configurations may not be explicitly given, for example, it can be sym-

bolically specified as predicates by a test engineer knowing a given test purpose. In this

case, existing EFSM-based methods for distinguishing configurations cannot be applied

when finite or infinite sets of configurations are described symbolically.

Predicate abstraction and our contribution: The method proposed in this paper is

based on using abstraction techniques which nowadays are widely used for formal soft-

ware verification (see e.g. (Graf & Saidi 1997; Bensalem et al. 1992; Clarke et al. 1994;

Dams et al. 1994; Long 1993)). In general, abstraction is used as a proof technique,

where a concrete, possibly infinite, system is first simplified or transformed into a finite

abstract system and properties of the concrete system can be classified by examining

the smaller abstract one. Thus, abstraction techniques are used as prominent ap-

proaches for addressing the state explosion problem (Graf & Saidi 1997; Bensalem et

al. 1998) and correspondingly seem also to be useful for solving the problem of distin-

guishing large or possibly infinite sets of configurations tackled in this paper.

Here we aim at solving the distinguishability problem, for two sets of configurations,

using predicate abstraction and refinement as follows: given two disjoint possibly infin-

ite sets of configurations of a given EFSM specification where configurations of each

set can be explicitly enumerated or can be symbolically specified by predicates, we first

derive an FSM abstraction using a proposed abstraction function, and then show that a

distinguishing sequence, called a separating sequence in (Starke 1972), derived for the

corresponding sets of abstract states of the abstraction FSM (if such a sequence exists)

is a distinguishing sequence for the given sets of configurations. The abstraction func-

tion maps configurations of the EFSM into abstract states of the abstraction FSM using

a finite set of predicates and a finite set of selected input parameter valuations. We dis-

cuss how such sets can be derived and establish properties of the abstraction FSM and

the relationship between traces of the given EFSM and its FSM abstraction. The ab-

straction function is derived in such a way that if a separating sequence exists for ap-

propriate sets of states of the abstraction FSM then there is no need to run or simulate

the obtained sequence at the given configurations to assess distinguishability. When

there is no separating sequence for the sets of abstract states of an abstraction FSM, we

refine the current FSM abstraction and try to find such a sequence using the refined

abstraction. Two approaches for refining an abstraction FSM are considered, in particu-

lar, we consider predicate and input refinement. Predicate refinement is carried out by

expanding the set of predicates and then deriving a refined FSM abstraction using the

expanded set. Predicate refinement reduces non-determinism in an abstraction FSM

and thus, increases the chance of the existence of a separating sequence. The relation-

ship between traces of a current abstraction FSM and its refined version is studied.

The paper is organized as follows. Section 2 describes the EFSM and FSM models.

Section 3 contains the abstraction function with related propositions and Section 4 in-

cludes an algorithm for distinguishing configurations of an EFSM. Predicate
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refinements of an abstraction are proposed in Section 5. Section 6 discusses limitations

of the proposed work and Section 7 concludes the paper.

2 Preliminaries
In this paper, we study the distinguishability problem for configurations of an Extended

Finite State Machine (EFSM) using a corresponding abstraction Finite State Machine

(FSM). Accordingly, in the following, a description of these models with related notions

used in the paper is provided.

2.1 Extended FSM model

Let X and Y be finite sets of inputs and outputs, R and V be finite disjoint sets of input pa-

rameters and context variables. For x ∈ X, Rx⊆ R denotes the set of input parameters and DRx

denotes the set of valuations of the parameters over the set Rx. The set DV denotes the set of

context variable valuations. A context variable valuation is denoted as vector v, where v ∈ DV.

The sets Rx and DV can be infinite. Definitions 1 to 4 given below are related to

EFSMs and they are mostly adopted from (Petrenko et al. 2004).

Definition 1: An EFSM M over X, Y, R,V with the associated valuation domains is a

pair (S, T) where S is a finite non-empty set of states, including the designated initial

state, and T is the set of transitions between states in S, such that each transition t ∈ T

is a tuple (s, x, P, y, up, s′), where:

s and s′ are the start and final states of the transition t,

x ∈ X is the input of transition t,

y ∈ Y is the output of transition t,

P and up are functions defined over context variables V and input parameters as

follows:

P : DRx ×DV→ {True (or 1), False (or 0)} is the predicate (or the guard) of the transi-

tion t,

up : DRx ×DV→DV is the context update function of transition t.

A transition can have the trivial guard that is always True; in this case, we say that

the transition has no guard. An input x can have no parameters; in this case, Rx =∅,

DRx = {⊥}, and the input (x, ⊥) is simply denoted by (x) or x. If x is non-parameterized

then corresponding predicates are defined only over DV.

Definition 2: A context variable valuation v ∈ DV is called a context of M. A configur-

ation of M is a tuple (s, v) where s is a state and vector v is a context.

An EFSM operates as follows. Assume that EFSM is at a current configuration (s, v)

and the machine receives an input (x, px) such that (v, px) satisfies the guard P of an

outgoing transition t = (s, x, P, op, y, up, s′). Then the machine being at (s, v), upon re-

ceiving the input (x, px), executes the update statements of t; produces the (parameterized)

output where parameter values are provided by the output parameter function op, and

moves to configuration (s′, v′), where v′ = up(px, v). Thus, a transition can be represented

as (s, v) - (x, px)/(y, py)→ (s′, v′), where op(px, v) = (y, py). Such a transition can also be

written as ((s, v), (x, px), (y, py), (s′, v′)). The machine usually starts from a designated initial

configuration which contains the designated initial state and initial context variable valuation.

Example 1. We illustrate the notion of an EFSM and how it operates through a simple

example. Consider the EFSM M1 given in Fig. 1 which is defined over state set S = {1, 2},
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inputs a and b, i.e. X = {a, b}, where b is non-parameterized and input a is parameterized

with the integer parameter with value a.i, outputs 0 and 1, i.e. Y = {0, 1}. The set of context

variables V = {z} and in this example, we assume that DV (domain of the variable z) is the

set of all non-negative integers. The set of input parameters Ra and we assume that the do-

main DRa (domain of the input parameter i) is the set of all non-negative integers, DRb = {⊥}
as b is non-parameterized. Hereafter, for a parameterized input say a, we let a(0) or (a, 0)

denote the fact that the machine receives the input a with the parameter value a.i = 0. The

machine has four transitions. For example, it has t1 = (1, a, 1 ≤ a.i ≤ 4, 0, z := z + 1, 2) with

states 1 and 2 as start and final states, respectively, the guard (predicate) 1 ≤ a.i ≤ 4, and vari-

able update z: = z + 1. The machine has a transition with the guard (predicate) even(z)

which is 1 (True) iff the value of context variable z is even; otherwise, the guard even(z) is 0

(False). Another transition has the guard odd(z) which equals 1 iff z is odd; other-

wise, the predicate equals 0. Assume that (1, z = 0) is a current configuration of

the EFSM and the machine receives a parameterized input a(i), then the machine

checks the predicates of outgoing transitions from state 1 that are satisfied for the

current configuration under the input a with parameter value a.i. If the received

value a.i = 3, then the machine checks predicates 1 ≤ a.i ≤ 4 of t1 and a.i ≥ 5 of t2.

As 1 ≤ a.i ≤ 4 holds, transition t1 is executed according to the context update func-

tion z := z + 1 with output 0, and the machine moves from state 1 to the final state 2 as

specified by t1. In fact, the machine moves from configuration (1, z = 0) to configuration

(2, z = 1).

Definition 3: An EFSM M is:

� predicate complete if, for each transition t, every element in DRx ×DV evaluates to

True at least one predicate of the set of all predicates guarding transitions with the

same start state and input as t;

� input complete if, for each pair (s, x) in S × X, there exists at least one transition

leaving state s with input x;

� deterministic if any two transitions outgoing from the same state with the same

input have mutually exclusive predicates.

Hereafter, we consider input complete, predicate complete and deterministic EFSMs.

This class of EFSMs covers almost all the known types of EFSMs studied in the context

of testing (Petrenko et al. 2004).

Fig. 1 EFSM M1
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Definition 4: Given input x and the possibly empty set DRx of input parameter

valuations, a parameterized input (or an input) is a tuple (x, px), where px ∈ DRx.

Recall in case Rx =∅, DRx = {⊥}, and the input (x, ⊥) is denoted as x. A sequence of

parameterized inputs is called a (parameterized) input sequence. An (parameterized)

output sequence can be defined in a similar way.

Consider the machine in Fig. 1 with the set {a, b} of inputs, where a is parameterized

and the domain of its input parameter DRa is the set of all non-negative integers and b

is non-parameterized, DRb = {⊥}. The sequence (a, 3) b b (a, 5) is an input sequence of

the machine.

By definition, for a deterministic predicate and input complete EFSM M, for

every state s ∈ S, input x ∈ X, (possibly empty) input parameter valuation px ∈
DRx, and context valuation v ∈ DV, there exists one and only one guard P defined

at outgoing transitions of s under the input x, such that P(px, v) is True. Thus, for

each configuration (s, v) and each (parameterized) input (x, px), there is only one

transition from the configuration (s, v) under (x, px) and for each (parameterized)

input sequence α there exists exactly one output sequence β such that α/β is a

trace at (s, v).

Definition 5: Given a parameterized input sequence that sometimes is simply

called an input sequence α, configurations c of EFSM M and c′ of EFSM N are

distinguishable by α if the output sequences produced by M and N at configurations

c and c′ in response to α are different. The sequence α is called a sequence distin-

guishing c and c′.

Given the EFSM M1 in Fig. 1, the two configurations (2, z = 3) and (2, z = 4) are dis-

tinguishable by the input sequence (a, 1). Actually, they are distinguishable by any in-

put sequence (a, i) with any value of i.

Definition 6: Two sets of configurations C of the EFSM M and C′ of EFSM N

are distinguishable if there exists an input sequence α that distinguishes each pair (c,

c′), c ∈ C and c′ ∈ C′; in this case, we say that the sequence α distinguishes sets C

and C′.

Given EFSM M1 (Fig. 1) and the two (infinite) sets of configurations {(1, z): z is

odd} and {(1, z): z is even}, any two configurations of different sets are distinguish-

able by the input sequence (a, 5) (a, 1). As another example, consider the sets of

configurations {(s, z): z is odd} and {(s, z): z is even}, s = {1, 2}. The sequence (a, 5)

(a, 1) (a, 1) distinguishes any two configurations of these two sets.

Definition 7: Given a configuration (s1, v) of EFSM M, an Input/Output (I/O)

sequence σ = (x1, px1)/y1….. (xl, pxl)/yl is a trace at configuration (s1, v), written

(s1, v) -σ ->, if there exists a (sl, vl) such that σ takes the M from (s1, v) to (sl,

vl), written (s1, v) -σ - > (sl, vl). In other words, in M there exists a sequence of

transitions (s1, v1) - (x1, px1)/(y1, py1) - (s2, v2) - > (s2, v2) - (x2, px2)/(y2, py2) -

(s3, v3) …- > (sl-1, vl-1) - (xl, pxl)/(yl, pyl) - (sl, vl). The (parameterized) input pro-

jection α of a trace σ is α = σ↓X = (x1, px1)…. (xl, pxl) and the output projection of

σ is the output sequence (y1, py1)(y2, py2) ….. (yl, pyl).

Given EFSM M1 (Fig. 1), there is the sequence of transitions (1, z = 0) – b/1 - (1, z = 0)

- > (1, z = 0) - (a, 3)/1 - (1, z = 3) - > (1, z = 3) – (a, 7)/0 - (1, z = 4) at configuration (1, z = 0);

thus, b/1 (a, 3)/1 (a, 7)/0 is a trace at the configuration (1, z = 0) with the input projection b

(a, 3) (a, 7) and the output projection 1 1 0.
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2.2 FSM model

A finite state machine (FSM) or simply a machine, is a 5-tuple 〈S, s1, I, O, hS〉, where S is a

finite nonempty set of states with s1 as the initial state; I and O are finite input and output

alphabets; and hS⊆ S × I ×O × S is a behavior relation. The behavior relation defines all pos-

sible transitions of the machine. Given a current state sj and an input symbol i, a 4-tuple (sj, i, o,

sk) ∈ hS represents a possible transition from state sj under the input i to the next state sk with

the output o. A machine is deterministic if for each pair (s,i) ∈ S × I there exists at most one

pair (o, s′)∈O × S such that (s, i, o, s′) ∈ hS; otherwise, the machine is non-deterministic. If

for each pair (s, i) ∈ S × I there exists (o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS then FSM S is

said to be complete; otherwise, the machine is called partial. FSMs considered in the paper are

complete but can be nondeterministic.

In a usual way, the behavior relation is extended to input sequences I* and output se-

quences O*. Given states s, s′ ∈ S, an input sequence α = i1i2…ik ∈ I* and an output se-

quence β = o1o2…ok ∈ O*, there is a transition (s, α, β, s′)∈hS if there exist states s1 = s,

s2, …, sk, sk+1 = s′ such that (si, ii, oi, si+1) ∈ hS, i = 1, …, k. In this case, the input

sequence α is a defined input sequence at state s. Given states s and s′, the defined input

sequence α can take (or simply takes) the FSM S from state s to state s′ if there exists an

output sequence β such that (s, α, β, s′) ∈ hS. The set out(s, α) denotes the set of all out-

put sequences (responses) that the FSM S can produce at state s in response to a defined

input sequence α, i.e. outS(s, α) = {β : ∃ s′∈S [(s, α, β, s′) ∈ hS]}. The pair α/β, β ∈

outS(s, α), is an Input/Output (I/O) sequence (or a trace) at state s. Given states s and s′,

the I/O sequence α/β can take (or simply takes) the FSM S from state s to state s′ if (s, α,

β, s′)∈hS. Given an I/O sequence σ = α/β, the input projection of σ, written σ↓I, is α.

Given two complete FSMs S = 〈S, I, O, hS〉 and R = 〈R, I, O, hR〉, state s of S and state r of

R are non-separable if for each input sequence α ∈ I* it holds that outS(s, α) ∩ outR(r,

α) ≠∅, otherwise, states s and r are separable. For separable states s and r, there exists an

input sequence α ∈ I* such that outS(s, α) ∩ outR(r, α) =∅, i.e., the sets of output re-

sponses of FSMs S and R at states s and r to the input sequence α are disjoint. In this case,

α is a separating sequence of states s and r or simply α separates s and r. Given complete

FSMs S = 〈S, I, O, h 〉 and R = 〈R, I, O, h 〉, subsets S′⊆ S and R′⊆ R are separable if

there exists an input sequence α that separates each pair (s, r), s ∈ S′ and r′ ∈ R′. The se-

quence α is a separating sequence for the sets S′ and R′.

Consider FSM M2
D in Fig. 5 with the set {a, b} of inputs and the set {0, 1} of outputs. The

two states (1, B, P) and (1, B, ~P) are separable by the input sequence a a. The two sets of

states {(0, B, P), (0, B, ~P)} and {(0, ~B, P), (0, ~B, ~P)} are separable by the sequence a a a,

as in response to a a a at any state of the former set the FSM produces the output sequence

0 0 0 while at any state of the latter set the FSM produces the output sequence 0 0 1. We

note that states (0, ~B, P) and (0, ~B, ~P) are non-separable and the reader can intuitively

check that by observing that under the input a the FSM reaches the same state (1, B, P)

from both states producing the same output 0 and under the input b states are reachable

from each other with the same output 1.

3 A method for distinguishing configurations of an EFSM using an FSM
abstraction
In this section, the problem of distinguishing two disjoint sets of EFSM configurations

is introduced and an FSM predicate abstraction function that maps an EFSM into an
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abstract FSM using given finite sets of predicates and parameterized inputs is pre-

sented. This section also includes a discussion how such sets can be selected with some

application examples.

3.1 Distinguishing sets of configurations: problem definition

In this paper, we tackle the problem of distinguishing two sets of EFSM configura-

tions where these sets can be either explicitly given or symbolically represented by

predicates. As mentioned before, the latter case cannot be handled by existing

related work.

Problem Definition: Given an EFSM M = (S, T) over sets X, Y, R, V, DRx, DV, and

two disjoint sets of configurations C′, C′′⊆ S ×DV of M derive an input sequence

that distinguishes the sets of configurations C′ and C′′. A particular case of this

problem is deriving a distinguishing sequence for two sets where all configurations of

the two sets have the same state. In this case, for disjoint sets C′ = {(s, v): v ∈ Vr}

and C′′ = {(s, v′): v′ ∈ Vt}, it holds that the sets Vr are Vt are also disjoint, i.e., Vr

∩ Vt =∅.

In this paper, we attempt to derive a distinguishing sequence for two disjoint sets C′

and C′′ of configurations of an EFSM M using an abstraction FSM MB of M. In the fol-

lowing subsection we show how such an FSM abstraction can be derived. We also estab-

lish properties of the abstraction FSM; namely, we show that a separating sequence of the

sets of abstract states (when it exists) of an abstraction FSM MB that corresponds to the

given sets of configurations C′ and C′′ of the EFSM M is a distinguishing sequence for

the sets C′ and C′′, i.e., it distinguishes every two configurations c′ and c′′, c′ ∈ C′ and c′′

∈ C′′.

3.2 FSM predicate abstraction of an EFSM

In this section, an FSM predicate abstraction that suites the distinguishability problem

tackled in this paper is proposed. In particular, given an EFSM M and finite sets of

predicates B and parameterized inputs Px, an FSM abstraction is defined using M and

the given sets B and Px and some properties of the abstraction useful for the distin-

guishing problem are established. We also discuss how sets B and Px can be derived.

3.2.1 Defining an abstraction FSM

Definition 8: Given an EFSM M = (S, T) over X, Y, R, V, DRx, DV and a parameterized

input x, select a set Px = {px1, px2… pxl} such that for each state s, each configuration (s,

v) and each outgoing transition from state s under the parameterized input x with the

predicate P, there exists px ∈ Px such that (v, px) satisfies P, written (v, px) | = P. For

EFSM M, we call the parameterized inputs (x, px), px ∈ Px, selected (parameter-

ized) inputs and other (parameterized) inputs (x, px), px ∈ DRx\Px, are non-selected

(parameterized) inputs. In Section 3.2.3, several criteria for a proper selection of a

set Px are discussed.

According to Definition 3, for each input sequence α that contains non-

parameterized inputs and/or parameterized input (x, px) such that px ∈ Px and each

configuration (s, v), there exists exactly one trace with the input projection α at the

configuration (s, v).
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Predicate Abstraction: Given a finite set B of k predicates B1, …, Bk defined over

the set of variables W, we define the finite B-abstraction aB: DW→ {(0, 1)}k with

aB(w) = (b1,…, bk), w ∈ DW, bi ∈ {0, 1}, i = 1 .. k. By definition, bi = 1 iff Bi(w) is

True, i.e., iff w satisfies Bi (written w | = Bi); correspondingly, bi = 0 iff Bi(w) is

False, i.e., iff valuation w does not satisfy Bi (written w | ≠ Bi). We note that the

abstraction aB is finite, since the number of Boolean vectors of length k is finite.

In Section 3.2.1, several ways that can be used for the appropriate selection of the

set B are suggested.

Given a set of parameterized inputs Px and a set of predicates B, an FSM abstraction

MB of the given EFSM specification M is derived as follows:

Definition 9: FSM Predicate Abstraction with Selected Set of Parameterized In-

puts: Given an EFSM M = (S, T) over X, Y, R, V, DRx, DV and a finite set B of k

predicates B1, …, Bk defined over the set V of variables, and for each (parameter-

ized) input x a selected set of (parameterized) inputs Px, a predicate abstraction

FSM MB is defined as the FSM (SB, XB, Y, hB) where

SB = S × ({0, 1}k) is the set of abstract states of the FSM,

XB = {(x, px) | x ∈ X, Rx ≠∅, px ∈ Px}∪{x | x ∈ X, Rx =∅} is the set of abstract inputs,

and

the behavior relation hB is constructed using the two rules given below:

1. For every configuration (s, v) and the predicate P of the outgoing transition (s, x, P,

y, up, s′) from state s under a non-parameterized input x, such that v | = P and up(v) =

v′, i.e., if M has a transition ((s, v), x, y, (s′, v′)), hB includes the (abstract) transition

((s, a), x, y, (s′, a′)), a = aB(v) and a′ = aB(v′).

2. Given a parameterized input x, for every px ∈ Px, every configuration (s, v) and

the predicate P of the outgoing transition (s, x, P, y, up, s′) from state s under

the parameterized input x, such that (v, px) | = P and up(v) = v′, i.e. if M has a

transition ((s, v), (x, px), y, (s′, v′)), h
B includes the (abstract) transition ((s, a),

(x, px), y, (s′, a′)), where a = aB(v) and a′ = aB(v′).

Example 2. As an example, consider the EFSM M2 in Fig. 2 defined over

integer variables w and z, (non-parameterized) inputs a and b and outputs 0 and

1. Assume that B is the predicate (w < 2) and B = {B}, thus ~ B is the predicate

(w ≥ 2). The FSM abstraction M2
B of M2, shown in Fig. 3, is obtained as follows.

Possible abstract states corresponding to state 0 of M2 considering B and ~ B are

(0, B) and (0, ~B). For w = 0 that satisfy B, the outgoing transition from state 0

under the input b with an update statement w := w + 1 is enabled. Executing this

transition the output 1 is produced while the value of w is updated to 1 and the

transition leads to state 0 where B holds (as w = 1 satisfies B). Thus, the abstrac-

tion FSM has the transitions ((0, B), b, 1, (0, B)). For w = 1 that also satisfies B,

the outgoing transition from state 0 under the input b with an update statement

w := w + 1 is enabled. Executing this transition the output 1 is produced while

the value of w is updated to 2 and the transition leads to state 0 where ~ B

holds. Thus, the abstraction FSM has the transition ((0, B), b, 1, (0, ~B)). When

w = 2, which satisfies ~ B, for the input b, executing the transition under b makes

w = 3, which also satisfies ~ B, while moving to state 0. Thus, in the abstraction
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FSM we have the transition ((0, ~B), b, 0, (0, ~B)). Furthermore, any value of

w ≥ 2, which also satisfies ~ B, executing the outgoing transition from state 0 of

M2 under b updates the value of w in such a way that ~ B still holds. Thus, for

all these configurations with w ≥ 2, in the abstraction FSM we have the transition

((0, ~B), b, 0, (0, ~B)).

Now, also at state 0 of M2, for the valuations w = 0 or w =1, with the corre-

sponding abstract state (0, B), under the input a, the transition (0, a, (w ≤ 2), 0,

up, 1), where up contains w := 1, is enabled. Executing this transition leads to state

1 where the value of w is updated to 1 and thus satisfies B. Accordingly in the ab-

straction FSM we have the transition ((0, B), a, 0, (0, B)). At state 0, when w = 2,

which satisfies ~ B, the configuration with w = 2 maps to the abstract state (0, ~B),

and a transition (0, a, (w ≤ 2), 0, up,1) under a where up contains w := 1, is

enabled. Executing this transition leads to state 1 with output 0 and w is updated

to 1 satisfying B. Therefore, the corresponding abstraction FSM has the transition

((0, ~B), a, 0, (1, B)). Configurations with w > 2 satisfy ~ B, and thus for the corre-

sponding abstract state (0, ~B), under the input a the machine executes the

Fig. 3 FSM Abstraction M2
B of M2, B = {B = (w < 2)}

Fig. 2 EFSM M2
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transition (0, a, (w > 2), 0, up, 1), where up contains w := 1. Correspondingly, the

abstraction FSM moves to state 1 producing the output 0. Thus, in the abstraction

FSM we have the transition ((0, ~B), a, 0, (1, B)).

Now, consider state 1 of M2 and a corresponding abstract state (1, B). All transitions

from state 2 to 1 of M2 do not update the value of w, and all other outgoing transitions

from state 2 do not update w. Thus, all configurations from state 2 under the input a

take the machine to state 1 and lead to valuations of w that still satisfy B. Thus, for

state 1, there is the only abstract state (1, B) in the abstraction FSM. At state 1 of M2

for the transition under the input b we have the corresponding abstract transition ((1,

B), b, 1, (1, B)). At state 1, under the input a, the machine produces 0 while moving to

state 2 without updating the value of w, and thus, for all valuations of w, we have the

abstract transition ((1, B), a, 0, (2, B). We also observe that for state 2 of M2, there is

the only corresponding abstract state (2, B). Moreover, at state 2 under input a, if the

value of variable z is even, the machine produces 0 while moving to 2 without updating

w. Thus, we have the corresponding abstract transition ((2, B), a, 0, (2, B)). When z is

odd the machine produces 1 while moving to state 1 without updating w; thus we have

the transition ((2, B), a, 1, (1, B)).

Example 3. As another example, consider EFSM M1 in Fig. 1. Let B be the predicate

(odd(z)), i.e., B(z) = 1 (hereafter for the sake of simplicity, B(z) = 1 is also written as B) if

z is odd and B(z) = 0 (also written as ~ B) if z is even. An abstraction FSM M1
B of M1 de-

rived using B = {B} and selected set of parameterized inputs Pa for a.i = 1, a.i = 5, a.i = 6

is shown in Fig. 4. Example 4 given later illustrates how the items in Pa are selected for

this given example.

Given EFSM M and its abstraction MB, let (s, v) be a configuration of EFSM M. We

denote AB(s, v) the abstract state (s, a) of FSM MB such that a = (B1(v),…, Bk(v)) (also

Fig. 4 FSM Abstraction M1
B of M1, B = {B = odd(z)}
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written A (s, v) when it is not necessary to indicate the use of the set B of predicates)

while using A-1(s, a) (or AB�1
(s, a)) to denote the inverse of (s, a), i.e., the set of all con-

figurations (s, v) such that a = (B1(v), …, Bk(v)).

For the set of configurations C = {(s, v): s ∈ S, v ∈ DV}, we denote A(C) the set

of all abstract states (s, a), ∃ (s, v) ∈ C, A(s, v) = (s, a). We write AB(C) when ne-

cessary to indicate the use of the set B. The notion, A-1(C) (also written AB-1(C)

when necessary) for the set CB = {(s, a); a ∈ {0, 1}|B|} denotes the union of the in-

verse of the union of the inverse over all (s, a) ∈ CB, i.e., the subset of configura-

tions (s, v) of M such that A(s, v) ∈ CB.

An FSM abstraction MB is not unique as it depends on selected sets of parameterized

inputs Px. However, if the set Px is set then by construction, an obtained FSM abstrac-

tion MB is complete under non-parameterized inputs and selected parameterized inputs

of Px but M
B can be non-deterministic. In fact, the following properties hold for an ob-

tained FSM abstraction MB.

Proposition 1:

(1)For each (s, v) and (s′, v′) such that there exists a transition (s, x, P, y, up, s′), where x

is a non-parameterized input, v | = P, v′ = up(v), there exists a corresponding abstract

transition ((s, aB(v)), x, y, (s′, aB(v′))) in MB.

(2)For each configuration (s, v) and each px ∈ Px, such that there exists a transition (s, x,

P, y, up, s′) with parameterized input x, where (v, px) | = P, v′ = up(v, px), there exists a

corresponding (abstract) transition ((s, aB(v)), (x, px), y, (s′, aB(v′)) in hB.

In fact, for each non-parameterized input x there exists a corresponding (ab-

stract) transition ((s, aB(v)), x, y, (s′, aB(v′)) in hB since the EFSM M is input

complete. Furthermore, for each parameterized input x, there exists a corresponding

(abstract) transition ((s, aB(v)), (x, px), y, (s′, aB(v′)) in hB as M is input complete

and according to the choice of Px (Definition 8). Using the induction on the trace

length, the following statement can be established about the relationship between

traces of the initial EFSM M and its abstraction FSM MB.

Proposition 2:

(1)Let σ = (x1, px1)/y1…- > (xl, pxl)/yl- be a trace of EFSM M at configuration (s1, v), i.e.

(s, v) -σ - > .

A trace over non-parameterized and/or some selected parameterized inputs at

configuration (s1, v) of EFSM M is also a trace at the corresponding abstract

state A(s1, v) of FSM MB. However, a trace at the configuration (s1, v) that

has some non-selected parameterized inputs is not a trace at the correspond-

ing abstract state of MB, i.e., the following (a), (b), and (c) statements hold:

a. Given a trace σ at the configuration (s1, v), if the input projection α = x1 …

xl of σ is defined only over non-parameterized inputs, i.e. x1,.., xl are non-

parameterized, then σ is also a trace at state A(s1, v) of an FSM MB,

b. Given a trace σ at the configuration (s1, v), if the input projection α of σ is

defined over selected parameterized and possibly over some non-

parameterized inputs, then σ is a trace at A(s1, v) of the FSM MB.
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c. Given a trace σ at the configuration (s1, v), if the input projection α of σ is

defined over some non-selected parameterized and possibly over some non-

parameterized inputs, then σ is not a trace at state A(s1, v) of M
B.

(2)Given a trace σ = (x1, px1)/y1 (xl, pxl)/yl of the abstraction FSM MB at abstract state

(s1, a), it can happen that for a configuration (s1, v) ∈ A-1(s1, a) of EFSM M, σ is

not a trace at (s1, v).

(3)If σ is a trace at an abstract state (s, a) of FSM MB then at each configuration (s1, v) ∈

A-1(s1, a) of EFSM M, there exists a single trace σ′ with the input projection α. That

is, given a state (s1, a) of an abstraction FSM MB, let σ = (x1, px1)/y1…- > - (xl, pxl)/yl be

a trace at state (s1, a) of FSM MB with the input projection α. Then at each

configuration (s1, v) ∈ A-1(s1, a) of EFSM M, there exists a trace σ′ such that the

input projection of σ′ is α.

Proposition 3: Given two disjoint sets of configurations C′ and C′′ of EFSM M and

their corresponding sets of abstract states S′ = A(C′) and S′′ = A(C′′) of an abstraction FSM

MB. If α is a separating sequence for the sets S′ and S′′, then α is a distinguishing sequence

for the sets C′ and C′′ of M. That is, α is a distinguishing sequence for each pair of config-

urations (s, vr) and (s′, vu) of M such that A(s, vr) ∈ S′, A(s′, vu) ∈ S′′.

Proof. Given two disjoint sets of configurations C′ and C′′ of EFSM M, let α be a separ-

ating sequence for corresponding sets of abstract states S′ =A(C′) and S′′ =A(C′′) of an ab-

straction FSM MB. Consider two configurations (s′1, v′) ∈ C′ and (s′′1, v′′) ∈ C′′. Also

consider the sets Tr1 of all traces at state (s′1, a′) =A(s′1, v′) and Tr2 at state (s′′1, a′′) =A(s′′1, v

′′) with the input projection α. The sets of output projections of traces of Tr1 and Tr2 are dis-

joint, since α is a separating sequence for states (s′1, a′) and (s′′1, a′′) of M
B. Due to the defin-

ition of the abstraction FSM, α can have only non-parameterized inputs and/or parameterized

inputs (x, px) where px ∈ Px. According to Definition 8, for the sets of traces TrM1 at state (s′

1, v′) ∈ C′ and TrM2 at (s′′1, v′′) ∈ C′′ with the input projection α it holds that TrM1⊆Tr1
and TrM2⊆Tr2. Since the sets Tr1 and Tr2 do not intersect, the sets of output responses at

states (s′1, v′) and (s′′1, v′′) to α are different, and thus α is a distinguishing sequence of these

two configurations.

By definition of a separating sequence, if the sets S′and S′′ intersect then there is no a

separating sequence for these sets. We further describe how the set of predicates B is de-

rived using the initial sets of configurations of C′ and C′′ of EFSM M in such a way that

the corresponding abstract states S′ and S′′ are disjoint. In fact, a distinguishing sequence

for C′ and C′′ derived using an FSM abstraction MB can also distinguish many other con-

figurations of M as illustrated in Proposition 3.

3.2.2 On selecting the initial set of predicates

Given EFSM M and the sets of configurations C′ and C′′, below we describe how an ini-

tial set of predicates B can be constructed when the sets of configurations are either expli-

citly given or symbolically specified by predicates.

Let configurations of the sets C′ and C′′ be explicitly enumerated and Vt and Vr be the

sets of valuations of configurations of C′ and C′′ correspondingly. Since configurations of

the sets C′ and C′′ can have different states, the sets of valuations Vr and Vt are not neces-

sarily disjoint. In this case, the initial set of predicates B = {B1, B2} can be constructed in

the following way:
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(i) v ∈ Vr\(Vr ∩ Vt), v | = B1 ∧ v | ≠ B2,

(ii) v ∈ Vt\ (Vr ∩ Vt), v | = B2 ∧ v | ≠ B1,

(iii) v ∈ DV\(Vr ∪ Vt), v | ≠ B1 ∧ v | ≠ B2,

(iv) v ∈ (Vr ∩ Vt), v | = B1 ∧ v | = B2.

By construction, for every configuration v ∈ Vr\(Vr ∩ Vt), it holds that aB(sp,v) = (sp,

B1, ~B2), for every v ∈ Vt\(Vr ∩ Vt) it holds that aB(sq,v) = (sq, ~B1, B2).

Moreover, for every v ∈ (Vr ∩ Vt), it holds that aB((s,v)) = (s, B1, B2), and for every v ∈
DV\{Vr ∪ Vt} it holds that aB((s,v)) = (s, ~B1, ~B2). Therefore, for the above predicates

B1 and B2 and disjoint sets of configurations C′ ∪ C′′, the sets S′ = A(C′) and S′′ =A(C′′)

are disjoint. In this case, a separating sequence for the two sets of abstract states S′and S′′

(when such a sequence exists), is a distinguishing sequence for every two configurations c′

and c′′, c′ ∈ C′, c′′ ∈ C′′.

When all the explicitly specified configurations of the sets C′ and C′′ have the same con-

trol state s, i.e., C′ = {(s, v) : v ∈ Vr⊂DV} and C′′ = {(s, v) : v ∈Vt⊂DV} and Vr ∩ Vt =∅,

rule (iv) is not applicable. In this case, for every configuration p ∈ C′, aB(p) = (s, B1, ~B2),

and for every configuration q ∈ C′′, aB(q) = (s, ~B1, B2), and for every configuration (s,v) in

the set {(s,v) : v ∈ DV\{Vr ∪ Vt}}, it holds that aB((s,v)) = (s, ~B1, ~B2). In this case, a

separating sequence for the two abstract states (s, B1, ~B2) and (s, ~B1, B2) (when such a

sequence exists), is a distinguishing sequence for every two configurations c′ and c′′, c′ ∈ C′,

c′′ ∈ C′′.

Our work can also be applied to distinguishing two disjoint symbolically described

sets of configurations C′ and C′′. In this case, the sets are not necessary finite and can be

described using sets of assertions.

As a simple example, consider EFSM M1 in Fig. 1 and the sets C′ = {(s, z) : s ∈ S and z is

odd} and C′′ = {(s, z) : z is even} where these two sets are infinite. These two sets can be rep-

resented using the predicates B and ~ B, where B is the predicate (odd(z)), i.e., B(z) = 1 if z is

odd, and ~ B is the predicate (even (z)), i.e., B(z) = 0 if z is even. An FSM abstraction M1
B of

M1 derived using B = {B} and a selected set of parameterized inputs is shown in Fig. 4.

As another example, consider two context variables w and z that have the set of

integers as the specification domain. Given vector v of valuation of variables w and

z, we use w(v) (or z(v)) for the value of the variable w (or z) in the valuation vec-

tor. Valuations of disjoint sets Vr and Vt can also be described as predicates as

shown in Table 1.

For specifications where valuations are Boolean and guards are defined over Boolean

variables, implicit (disjoint) sets Vr and Vt can also be described using corresponding

predicates. We demonstrate how this can be done for two Boolean context variables w

and z using the traditional XOR and OR operators as shown in Table 2.

3.2.3 On selecting a set of parameterized inputs Px
An abstraction FSM MB depends on the set of predicates B as well as on selected set of

parameterized inputs Px. In Section 4, we discuss how a set B can be constructed in

order to increase the chance of separating designated states in the abstraction FSM MB

and here we briefly discuss some criteria for selecting a set Px of parameterized inputs

such that the chance of separating states in an FSM abstraction MB is increased. This

can be done, for example, by reducing the degree of non-determinism through redu-

cing the number of non-deterministic transitions of the machine, and thus increasing
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the chances of having separating sequences. That is, by reducing non-determinism of

an abstraction FSM, the number of output sequences produced at two (or more) states

in response to an input sequence usually decreases; and thus the possibility of produ-

cing disjoint output responses, i.e. separating sequences, in response to the input se-

quence increases.

The degree of non-determinism can be defined in several ways as follows:

(1)One way is to define the degree of non-determinism as the average number of

outgoing transitions under a selected input (x, px) at an abstract state (or at a

set of abstract states). Given a state s of M and a set of predicates B, an ex-

ample of reducing non-determinism is when the valuations of M are canonically

partitioned (using B) into m disjoint subsets: valuations of each subset have the

same abstract image while valuations of different subsets are mapped into dif-

ferent abstract states. A parameterized input (x, px) is selected in such a way

that the average number of outgoing transitions under (x, px) at the m abstract

states is minimized.

(2)One also can think of reducing non-determinism by selecting (x, px) such that for a

maximum number m′ of the m abstract states, the number of outgoing transitions

under (x, px) at each state of the m′ states is minimized.

(3)Another criterion for increasing the chance of separating states in an FSM

abstraction is to choose an input (x, px) such that a large number of the m abstract

states are separable by (x, px).

In fact, one can think of applying the above criteria for the selection of (parameterized)

inputs considering all states of M or only to a (properly selected) subset of these states.

Example 4. In Example 3, given EFSM M1 (Fig. 1), a corresponding FSM abstrac-

tion M1
B (Fig. 4) is derived using B = {B = odd(z)} and the set Pa = {i = 1, i = 5, i = 6}.

Table 1 Representing valuations by predicates

Vr has each valuation v such that Vt has each valuation v such that Related Predicates

w(v) = kn w(v) ≠ kn B: B(v) is True iff w(v) = kn

~B: B(v) is True iff w(v) ≠ kn

w(v) = k w(v) ≠ k B: B(v) is True iff w(v) = k

~B: B(v) is True iff w(v) ≠ k

w(v) + z(v) = k w(v) + z(v) ≠ k B: B(v) is True iff w(v) + z(v) = k

~B: B(v) is True iff w(v) + z(v) ≠ k

w(v) = z(v) w(v) ≠ z(v) B: B(v) is True iff w(v) = z(v)

~B: B(v) is True iff w(v) ≠ z(v)

Table 2 Representing Boolean valuations by predicates

Vr has each valuation v such that Vt has each valuation v such that Related Predicates

w(v)⊕ z(v) = 1 w(v)⊕ z(v) = 0 B: B(v) is True iff w(v)≠ z(v)

~B: B(v) is True iff w(v) = z(v)

w(v) ∨ z(v) = 1 ~w(v) ∧ ~ z(v) = 0 B: B(v) is True iff w(v) ∨ z(v) = 1

~B: B(v) is True iff ~w((v) ∨ z(v))≠ 1
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Below, we informally describe a way that can be used for the selection of a set Pa

based on appropriate partitioning of valuations.

The abstraction aB(s, z) of all configurations (1, z) where z is odd is the abstract state

(1, B) and abstraction aB(s, z) of all configurations (1, z) where z is even is the abstract

state (1, ~B).

Consider state 1 of M1 and all valuations of z that satisfy ~ B, i.e., z is even, the corre-

sponding abstract state of all these valuations is the state (1, ~B).

Consider the outgoing transition (1, a, (1 ≤ a.i ≤ 4), 0, z = z + 1, 2) at state 1 defined

under input a(i), all values a.i that satisfy the guard (1 ≤ a.i ≤ 4) of this transition, i.e.,

a.i = 1, 2, 3, 4, move M1 from state 1 to state 2 where the update statement z := z + 1

results in the value of z that satisfies B (z is odd). Thus, select one of these values, here

select a.i = 1, include 1 into (initially empty) set Pa. Correspondingly, the FSM abstrac-

tion has the transition ((1, ~B), (a,1), 0, (2, B)).

Consider the outgoing transition (1, a, (a.i ≥ 5), 1, z = z + a.i, 1) at state 1 defined

under input a(i). All values of a.i that satisfy the guard a.i ≥ 5 are partitioned into

two disjoint sets where the value a.i is odd or a.i is even. All inputs of the former

set move M1 to state 1 with odd z value (i.e. z satisfies B) and all inputs of the lat-

ter set move M1 to state 1 with even z value (i.e. z satisfies ~ B). Correspondingly,

from each subset, we select one value of a parameterized input and add the value

to the set Pa. In particular, for the former set, select a.i = 5, add 5 to Pa, and from

the latter set select a.i = 6, add 6 to Pa and obtain Pa = {1, 5, 6}. In this case, the

FSM abstraction includes the transitions ((1, ~B), (a, 5), 1, (1, B)) and ((1, ~B), (a,

6), 0, (1, ~B)).

Considering all other states of M1 in the same way we obtain Pa = {1, 5, 6} and the

FSM abstraction shown in Fig. 4.

We recall that in this paper we derive an FSM abstraction using for every input

x the same set Px (of selected inputs) over all states s1, … sn of the given EFSM.

Another way of deriving an abstraction can be carried out using different (not

necessarily disjoint) sets say Ps1
x , P

s2
x , P

sn
x for the states s1, … sn. However, in this

case, an FSM abstraction can be partial under the union of these sets. Thus, a

trace defined over the union of these sets may not be a trace of an obtained

FSM abstraction, and correspondingly, a distinguishing sequence for two sets of

configurations of M may not be defined at the corresponding sets of abstract

states.

4 A method for distinguishing sets of configurations of an EFSM
4.1 Method overview

In this section we present an algorithm for distinguishing two disjoint sets of con-

figurations C′ and C′′ of an EFSM M by deriving a separating sequence for the cor-

responding sets of abstract states S′ and S′′ in the corresponding FSM abstraction. In

Section 3, we demonstrated how to construct the set of predicates in such a way that

the set of predicates encodes configurations in C′ and C′′ into two different sets of

abstract states. If the sets of abstract states are separable, then a separating sequence

is a distinguishing sequence for C′ and C′′. However, if no separating sequence exists

for the corresponding sets of abstract states then C′ and C′′ can still be distinguishable
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but such a distinguishing sequence cannot be derived using a current FSM abstraction.

Accordingly, the abstraction is refined and the above process is repeated till either a

separating sequence is obtained or a given maximum number of refinements is carried

out. The abstraction is refined in such a way that the possibility of finding a distin-

guishing sequence in a refined abstraction is enhanced. Two types of refinements are

considered, namely, a predicate refinement and a refinement based on selected sets of

parameterized inputs as is illustrated in details in Section 5. A high-level overview of

the algorithm is provided below and the detailed algorithm is given in the following

subsection. The algorithm inputs an EFSM specification M, a set of selected inputs of

M, and two sets of configurations C′ and C′′ and outputs a distinguishing sequence or

a message indicating that a sequence is not determined for the given sets.

1. Derive the set of predicates

2. Derive an FSM abstraction of M

Consider the sets of abstract states S′ and S′′ that correspond to the sets of

configurations C′ and C′′, respectively.

If S′ and S′′ are separable in the abstraction FSM by a separating sequence α

then Return α

Else

Refine the set of predicates and repeat (1) and (2) as long the (given) maximum

number of allowed refinements is not reached.

3. Return a message “a distinguishing sequence is not determined”

4.2 Algorithm for distinguishing two sets of EFSM configurations

Here we provide an algorithm for the method given above for distinguishing two

disjoint sets of configurations C′ and C′′ by deriving a separating sequence for the

corresponding sets of abstract states S′ and S′′ in a corresponding abstraction FSM.

We note that Step 2 of the above method is further divided into two sub-steps. In

Step 2.1, the algorithm tries to derive a separating sequence from an FSM abstrac-

tion using only non-parameterized inputs of the EFSM specification M as such an

abstraction is usually smaller and less non-deterministic than an abstraction derived

using both non-parameterized and selected parameterized inputs (Step 2.2). In both

cases, after deriving an FSM abstraction, determining a sequence that distinguishes

the two given sets of EFSM configurations is done by finding a separating sequence

for the corresponding sets of abstract states S′ and S′′ in the FSM abstraction. For

deriving a separating sequence the algorithm in (Spitsyna et al. 2007) can be used

where the root of the successor tree of the abstraction FSM is labeled by the set of

all pairs of S′ × S′′ and the unsuccessful termination rule is extended to handle the

case when some pairs of states of the set labeling a node have the same state as a

successor under some input/output. If no distinguishing sequence is found against a

current abstraction, then a current FSM abstraction is refined as it is illustrated in

details in Section 5.

Due to Proposition 3, given two disjoint sets of configurations C′ and C′′ of EFSM M and

their corresponding sets of abstract states S′ =A(C′) and S′′ =A(C′′) of an abstraction FSM MB,
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if the algorithm returns a separating sequence α for the sets S′ and S′′, then α is a distinguishing

sequence for the sets C′ and C′′ of M. Thus, the following statement holds.

Theorem 1: A separating sequence α derived using Algorithm 1 (when such a

sequence exists) is a distinguishing sequence for the sets C′ and C′′ of EFSM M.

An application example of Algorithm 1 is given below. More related application ex-

amples are provided in the following sections.
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Example 5: As an example of Algorithm 1, consider an EFSM in Fig. 1 and two infinite

sets C′ and C′′ of configuration, C′ = {(s, z): z is odd} and C′′ = {(s, z): z is even}. An FSM

abstraction derived at Step 2 over the non-parameterized input b does not distinguish

the sets C′ and C′′. At Step 3, the FSM abstraction M1
B (shown in Fig. 4) is derived

using B = {B = odd(z)} and the set Pa for a.i = 1, a.i = 5, a.i = 6 as illustrated in Ex-

ample 4. The sets of abstract states corresponding to the sets and C′ and C′′ are S′ =

AB(C′) = {(1, B), (2, B)} and S′′ = AB(C′′) = {(1, ~B), (2, ~B)}. The sequence (a, 5) (a,

1) (a, 1) is a separating sequence for the sets S′ and S′′ of abstract states, and thus

this sequence is a distinguishing sequence for the sets C′ and C′′.

The complexity of deriving a FSM abstraction from an EFSM depends on the

types and operations on data variables used in the EFSM. In general, for a given

set of predicates, the construction of the abstract FSM amounts to the computa-

tion of a finite number of transitions, where for every transition, an existential

quantifier elimination involving data variables from the EFSM is performed (Graf

& Saidi 1997; Bensalem et al. 1998). For instance, the general case of integer data

and addition only correspond to Presburger arithmetic and has worst-case super-

exponential complexity (Fischer & Rabin 1974). Complexity decreases however to

polynomial if only difference/octagonal constraints appear in transitions and predi-

cates e.g., of the form ± x ± y ≤ c. If multiplication is allowed, quantifier elimination

becomes undecidable and therefore automatic derivation of an FSM abstraction is

not feasible in general. Obviously, if all EFSM data are interpreted on finite

domains, quantifier elimination is decidable. For Booleans, quantifier elimination

reduces to a SAT problem, which is known to be NP-complete. Furthermore, the

problem of deriving a separating sequence for the set of states of a deterministic FSM is

PS-COMPLETE (Lee and Yannakakis (Lee & Yannakakis 1994) for complete machines,

Hierons and Türker for partial machines (Hierons & Türker 2014)). For nondeterministic

FSMs, Kushik and Yevtushenko (Kushik & Yevtushenko 2015) have shown that the prob-

lem of deriving a separating sequence for the set of states of a nondeterministic FSM is

PS-COMPLETE. It is also known that in the worst case the length of a separating

sequence even for two states is exponential w.r.t. the number of FSM states (Spitsyna et

al. 2007). However, our experiments show that if a separating sequence exists then this

sequence usually is very short (Spitsyna et al. 2007).

5 Predicate refinement
Given two disjoint sets of configurations C′ and C′′ and their corresponding disjoint

sets of abstract states, a separating sequence (if it exists) for the abstract states distin-

guishes all pairs of configurations c′ and c′′, c′ ∈ C′, c′′ ∈ C′′. However, if there is

no such separating sequence we can refine the abstraction, for example, by consider-

ing more predicates D = B ∪ B′ and deriving an abstraction AD. Given an EFSM M

and an abstraction MB for B and Px, the predicate refinement of MB is carried out

by expanding the set of predicates B to a set D and deriving an abstraction MD using

the same, i.e., the unchanged, set Px. A refined FSM abstraction MD has more ab-

stract states than MB and this usually reduces the degree of non-determinism in MD

compared with MB and thus increases the chance of the existence of a separating

sequence.
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5.1 Predicate refinement methods

Consider an abstraction MB for B and Px, here we consider three ways for constructing

and adding to the set B a new predicate B′ so that a refined abstraction MD is derived

using D = B ∪ B′ and Px.

(1)Predicate derived based on a selected set of valuations

Consider the sets of configurations C′ and C′′ with their corresponding sets of

valuations Vt and Vr, respectively. Let M
B be an FSM abstraction for a selected set of

parameters Px and a set of predicates B = {B1, B2} derived, for example, as illustrated

in Section 3.2.2. The initial set of predicates B = {B1, B2} can be refined by adding to

B a predicate B′ ∉ B that partitions valuation of some/all the sets Vr, Vt, DV\{Vr ∪

Vt}, and Vr ∩ Vt.

Let V′⊂DV be a selected set of valuations, construct a predicate B′ ∉ B such that

for every valuation v ∈ V′, v | = B′ and for every v ∈ DV\V′, v | ≠ B′, and derive an

FSM abstraction MD using D = {B1, B2} ∪ {B′}. For every configuration (s,v), s ∈

S, v ∈ DV, let aB(s,v) be the abstract state (s, a), where a = (B1(v),…, Bk(v)), then by

construction, aD(s,v) = (s, a, B′) if v | = B′ and aD(s,v) = (s, a, ~B′) if v | ≠ B′. As the

sets of abstract states AB(C′) and AB(C′′) are disjoint by construction, the sets AD(C′)

and AD(C′′) are also disjoint.

By construction, the added predicate results in an FSM abstraction MD with more

abstract states than MB, and this can reduce non-determinism in the abstraction

FSM and thus, can enhance chances for deriving a separating sequence for sets

AD(C′) and AD(C′′) that is a distinguishing sequence for C′ and C′′. Usually, splitting

states of a current abstraction can be effective when V′ is selected as a subset of

one of the sets Vr, Vt, DV\{Vr ∪ Vt}, or Vr ∩ Vt.

(2)Predicate derived based on states of an abstraction FSM MB

Splitting valuations can also be done based on selected state(s) of an abstraction

FSM MB.

Given MB, select an abstract state r = (sr, a) such that r has many outgoing

transitions under a (parameterized) input (x, px). Then, considering the prototype

configurations of r, i.e. the set (sr, vr) ∈ A-1(s, a), construct a predicate B′ such that

valuations of the set A-1(s, a) is split into disjoint sets Vi and Vj where in a refined

FSM abstraction MD, D = B ∪ {B′}, configurations (sr, v), v ∈ Vi, are mapped into

an abstract state (sr, a′), and configurations (sr, v), v ∈ Vj, are mapped into another

abstract state (sr, a′′) and the sets of outputs of outgoing transitions under (x, px) at

(sr, a′) and at (sr, a′′) are disjoint, or the number of outgoing transitions under (x, px)

at (sr, a′) and at (sr, a′′) of M
D are less than those at (sr, a) of the FSM abstraction

MB.

(3)Predicate derived based on guards of the specification EFSM

Another way of predicate refinement is to add new predicates into a given set of

predicates, for example, the guards of the given EFSM specification that are defined

only over context variables. These guards are special as they are part of the specifica-

tion and including these guards into an abstraction predicates splits naturally (as in the

specification) states in a refined abstraction and thus, reduces non-determinism in a re-

fined abstraction.

El-Fakih et al. Journal of Software Engineering Research and Development  (2016) 4:1 Page 21 of 26



Consider an EFSM M where P = {P1,.. Pm} is the set of all guards of M defined only

over context variables and its abstraction MB. Consider the set D = B ∪ P of (k +m)

predicates and derive a predicate abstraction MD using the same set Px that is used for

deriving MB. We note that if the set P of guards is empty, we do not consider guard

refinement.

Example 6. As an example of Algorithm 1 and guard refinement, consider the two

configurations p = (0, w = 0) and q = (0, w = 2) of M2 in Fig. 2. Let B be the predicate

(w < 2) and B = {B}. The corresponding FSM abstraction M2
B is shown in Fig. 3.

By definition, AB(p) = (0, B) and AB(q) = (0, ~B). The abstract states AB(p) =AB(q) are

non-separable in M2
B (Step 2 of Algorithm 1). Step-3 is not applied as M2 has no pa-

rameterized inputs. At Step-4, consider a refinement using the guard P (even(z)) of M2,

i.e., D = B ∪ {P}, and construct an abstraction FSM M2
D shown in Fig. 5. For the set D,

AD(p) = (0, B, P) and AD(q) = (0, ~B, P). The sequence aaa is a separating sequence for

these two abstract states and thus, aaa is a distinguishing sequence for the configura-

tions p and q. In fact, aaa is also a distinguishing sequence for each pair p and q of

configurations, p ∈ AD�1
(0, B, P) and q ∈ AD�1

(0, ~B, P). Thus, the refinement results in

refining/splitting states and this allows us to distinguish more states in the obtained

FSM abstraction (Fig. 5) than in M2
B (Fig. 3) and thus, to distinguish in M2 (Fig. 2) some

configurations for which we cannot derive a distinguishing sequence using M2
B.

Example 7. As another example, consider the FSM M2 in Fig. 2 with context vari-

ables V = {w, z}. Let Vr be the valuations {(w = 0, z ≥ 0), (w = 1, z ≥ 0)}, and Vt be the val-

uations {(w = 4, z ≥ 0), (w = 6, z ≥ 0)}. Let C′ = {(0, v) : v ∈Vr} and C′′ = {(0, v) : v ∈Vt}.

Consider B = {B1, B2} such that configurations in C′ are mapped into the abstract state

S′ = (0, B1, ~B2) of the FSM abstraction and configurations in C′′ are mapped into the

abstract S′′ = (0, ~B1, B2). The abstract states S′ and S′′ are non-separable in such

FSM abstraction. Refining the abstraction by considering D = B ∪ P where P is the

guard even(z) of M2, thus, ~P if z is odd, we obtain an FSM where the configurations

Fig. 5 FSM M2
D
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in C′ are mapped into abstract states of the set S′ = {(0, B1, ~B2, P), (0, B1, ~B2, ~P)}

and the configurations in C′′ are mapped into the abstract states of the set S′′ = {(0, ~B1,

B2, P), (0, ~B1, B2, ~P)}. The sequence a a a is a separating sequence for the sets S′ and S′′.

The obtained sequence distinguishes any two configurations c′ and c′′, c′ ∈ C′, c′′ ∈ C′′.

In general, the complexity of the refinement is tightly related to the data and opera-

tions used in EFSM. Predicate refinement is at the heart of CEGAR-based (CounterEx-

ample-Guided Abstraction Refinement) automated verification (Clarke et al. 2003).

In recent years, this approach has been thoroughly investigated in the context of

software verification. In particular, interpolation has been proposed as a general

effective technique to extract information from spurious counterexamples in

order to refine the abstract model (see e.g., (Henzinger et al. 2004) for an intro-

duction). In our context, if we consider predicate abstraction when the domains

of variables are finite we get polynomial complexity by selecting appropriately the

predicates of the machine for the refinement when a predicate abstraction is

based on adding guards of the specification. Also, when selecting predicates for

reducing the non-determinism of the abstraction FSM, one can appropriately se-

lect a partition over the set of given valuations. We note that checking the exist-

ence of a separating sequence is based on the derivation of a so-called FSM

successor tree and this tree can be considered as a counterexample when a separ-

ating sequence does not exist. For example, the tree can be used as a guide when

selecting predicates for reducing the nondeterminism of an FSM abstraction. In

all cases, investigating and elaborating heuristics for reducing the complexity of

refining a predicate abstraction for the considered problem is an interesting

direction for future research.

5.2 Relationship between distinguishing configurations of an abstraction and a refined

predicate abstraction

The following propositions establish the correspondence between states of an abstrac-

tion FSM and their corresponding states in a refined abstraction FSM. The predicate

refinement step of Algorithm 1 (Step-3) relies on this correspondence for deriving sep-

arating sequences against a refined FSM abstraction.

Proposition 4. Given an EFSM M, two sets of configurations C′ and C′′ of EFSM M

and an abstraction FSM MB of M, let an abstract FSM MD be a predicate refinement of

MB. If states AB(C′) and AB(C′′) of FSM MB can be separated by an input sequence α then

states AD(C′) and AD(C′′) of the abstract FSM MD can also be separated by α.

Definition 10: Given a Boolean vector a of length k, a Boolean vector a′ of length n,

n ≥ k, is an extension of a if a′ = ac where c is a Boolean vector of length n - k.

Proposition 5. Given an EFSM M, let MB be an FSM abstraction of M constructed

by a set B of predicates and D be the set of predicates that contains B. The following

statements hold:

(1)Given states (s, a′) of MD and (s, a) of MB, the set of configurations that are mapped

by D into abstract state (s, a′) is a subset of the set of configurations mapped by B

into abstract state (s, a) where a′ is the extension of a. That is, if a′ is an extension of

a then AD�1
(s, a′)⊆AB�1

(s, a).
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(2)The union of configurations that lead to abstract states (s, a′) where a′ is an extension

of a is actually the set of configurations that lead to the abstract state (s, a). That is for

each state (s, a) of MB, it holds that the set of configurations AB�1
(s, a) is the union of

the sets of configurations AD�1
(s, a′) over all (s, a′) such that a′ is an extension of a.

6 Discussion: Limitations of the proposed work
In general, an EFSM can have parameterized outputs and the work can be adapted to

EFSMs with output parameters. In this case, the values of parameterized outputs ob-

tained when deriving an FSM abstraction are included into the FSM abstraction out-

puts, i.e., an abstract FSM output is the concatenation of the original EFSM output

symbol and the obtained valuation of output parameters.

In practice, an EFSM specification can be partial. The work presented in this paper

can be used for partial EFSM specifications that are completed by adding self-loop

transitions with null outputs. However, it is worth to extend the proposed work to par-

tial specifications considering only the defined partial behavior of the specification

EFSM. We think that this can be done by using the work presented in (Kushik et al. 2014)

that handles the derivation of a separating sequence using only the defined inputs of the

machine.

Though this paper establishes the theoretic framework for solving the considered

problem; however, there is a need to empirically assess the proposed method using

many application examples. This requires; for instance, assessing the proposed

work using several randomly generated EFSM specifications or EFSMs of realistic

application examples (case study). For this purpose there is a need for the develop-

ment and assessment of software tool that derives randomly generated EFSM speci-

fications considering the various attributes of the EFSM model. In addition, this

also requires the development of a software tool that implements the proposed

method and then the use of the tool in the empirical assessment. The tool has to

handle the derivation of (a) an abstraction FSM from the given EFSM specification,

(b) a separating sequence for the considered sets, and (c) a refined abstraction. We

think that the known verification IF tool (Bozga et al. 2004; Mounier et al. 2002)

can be easily tailored to dealing with (a) when the designer provides the initial sets

of predicates and parameterized inputs used by the proposed method and when

predicate abstraction is carried out using the guards of the specification machine.

However, in order to deal with the automatic derivation of the sets of predicates

and selected inputs and to refine the abstraction based on valuations or states of

an abstraction, then there is a need to implement and incorporate the heuristics

given in this paper into the IF tool. The tool we have used in (Spitsyna et al.

2007) can be used for the derivation of separating sequences.

7 Conclusions and future work
Given two disjoint sets, specified possibly over (infinite) sets of Extended Finite State

Machine (EFSM) configurations, a method for deriving an input sequence that distin-

guishes each pair of configurations of these sets is proposed. The method is based on

deriving such a sequence for designated sets of states of an FSM abstraction. The FSM

abstraction is derived from the given EFSM specification using selected sets of predi-

cates and parameterized inputs. If a distinguishing sequence for the corresponding two
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sets of abstract states is not found using the current FSM abstraction, the abstraction is

refined. A refined FSM abstraction is derived by adding more predicates or more inputs

to the selected sets of predicates and inputs in order to reduce nondeterminism in the

abstraction FSM. Some refinement strategies are discussed. The work can be applied in

various domains such as EFSM-based test derivation, mutation testing, and fault

diagnosis.

Finally, in EFSM fault diagnosis (El-Fakih et al. 2003), several EFSMs, so-called fault

functions, are constructed using different types of EFSM faults. In particular, from a

given EFSM specification and a selected type of fault, an EFSM with the selected type

of faults is derived. For instance, common types of EFSM faults (Bochmann & Petrenko

1994; El-Fakih et al. 2003) include output, transfer, predicate, and assignment faults.

Then, fault diagnosis is carried out by deriving tests distinguishing between these EFSM

fault functions. The fault functions are specified as complete non-deterministic EFSMs.

Thus, the proposed work can be used to derive diagnostic tests provided the work is

extended to handle non-deterministic EFSM specifications. Our preliminary investiga-

tion shows that the work presented in this paper can be used for distinguishing two

configurations of a non-deterministic EFSM. In fact, in this case, in the abstraction

function (Definition 9), for a given configuration and parameterized input, there could

be many enabled transitions at a state with the same parameterized input and the ab-

straction function takes into consideration all such transitions. However, a thorough in-

vestigation of adapting the presented work to non-deterministic EFSMs would be

interesting and to the best of our knowledge no work has been done on distinguishing

configurations of non-deterministic EFSMs.
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