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Single-cell technologies in multiple
myeloma: new insights into disease
pathogenesis and translational implications
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Abstract

Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of plasma cells. Although
therapeutic advances have been made to improve clinical outcomes and to prolong patients’survival in the past

two decades, MM remains largely incurable. Single-cell sequencing (SCS) is a powerful method to dissect the cellular
and molecular landscape at single-cell resolution, instead of providing averaged results. The application of single-cell
technologies promises to address outstanding questions in myeloma biology and has revolutionized our understand-
ing of the inter- and intra-tumor heterogeneity, tumor microenvironment, and mechanisms of therapeutic resistance
in MM. In this review, we summarize the recently developed SCS methodologies and latest MM research progress
achieved by single-cell profiling, including information regarding the cancer and immune cell landscapes, tumor het-
erogeneities, underlying mechanisms and biomarkers associated with therapeutic response and resistance. We also

discuss future directions of applying transformative SCS approaches with contribution to clinical translation.
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Introduction

MM is a hematological cancer characterized by uncon-
trolled proliferation of malignant plasma cells (PCs)
in the bone marrow (BM) which remains largely incur-
able [1]. MM accounts for around 10% of hematologi-
cal cancers with about 155,688 patients to be diagnosed
worldwide per year [2]. The survival in MM patients has
significantly improved over the past decade [3], owing
to the introduction of effective novel regimens includ-
ing proteasome inhibitors (PIs), monoclonal antibodies
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and immunomodulatory drugs (IMiDs). However, these
patients ultimately develop disease relapse, thus further
treatment is required [4]. Clonal evolution and diversity
of MM cells and BM microenvironment (BME) changes
are the major causes of the disease relapse and poor
response rate, and these diverse alterations pose both
challenges and opportunities for myeloma therapy [5,
6]. With the development of the high throughput next
generation sequencing (NGS), we have gained greater
insights into MM biology by exploring its intricate
genomic landscape [7-10]. Integrated examination of
bulk genomic, transcriptomic and exome sequencing has
provided valuable information regarding disease driv-
ers including translocations, copy number alterations,
somatic mutations, and altered gene expression. Besides,
at cellular level, active interactions between myeloma
cells and their microenvironment, including bone mar-
row stromal cells (BMSCs) and immune cells have been
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extensively discussed [11, 12]. The molecular mecha-
nisms underlying the progression of this malignancy are
driven by signals coming from the BME and immune
surveillance failure [13, 14]. An increasing number of evi-
dences suggests that the impairments of immunological
processes contribute to myeloma evasion from immune
surveillance and resistance to effector cells mediated
cytotoxicity, resulting in an immune suppressive BME of
myeloma [15, 16].

Despite the impressive progress in understanding
the molecular pathogenesis of MM, in developing new
therapies and improving in transplant technology [17],
many important questions have yet to be addressed,
leading to several confronting issues and challenges in
the MM field (Fig. 1). One of the key questions is that
the identity of the MM cell origin remains controver-
sial. Researchers revealed that cancer stem cell might
be responsible for the development of MM, although
there is ongoing debate regarding the identity of the
MM stem cells (MMSCs) [18—20]. Several markers such
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as side population (SP) [21], ALDH1" [22] and CD24*
[23] have been used to identify MMSCs. Verifying the
origin of myeloma cells represents a significant effort to
achieve effective cancer treatment. Clonal evolution is
also a key topic in MM research field which drives tumor
progression, chemoresistance and relapse in myeloma
[9, 10, 24-26]. NGS studies have demonstrated differ-
ent types of clonal changes over the course of disease,
which are categorized into stable, linear, and branching
evolution of myeloma clones [27, 28]. The major queries
are how these subclones arise and how they are selected.
As a consequence of current bulk sequencing methods,
the answer is certainly equivocal and more powerful
technologies are needed. BM myeloma cells are highly
dependent on neighboring cell signals for survival which
allows them to grow and proliferate. The BME consists
of multiple cellular compartments, including mesenchy-
mal stromal cells (MSCs), immune cells, endothelial cells,
osteoblasts and osteoclasts, creating a distinct milieu that
supports immune escape and promotes progression of
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Fig. 1 Unresolved questions in the field of myeloma biology research. Studying MM biology in both myeloma intrinsic and extrinsic contexts will
advance understanding of how the complex cross-talk between myeloma cells and surrounding non-cancer cells results in the successful growth of
malignant subclones, with impacts on clonal revolution and resistance to therapies. MM: multiple myeloma; MMSCs: multiple myeloma stem cells;

TME: tumor microenvironment; BM: bone marrow
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myeloma cells. The mechanisms by which the BM niche
contributes to MM pathogenesis remain largely unex-
plored. Despite landmark therapeutic advancements
to treat MM, one of the major challenges remains that
the majority of patients eventually relapse and become
refractory to anti-myeloma drugs. Additionally, there are
no reliable biomarkers available for the accurate predic-
tion of responses to specific drug classes, limiting our
ability to select a more personalized treatment strategy.
Therefore, it is becoming increasingly obvious that there
is a prominent need to develop and exploit more power-
ful and precise approaches to fully dissect the molecular
and cellular landscape during disease pathogenesis, and
to discover new biomarkers for predicting drug efficacy
or resistance, thus providing opportunities for precision
medicine of MM.

Traditional microarrays and NGS assays require bulk
DNA or RNA from large number of cells, and they are
limited to providing average information of a popula-
tion of cells. Furthermore, rare cell populations or unique
cellular states could be critical in tumor transformation
and pathogenesis, such as cancer stem cells (CSCs) or
immune cell subsets, which might not be detected in bulk
analyses [29]. The advent of single-cell sequencing (SCS)
has overcome these limitations through revealing the
genomic/transcriptomic profile of each cell within given
samples at high resolution and throughput [30-32]. SCS
has been widely applied in the field of myeloma research,
providing the analysis of cellular heterogeneity [33, 34],
identifying new cell subtypes [35], distinct cellular states
[36], and elucidating dynamic cellular transitions during
tumour evolution and microenvironment remodeling
[37-39]. These multi-faceted, high-dimensional dissec-
tions at genomic, epigenomic, transcriptomic, and prot-
eomic levels in tumour cells and the related immune or
stromal cells allow the in-depth characterization of can-
cer biology, the intricate interactions between cancer
cells and surrounding compartments in BME, and details
of the clonal evolution in each MM tumour. In this
review, we summarize recent progress in the SCS work-
flow and techniques that have been used in MM research
and further discuss the findings of clonal revolution,
cancer cellular heterogeneity, stromal cells and immune
microenvironment explored by SCS. We further discuss
the growing applications of single-cell approaches for
answering important research questions and their impli-
cations in clinical translation.

Emerging single-cell sequencing technologies

Breakthroughs in single-cell capture, sequencing tech-
nologies, and analytical bioinformatics have led to rapid
progress in SCS analysis methodologies which have been
reviewed extensively elsewhere [40-43]. The success of
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single-cell approaches benefits from concurrent improve-
ments in methodological pipeline and analytics, such as
the isolation of single cells, high-dimensional reduction,
unsupervised clustering, evolutionary modelling, multi-
ple datasets integration, lineage tracing and ligand-recep-
tor interaction predicting [43—45]. Single-cell approaches
have the unique potential to help answer many important
questions that lie in cancer research, including: the roles
of cancer and immune cells heterogeneities; the rela-
tions between tumor cell clonotype and phenotype; the
network of ligand-receptor interactions present in the
tumor microenvironment (TME); as well as the spatio-
temporal crosstalk between cancer cells and immune
populations. With the rapid advancements of SCS tech-
nologies, numerous methods have been developed,
offering unprecedented opportunities not only to profile
DNA, mRNA, chromatin and proteins through different
single-cell omics, but also to measure multiple modalities
one cell at a time by various multi-omics tools (Table 1).
In this part, we will discuss the most important single-
cell approaches and platforms that have been utilized in
disease research (Fig. 2).

Single-cell transcriptomics

Single-cell RNA sequencing (scRNA-seq) is a procedure
that enables non-targeted quantification of transcripts
in individual cells [86]. This technique is largely inde-
pendent of previous biology knowledge, and it allows
for the detailed description of tissue subtypes and cell
states. Multiple efficient high-throughput protocols for
single-cell separation have been developed (for exam-
ple, the Fluidigm C1 platform [87], droplet microfluid-
ics [46] and microwells [88]). And various scRNA-seq
approaches such as Drop-seq [47], Smart-seq2 [89], CEL-
seq2 [52], MARS-seq [54], CytoSeq [50], sci-RNA-seq
[53] have contributed to the discovery of novel and rare
cell types, cellular heterogeneity within complex tissues,
and biological mechanisms in healthy and disease condi-
tions. A high-throughput sequencing method for mRNA
transcriptomics at a single-cell level was first reported
in 2009 [90]. Islam et al. developed single-cell tagged
reverse transcription sequencing method in 2011, allow-
ing for detecting mixed cell samples including highly het-
erogeneous tumor samples on a large scale [91]. In 2012,
Smart-seq was introduced to facilitate the measurement
of full-length transcripts [51]. By enhancing transcrip-
tomic reading coverage, this technology enables accurate
analysis of alternative splicing and detection of single
nucleotide polymorphisms (SNP) and other genomic
mutations. A modified Smart-seq2 was created later by
Picelli et al., which improved accuracy, sensitivity and
coverage in full-length [92].
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sequencing

In recent years, a number of droplet-based platforms
for high-throughput scRNA sequencing have attracted
attention, including 10X Chromium Genomics, inDrop
and Drop-seq [46, 47, 93]. These technologies share
similar strategies in generating droplets, isolating single
cells through on-bead primers with barcodes, and cor-
recting bias by applying unique molecular identifiers
(UMIs) [94]. However, these technologies differ in cost,
time, cell capture efficiency, and sensitivity due to differ-
ent manufacturing methods for beads, barcoding, and
c¢DNA amplification [94, 95]. In a recent study compar-
ing 10X Genomics and Smart-seq2 sequencing data from
CD45* cell samples [96] showed that Smart-seq2 was
able to capture more features within a single cell with

high sensitivity, in particular capable to detect those
cells with low-abundance transcripts and alternative
spliced transcripts [96]. Although 10X Genomics method
showed higher dropout rates and noise in lowly expressed
genes, this tool can detect more genes owing to its pref-
erable coverage of abundant cells, which therefore enable
the detection of rare cell populations. In another report,
Smart-Seq2 and 10X Genomics were combined to help
elucidate the landscape of immune cells and revealed the
dynamic status features in hepatocellular carcinoma [97].

Single-cell spatial transcriptome
Single-cell spatially resolved transcriptome technolo-
gies have been developed and improved rapidly in recent
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years, with a unique capability of capturing cellular spa-
tial distribution and revealing local networks of inter-
cellular communication acting in situ, which cannot be
achieved by scRNA-seq. Although there are numerous
spatial transcriptomic (ST) methods, current ST pro-
tocols can be generally divided into two major groups
according to their detection strategies. Most ST tech-
niques use either a spatial indexing or imaging-based
approaches to measure and quantify mRNA molecules
in situ. In spatial indexing approaches such as 10X Visium
and Slide-seq, barcodes are locally hybridized to RNA
molecules, then gene expression profiles are quantified by
NGS. This approach relies on polyA hybridization, which
pose a challenge in fresh-frozen and formalin-fixed par-
affin-embedded (FFPE) tissues as mRNA integrity varies
in these samples. Further solution on this issue is desir-
able as clinical samples are often stored in FFPE blocks.
Furthermore, achieving single-cell resolution remains a
technical and computational challenge. Imaging-based
approaches use fluorescent tagging of mRNA molecules
in situ, and high-resolution fluorescence microscopy
to detect and differentiate between single mRNA tran-
scripts. These methods can achieve single-cell resolution
but are still constrained by limitations on probe design,
and low in situ mRNA abundance and degradation.
Despite these challenges, ST technologies have added
a new dimension to single-cell omics and extensively
broadened our understanding of cancer biology.

The ST profiling and temporal lineage tracing enable
multi-faceted investigations into the surrounding envi-
ronment and molecular dynamics within a single cell
[31], thus add another layer of tumor heterogeneity
which might be critical for disease diagnosis, monitor-
ing and treatment in cancer research [98]. Attaching
spatial barcodes allows encoding and retrieving location
information of single cells, providing important and use-
ful information in research and disease diagnosis. For
instance, by positioning histological sections on spatially
barcoded microarrays, researchers were able to visual-
ize and quantify the transcriptome with spatial resolu-
tion in tissues of mouse brain and human breast cancer
[55]. By using this spatial-resolved method, the research-
ers found prominent tumor heterogeneity within a tumor
biopsy section, reflecting different subclones with vary-
ing genes expression patterns located in the same area
[55]. In addition, a recent study integrated scRNA-seq
and microarray-based spatial transcriptomics data from
pancreatic ductal adenocarcinomas (PDAC) samples,
and revealed that cancer cells with high expression of the
stress module colocalized with inflammatory fibroblasts,
which may contribute to therapy resistance [99]. Tumor
progression is a complex and dynamic process involving
multiple steps evolving from initiation, progression to
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the emergence of therapeutics resistance [100]. Defini-
tion of the molecular and temporal nature during these
processes is crucial to understand tumor biology and
develop effective therapeutics strategies. Lineage tracing
by nuclease-activated editing of ubiquitous sequences
(LINNAEUS) is a newly developed tool for lineage trac-
ing and has successfully applied to reconstruct lineage
trees in zebrafish [101]. CRISPR-Cas9 coupled single-cell
analysis was utilized in a KRAS mutant mouse model to
decipher a comprehensive spectrum of cancer cells [101].
This approach improved the sensitivity of low mutation,
and showed the ability to illustrate the detailed changing
of tumor subtypes, and allow tracking the spread pattern
of lung cancer cells [102]. These findings suggest that in
patients with KRAS mutations, targeted therapy may be
developed and clinical management could be improved
through these approaches [102]. Another study combin-
ing high-confidence clonal tracing and scRNA-seq led
to a detailed dissection of leukemic stem cells, providing
novel insights into the understanding of leukemia onco-
genesis and therapeutics [103].

Single-cell genomics

Single-cell genomics aims to extend our understand-
ing of genetics by bringing the research of genomes to
the cellular level. Thus, rare and unique mutations and
copy-number variations (CNVs) can be detected faith-
fully to reveal the clonal heterogeneity and evolution,
which may be involved in disease processes. Sequenc-
ing an entire genome of a cell requires whole-genome
amplification (WGA) by three major methods including
degenerate oligonucleotide primed PCR (DOP-PCR),
multiple displacement amplification (MDA) and mul-
tiple annealing and looping based amplification cycles
(MALBAC) [104]. DOP-PCR often yields low genome
coverage, which is pertinent to the exponential amplifi-
cation of PCR. MDA is considered to be the most suit-
able method for detecting single nucleotide variants
(SNVs) and insertions/deletions at the genome-wide
level, owing to its capacity to amplify the majority of a
human genome with a high-fidelity polymerase. MAL-
BAC achieves more accuracy for CNV detection and
a low false negative rate for SNV detection [104, 105].
High-throughput single-cell DNA sequencing (scDNA-
seq) using different sing-cell isolation strategies have
been developed by several commercial platforms [106,
107], thus providing higher scalability, allowing cell selec-
tion with lower costs, and offering more flexibility for
customized chemistry steps. At present, CNV profiling
is one of the most common applications of scDNA-seq.
Despite the high throughput (up to 10 K cells) achieved
by microdroplets (10X Genomics) and combinatorial
indexing for single-cell CNV profiling, these methods
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face challenges of lower data quality and limited genomic
resolution. By contrast, FACS, nanowells and microflu-
idic platforms utilizing tagmentation chemistry [108,
109] are able to provide much high-quality CNV data at
single-cell resolution, but provide modest throughput
(hundreds to 1,000 cells). Mutation detection presents
another major application of scDNA-seq, which requires
in-depth coverage of a certain mutation site. While early
studies carried out whole-genome or exome sequenc-
ing of single cells [110, 111], high cost prevented these
studies from profiling large number of cells. In order to
increase throughput and reduce costs, later approaches
aimed to profile targeted regions of the genome, such as
specific cancer gene panels [112, 113]. A microdroplets
approach have been developed and commercialized for
scaling up scDNA-seq [107], which conducts PCR ampli-
fication of single cells at hundreds of targeted genomic
regions. SCONAseq approaches provide a reliable resolu-
tion in examining clonal substructure and reconstruct-
ing clonal lineages during cancer evolution in the context
of premalignant status, metastasis and drug resistance.
Technologies for scDNA-seq are particularly helpful to
resolve mutual exclusivity and mutation co-occurrence
in different clonal subpopulations, which are difficult to
identified by bulk sequencing data [113].

Single-cell epigenomics

Research into epigenetic regulation at the single-cell
level has helped to define epigenetic landscape by profil-
ing DNA modifications, chromatin accessibility and his-
tone modifications. A variety of epigenomic sequencing
approaches at single-cell level have been developed, such
as single-cell reduced-representation bisulfite sequencing
(scRRBS) to measure DNA methylation [114], single-cell
chromatin immunoprecipitation followed by sequenc-
ing (scChIP-seq) to measure histone modifications [72]
and protein-DNA interactions [115], and single-cell
assay for transposase accessible chromatin sequencing
(scATAC-seq) to measure chromatin accessibility [69,
70, 116]. A major advantage of scATAC-seq compared
with scRNA-seq is that it offers greater insights into
gene regulation and transcription along with cell line-
age and identity information [117]. Transcript-indexed
ATAC-seq (T-ATAC-seq) approach was built by combin-
ing scATAC-seq with sequencing of the T cell receptor
(TCR) repertoire, which allows for studying both the epi-
genomic state and the TCR specificity simultaneously at
the single-cell level [118]. Apart from mapping chromatin
accessibility, investigating diverse chromatin modifica-
tions may provide further insights into epigenomic states.
Recently, a new method named single-cell cleavage under
targets and tagmentation (CUT&Tag) technology was
established to profile multiple histone modifications and
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DNA-protein interactions [73]. This novel technology
generates high-quality data with ultra-low cell inputs
compared to traditional ChIP-seq, and helps to study the
comprehensive histone modifications and dynamic regu-
latory interactions with high throughput and sensitivity
within each single cell [73].

For better understanding of genomic organiza-
tion, in situ genome sequencing (IGS) has been used
by researchers for simultaneous in situ imaging and
sequencing of the genomes within the same single cell
[119]. This process includes the construction of in situ
genomics DNA libraries, in situ sequencing of amplicons
and spatially localized sequences, amplicon dissociation,
PCR and ex situ sequencing of amplicons, revealing the
accurate localization of distinct DNA sequences. It is
clear that IGS presents a valuable mean of addressing
biological questions involving the relationships between
genomic architecture and disease [119]. Furthermore,
integrated high-resolution multiple annealing and loop-
ing-based amplify cycles was applied by another study to
analyze transcriptomic dynamics and define the three-
dimensional genomic architecture at single-cell level
[120]. Using this method, researchers can specifically
unravel the roles of transcriptomic and genomic architec-
ture during oncogenesis, as well as the interplay among
anatomy, function, transcription, and cell types along
with cancer progression [120].

Single-cell proteomics

Proteins are essential macromolecules that are respon-
sible for the main functional machinery within a cell,
including regulations of gene expression, signaling path-
way and catalytic reaction. Proteome measurements
based on mass spectrometry (MS) have historically been
limited to bulk samples containing thousands or millions
of cells. The rise of single-cell proteomics leads to an in-
depth and unbiased profile of protein expression within
single cells. This emerging technology is mainly based on
two methods: MS-based method, in which the proteomic
content of the cell is digested and analyzed; and antibody-
based method, which typically target a certain number of
predefined proteins [75]. The use of MS is the basis for
detecting and quantifying proteomes, but it is only useful
for identifying the most abundant proteins. By improving
protein preparation and isolation procedures, research-
ers have been able to decrease protein loss and perform
quantitative proteomics sequences at a single-cell reso-
lution. By combining the principles of MS with flow
cytometry, mass cytometry by time of flight (CyTOF)
uses metal isotope-labeled antibodies conjugated with
specific molecules on the cell surface or inside cells,
allowing for the examination of 100 specific proteins in
single cells [121]. Based on immunohistochemistry with



Chen et al. Biomarker Research (2023) 11:55

metal-labeled antibodies and CyTOF, imaging mass
cytometry (IMC) has been developed [122]. Through
IMC, up to 40 protein markers can be analyzed simulta-
neously, along with their spatial architecture and interac-
tions, which would be lost with traditional lysis of tissue
to single cells [123]. Furthermore, IMC can be performed
on paraffin-embedded tissue sections, making it useful
for retrospective analysis of patient cohorts with known
outcomes, ultimately benefitting individualized medicine.
Liquid chromatography-mass spectrometry (LC-MS)
is another technology for single-cell proteomics analy-
sis [124], which is a bioanalytical method for analyzing
proteins quantitatively and is widely used in drug devel-
opment and drug toxicology research. Furthermore, a
multiplexed single-cell proteomics (SCoPE-MS) method
has been developed to increase throughput by multiplex-
ing, and enhance peptide sequence identification using
an isobaric carrier [125]. As expected, the application of
single-cell proteomic sequencing will revolutionize the
pathological investigation, particularly when combined
with multi-omics platforms, such as transcriptomic and
genomic profiling at the single-cell resolution.

Single-cell multi-omics

Multi-omics single-cell methods interrogate multiple
levels of molecular information from a single cell, such
as DNA & RNA, RNA & protein, or three layers com-
bined [126]. By combining these methods, it is feasible
to gain deeper insight into genotype-phenotype relation-
ships and how genomics affects gene expression and pro-
tein level. For instance, the transcriptome and targeted
genomic regions can be simultaneously profiled within
a single cell, which allows to provide better coverage of
the targeted genomic loci for detecting SN'Vs, deletion
mutations as well as CNVs, which are related to drug
resistance in lung cancer [127].Quantification of the
transcriptome and DNA-protein interactome simultane-
ously in a single cell will lead to a better understanding
of the transcriptional changes during the process of DNA
binding to a specific protein, and such quantification
has been applied by scDam&T-seq [128]. Furthermore,
a new single-cell method named scM&T-Seq was devel-
oped for parallel sequencing of DNA methylome and
transcriptome in one cell, enabling in-depth analyses of
how epigenetic heterogeneity relates to gene expression
output at each locus [79]. Moreover, the transcriptome
and proteome can also be delineated simultaneously
using several technologies, such as CITE-seq [83], REAP-
seq [82] and RAID [84]. In a recent study, an integrative
pipeline using 3D imaging and the rapid clearing agent
FUnGI were used in breast cancer and demonstrated
that tumor clones were significantly reduced during
oncogenesis, with the luminal progenitor serving as the

Page 10 of 28

key cells of origin [129]. In conjunction with multicolor
lineage tracing and molecular analysis, LSR-3D imaging
offers crucial visual and spatial information within the
tumor to describe biological processes, highlighting the
nature of tumors with inherent plasticity. Future devel-
opments of these multi-omic SCS methods hold promise
for overcoming technical hurdles, thereby allowing their
widespread adoption in translational research in the near
future.

Applications of single-cell sequencing in MM
biology and pathogenesis

A growing number of studies have begun to investi-
gate the genomic, epigenetic, and transcriptional land-
scape in MM at the single-cell level, as summarized in
Table 2. Herein we summarized the recent SCS studies in
MM research and discussed the insights they have pro-
vided, which can be roughly categorized into three main
aspects: (1) clonal evolution and heterogeneity, (2) repro-
gramming of the BM microenvironment, (3) response or
resistant to anti-myeloma therapy (Fig. 3).

Understanding the heterogeneity of MM

MM is a clonal disease with strong inter- and intra-
tumoral heterogeneity, and these heterogeneities are
reflected genetically, epigenetically, and phenotypically
[5, 7, 143]. Intra-tumoural heterogeneity occurs when
different tumour cells within a patient display different
genetic or phenotypic characteristics. On the other hand,
inter-tumoural heterogeneity indicates genomic and
biological variations across different MM individuals.
In the search for potential target therapies, gene expres-
sion profiling is a widely used method to characterize
tumor phenotype in individual patients, however, most
cancers display intra-tumoral heterogeneity, which may
have impacts on drug response to specific therapeutics
and clinical outcomes. With SCS technologies, tumor
heterogeneity in myeloma can be assessed at a single-cell
resolution, enabling researchers to unravel the complex
biological nature of MM.

In the initial studies of scRNA-seq, samples were taken
from patients at multiple time points in order to trace
the dynamic tumoral evolution. In an early single-cell
whole-exome sequencing (WES) study of six patients
with t(11;14) MM, it was found that there were two to
six major subclones present at the time of the diagno-
sis of MM and the existence of clones with both linear
and branching evolution patterns [144]. As a result of
subsequent single-cell genomic efforts, SCS have been
applied to pursued molecular profiling of MM and its
premalignant stages, with higher resolution than con-
ventional NGS method. Recently, Liu et al. analyzed 14
MM patients throughout the disease progression by
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multi-omic combining bulk DNA and scRNA sequenc-
ing, and identified three patterns of clonal evolution,
including stability (from premalignancy to diagnosis),
and gain or loss (from diagnosis to relapse) [37]. Nota-
bly, by mapping PCs together with B cell lineage, they
found “B cell-like” plasma cell subpopulations that clus-
ter closely with B cells. This study provides an impor-
tant guide to delineate plasma/myeloma cells origin, and
motivates us go deeper into investigating myeloma cells
development and its implications in MM malignancy.

By examining scRNA-seq data from patients with
MGUS, SMM, MM, and light chain amyloidosis, the
authors found that myeloma heterogeneity persisted
throughout these different disease stages [33]. In addi-
tion, a recent scRNA-seq study of plasma cells from 26
patients at different disease stages revealed comprehen-
sive intratumor heterogeneity by capturing shared tran-
scriptional programs across patients, and demonstrated
that scRNA-seq is sensitive enough to detect latent
cytogenetic alterations in patients at asymptomatic stages
with low tumor burden [145]. These findings emphasize
the feasibility of applying scRNA-seq to detect changes
in BM myeloma cells earlier than methods implemented
currently in the clinic. Apart from human myeloma stud-
ies, a model of disease progression in Vk*MYC mice
was subjected to longitudinal single-cell depiction, and
revealed that tumors at early stage contained subclonal
CNVs which persisted throughout the disease progres-
sion [146]. More importantly, researchers identified a
tumoral program involving GCN2 stress response that
progressively activated during myeloma progression,
and indicated the potential role of GCN2 as a promising
therapeutic target [146]. These studies together highlight
the application of single-cell technologies to profile the
genetic and transcriptomic heterogeneity of tumor cells,
and emphasize the necessity for their combination in
studies aimed to explore disease progression of MM.

Multiple relapses and drug resistance are hall-
marks of MM [147]. In recent studies, scRNA-seq was
performed to extensively dissect MM resistance in
refractory/relapsed patients. Through single-cell tran-
scriptomic and chromatin accessibility profiling, Frede
et al. demonstrated coexisting transcriptional pro-
grams in single tumor cells of relapsed refractory MM
(RRMM) [36]. They detected six distinct expression
programs across RRMM patients including cell cycle,
different cell signaling pathways, including KRAS-
MAPK, IL-6-STAT3 and IL-2-STAT5 pathways, as well
as the interferon response. More importantly, pseudo-
time trajectories showed that myeloma cells exhibited
a higher developmental potential than normal plasma
cells, suggesting their lineage infidelity and plasticity.
They further demonstrated that standard treatment
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can reduce differential potential while increase regu-
lon activity, and CXCR4 may represent an attractive
therapeutic target, since clinical trials have already
tested CXCR4 antagonist for relapsed myeloma [148]
and use for other clinical applications [149]. In another
study published recently, scRNA-seq and variable-
diversity-joining regions-targeted sequencing (scVD]-
seq) were performed to showed the transcriptomic and
clonal diversity in newly diagnosed MM (NDMM) and
RRMM patients [34]. Similarly, they observed universal
intra-tumoral heterogeneity after identifying 8 meta-
programs covered diverse biological functions, includ-
ing the cell cycle that have been identified previously
[36]. Comparing to NDMM, RRMM-specific myeloma
cell clusters showed upregulations of the expression
signatures of several immature progenitors (e.g. MMP
and CLP) and representative target genes including
STMN1, TUBB, TYMS, TUBA1B and HMGNZ2, which
may contribute to relapse risk and dismal overall sur-
vival (OS).

In MM, clonal PCs accumulate in the BM, resulting in
bone destruction and focal lesions [143]. The number of
focal lesions served as a prognostic factor due to its cor-
relation with the disease progression [150]. BM samples
are collected mainly from the posterior iliac crest or from
the sternum. Limited by this invasive procedure, repeated
samplings are restricted. Nonetheless, Rasche et al. ele-
gantly revealed genomic heterogeneity spatially, which
was found in most of the patients at both chromosomal
and mutational levels [150]. For instance, del(17p) exhib-
ited spatial variation in two out of six MM patients. Pro-
gression events are frequently restricted to focal events,
however initiating events are uniformly spread. High-risk
disease distribution can be heterogeneous, and taking a
"snapshot" at diagnosis at only one locus misses impor-
tant information [151, 152]. Despite limited evidence of
spatial heterogeneity from whole-exome sequencing, a
recent report used scRNA-seq might provide potential
mechanisms by which myeloma cells induce osteolytic
lesions (OL) in one region, whereas other regions show
no indications of bone destruction despite subtotal infil-
tration. Beyond the characterization of inter- and intra-
tumor heterogeneity, the study identified OL-specific
differentially expressed genes like DKK1, HGF and
TIMP-1 compared to PCs from BM, and contributed to
the understanding of mechanisms underlying myeloma
bone disease [135].

Collectively, by integrated analysis of single-cell
sequencing, these studies elucidated multiple layers of
complexity regarding myeloma heterogeneity, including
inter- and intra-patient heterogeneity across disease pro-
gression from precursor stages to active MM and relapse
status, as well as additional spatial assessment in bone
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lesions. These data have proved fruitfully in resolving
intricate molecular dynamics of MM pathogenesis and
disease relapse by SCS technologies.

Uncovering the mechanisms of drug resistance

The main goals of anti-myeloma therapy are to achieve
greater depth of response and improve outcome of MM
patients. Drug-induced changes possess the potential to
reveal important insights into the molecular mechanisms
in action of chemotherapeutics. A better understand-
ing of the specific molecular signatures changed during
the course of treatment is key to understand the detailed
mechanisms behind drug response or resistance. With
the capacity to investigate tumour-intrinsic transcrip-
tome profiles, and tumour heterogeneity, scRNA-seq
analysis combined with dynamic sampling and detailed
genetic profiling could largely support the identifica-
tion of drug-response genes and the understanding of
drug-induced changes in the clonal dynamics. A recent
scRNA-seq analysis of BM cells derived from 20 RRMM
patients revealed that MM consists of diverse genetic
clones with marked transcriptional changes and clonal
dynamics before and after treatment [38]. Gain/amplifi-
cation of chromosome 1q (1q+) region has been shown
to be associated with poor outcomes of patients with MM
[153, 154]. Using scRNA-seq tool, Tirier et al. detected
rare subclones harboring 1q+that comprised ~2% of

the cells, and these cells cannot be separated into a cer-
tain transcriptional cluster, demonstrating the sensitivity
of SCS in detecting rare subclones in MM [38]. In clone
dynamics during treatment in RRMM, they found that
1q+clones often showed expansion or remained stable
and therefore displayed a compelling robustness anti-
myeloma drug in RRMM. Interestingly, by screening the
upregulated genes located in 1q, they found 18 genes
were exclusively detected by scRNA-seq, which were not
found in bulk RNA-seq, and these genes were associated
with various biological processes, such as apoptosis, pro-
teasome, and signaling from BME, which may explain
mechanisms of drug resistance in different treatment
strategies. Additionally, the 1q+ specific tumor program
can be used to faithfully detected 1q+ subclones with low
abundant before treatment, which could be exploited in
other scRNA-seq data sets of MM.

Longitudinal monitoring during treatment and remis-
sion allowed the researchers to evaluate disease sta-
tus, drug response and provide real-time notification of
clonal emergence or reduction for clinicians. SCRNA-
seq analysis can be incorporated with longitudinal sam-
pling and intensive genetic and transcriptional profiling,
which would bring a deeper understanding of treatment-
induced alterations in the clonal dynamics and identifi-
cation of drug-response genes. Masuda et al. performed
scRNA-seq on MM cells from a patient with relapsed
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MM by temporal sampling during multiple anti-MM
drugs [139]. Although only one sample was assessed,
they identified a distinct cell cluster which arose after
lenalidomide treatment and eliminated after PI treat-
ment. Further investigation identified a drug-responsive
gene, PELI2, which may confer PI sensitivity, and in vitro
experiments and computational analysis further con-
firmed that PELI2 presents a predictive biomarker of the
PI responsiveness in MM patients. This study highlights
the advantages of SCS in detecting myeloma cell popula-
tion with low abundance during therapy and examining
drug-induced cellular changes. These findings warrant
further research on more MM patients by utilizing SCS
approaches. In another recent study assessing drug
response in a larger sample size, scRNA-seq data were
collected from optimal responders (ORs) who achieved
the best response in CR or VGPR and suboptimal
responders (SORs) with best response of PR, MR, SD, or
PD. By comparing ORs with SORs, the authors identified
a 24-gene signature that upregulated in SORs, and further
validated its association with bortezomib responsiveness
and poor prognosis [140]. Additionally, our recent study
that performed scRNA-seq on MM samples during anti-
myeloma treatment, revealed dynamic changes in both
tumoral and microenvironmental programs, and high-
lighted the SCS derived-benefits for comprehensively
understanding overall and detailed features in myeloma
BM ecosystems during therapy [155].

Based on the capability of predicting drug response,
scRNA-seq can be used in clinical trials to predict resist-
ance and guide therapy development for resensitizing
tumors to treatment [131]. In this study, the authors
applied massively parallel RNA SCS framework (MARS-
Seq) on BM samples from a cohort of 41 individuals with
primary refractory MM (PRMM), who experienced pri-
mary resistance or early relapse after a first-line borte-
zomib-based agent [131]. These patients were enrolled in
the KYDAR trial and treated with a combination agent:
daratumumab, carfilzomib, lenalidomide, and dexameth-
asone (DARA-KRD). Through exploring drug resistant
mechanism, the authors found 66 differential expressed
genes that could be clustered into 3 modules with capac-
ity to distinguish PRMM from NDMM, and integrat-
ing both >double hit and module 1-high in multivariate
analyses was found to increase the prediction power of
examining patients’ outcomes. Moreover, by compar-
ing responders and non-responders during DARA-KRD
treatment, they generated a resistance signature, which
contained substantial overlap genes with module 1 and
suggested that this newly discovered resistant signatures
may be relevant throughout the course of several lines of
therapy. Clinical utility of these signatures might facili-
tate to predict the risk of drug resistance in a group of
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MM patients. This approach could be implemented using
routine methods such as qPCR and also by machine
learning-based method. Another implication of this
study is that by combining longitudinal scRNA-seq and
clonal analysis using B-cell receptor sequencing (BCR-
seq), they were able to score a single clone in every tumor
and detected small resistant clones that appeared dur-
ing treatment. Thus, this study presents a framework for
developing a drug-resistance atlas that could revolution-
ize clinical practice in the future.

Dissecting bone marrow microenvironment

The interplay between myeloma cells and the BME is
crucial for tumor development, treatment and disease
progression [11, 156—158]. Several cell types in BME
including stromal cells [159, 160], osteoblasts [156, 161],
osteoclasts [161], immune cells [13, 162, 163] (e.g., B cells,
T cells, natural killer cells, monocytes, myeloid-derived
suppressor cells) and endothelial cells [156, 164] present
in the BM and generate a unique milieu that favors MM
cells immune evasion, bone disease and promotes drug
resistance. Reciprocal interactions between the various
compartments in BME and the MM cells are essential to
regulate differentiation, migration, growth and survival
of the malignant plasma cells. In-depth understanding
of the tumour ecosystem and cell-cell interactions could
faithfully provide insights for developing novel and more
effective therapeutics for MM patients. One limitation
of traditional genomic studies is that they are focused
on the myeloma cells only and thus ignore the complex
interactions with microenvironment. Single-cell technol-
ogy is a powerful approach to investigate the sophisti-
cated TME and can be exploited for precision medicine
and overcoming treatment resistance. Here, we briefly
introduce several key studies performing SCS approaches
to explore TME in MM.

Tcells

T cells play central roles in anti-tumor immunity. In
recent years, a variety of reports have revealed quantita-
tive and functional T cell abnormalities in MM patients
[165-168]. Early study on T cell subsets revealed three
major abnormalities of T cells in myeloma, includ-
ing (1) the emergence of cytotoxic T cell harboring the
senescence-associated secretory phenotype (SASP) [166,
167]; (2) increase in the ratio between the regulatory
T (Treg) cell and T helper 17 (Th17) [169, 170]. (3) the
acquired Treg leading to immunosuppression [169, 171].
Single-cell profiling has allowed high-resolution map-
ping and comprehensive analysis of T cell heterogene-
ity and function. In an early study of MM that utilized
scRNA-seq on patient-derived BME samples (CD138~
or CD45™ cell populations) from patients with MGUS,
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low-risk or high-risk SMM, and active MM, the authors
revealed early alterations in immune cell composition at
the precursor stages, with substantial T cells enrichment
in particular [39]. This study demonstrated a shift from
the manifestation of less-mature cytotoxic memory T
cells with high GZMK expressing in non-malignant and
MGUS patients, to an enrichment in more-mature cyto-
toxic memory T cells with GZMB expression at the SMM
and MM stages. Later in vivo experiments using C57BL/
KaLwRij mice with 5TGM1 cells injection revealed
that this transition may reflect a mechanism that drives
immune evasion during disease progression of MM. In
regard to dissect T cell atlas and function in precursor
stages, another SCS study of T cells from MGUS, SMM
to active MM was conducted [172]. To increase the sam-
ple size, the authors combined their in-house data with
samples from a published SCS data set [39] to perform
a meta-analysis. They found that the anti-tumor immune
response showed a decline from MGUS, SMM to MM,
evident by a general decrease in naive and memory CD4*
T cells and an increase of Treg together with CD8™ Eff 2
cells with an inhibitory phenotype. These two single-cell
studies jointly demonstrated that early alterations of T
cell populations have arisen in asymptomatic conditions
of MGUS and SMM stages [39, 172]. Identifying the early
immune events that promote MM progression by single-
cell technologies will help to stratify patients based on
their risk of progression, and offer therapeutic opportu-
nities for early intervention.

Except for these quantitative changes, MM patients
also exhibited relevant defects of T cell functions. Early
studies showed that under the influence of TGE-p,
released by regulatory immune cells and myeloma cells,
T cells presented a remarkable reduction in IL-2-medi-
ated autocrine proliferation [167], and diverse signal-
ing impairment, including the downregulation of CD28,
CD152, p56lck, ZAP-70, and PI3K, which were found
in both CD4" and CD8"% T cells in MM patients with
advanced-stage [173]. A combined analysis of scRNA-seq
and mass cytometric assay on immune cells in the MGUS
and MM showed that during disease progression, T cell
clusters with stem-like and tissue-resident signature,
were depleted during MGUS-to-MM progression [174].
In particular, more substantial T cell exhaustion and
senescence at the tumor site (BM) were observed than
peripheral blood (PB) by expressing multiple molecules
related to exhaustion (PD-1, CD160, 2B4, CTLA-4) and
senescence (CD57, lack of CD28) [166]. Additionally,
these T cells displayed reduced proliferative capability,
defective cytotoxicity, and disability in IFN-y produc-
tion after antigen stimulation. In another report with in-
depth immune checkpoints phenotyping of BM T cells
in MM using mass cytometry-based single-cell analysis,
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Wang et al. confirmed higher expression of these con-
ventional immune checkpoints in T cells and ligands in
myeloma cells from MM patients compared with healthy
donors (HDs), as well as several newly identified immune
checkpoints including LAG3, Tim-3, and TIGIT [175].
Notably, a recent scRNA-seq study refined the molecu-
lar features of T cell by comparing MM patients with
different bortezomib treatment responses [140], and
the authors found that dysfunctional T cells expressing
exhausting genes (PD-1, TIGIT, TIM3, CD244, LAGS3,
CTLA4 and TOX) were enriched in SORs compared to
the ORs patients. Moreover, an upregulation of LAG3,
KLRG1, CD47 and IFNG which have been previously
linked to dysfunctional T cells in RRMM patients, point-
ing to the key roles of T cell dysfunction in drug resist-
ance. In the immune cell populations that play roles in
the tumor microenvironment, innate-like T cells express-
ing T cell receptors composed of y and § chains (y& T
cells) are of particular interest, and previous reports have
demonstrated their impaired immune function during
MM disease progression [176]. Interestingly, Tirier et al.
showed that among all T cell populations, the highest
expression of the exhaustion signature was detected in
y® T cells of RRMM patients by upregulating expres-
sions of multiple inhibitory receptors, including LAG3,
KLRGI, VSIR and TIGIT [38]. And in some patients,
this exhaustion signature showed increased after treat-
ment. By exerting antigen-driven cytotoxicity against tar-
get cells in an MHC-independent fashion, y0 T cells can
recognize a broad variety of antigens to exert their potent
and broad anti-tumour activity [177]. The findings of
exhaustion of y§ T in RRMM and other infiltrated tumor
tissues [178-180] suggest that these cells have a simi-
lar ability to respond to immune checkpoint inhibitors
(ICIs) as traditional effector T cells. Thus, we can expect
that reinvigorating yd T cells by targeting inhibitory mol-
ecules might be beneficial for developing novel effective
immunotherapies.

Recent studies have illustrated that defective metabolic
flexibility related to cancer cells can lead to an inefficacy
in anti-tumor immune response and linked to cancer
progression [181-183]. The impaired energetic metabo-
lism also involved with the myeloma oncogenesis and
clinical outcomes of MM patients [184]. In a recent study,
Lv et al. performed scRNA-seq on immune cells from
NDMM and HD, and found that CD8* T effector cells
and natural killing (NK) cells with high tumor infiltration
exhibited distinct metabolic features with comparison
to those with low tumor infiltration and HD [185]. The
abnormal metabolism was reflected by impaired metab-
olism amino acid including arginine, proline, glycine,
serine metabolism and enhanced glycolysis/gluconeo-
genesis, oxidative phosphorylation and lipid metabolism
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in CD8-XCL2 memory T cells and CD8-GNLY effector
T cells. The finding of defective metabolism was depend-
ent on pathway analysis, further functional investigation
would be needed to confirm the observations and dissect
the detailed underlying mechanisms. The authors also
revealed an upregulation of PIM kinases in effector CD8
T cells, supporting that targeting PIM kinases served as
a feasible strategy to restore the immune cells function
through metabolism regulation.

Chimeric antigen receptor (CAR) T-cell therapies have
achieved impressive efficacy in MM but also bring its
own set of challenges including durability of CAR-T cells,
toxicities and therapeutic resistance [186—188]. A recent
study performed single-cell genomic on temporal sam-
ples from a MM patient who relapsed after initial anti-
BCMA CAR-T cell treatment [137]. The authors reported
a clone selection with acquired deletion of BCMA, which
resulted in lack of CAR-T cell proliferation following
the second infusion, supporting the notion that antigen
escape is one of the possible causes of CAR-T therapy
failure [186, 189]. Interestingly, a recent study demon-
strated that CAR level played a critical role in CAR-T cell
activity with notable influence on clinical response [136].
To better understand the heterogeneity of CAR-T cells
and the influence of CAR density on the transcriptional
profile, the authors performed scRNA-seq and identified
23 clusters of CAR-T cell populations and observed that
CARM#M T cells mainly localized within activated CD4*
cells. Furthermore, in the CD8" T cell subset, CAR™h T
cells showed a pre-exhausted feature. They then demon-
strated that CAR density was associated with differential
activation of regulatory networks, evident by activation
of transcription factors NR4A1l and MAF, low active
SATBI1 regulon in CARM#" T cells, which could explain
their exhausted phenotype. Therefore, single-cell omics
enables the high-resolution molecular characterization of
the activation and functional states of T cells, thus hold-
ing great potential for understanding CAR-T cell behav-
ior. Given the very active clinical research on CAR-T cells
in MM ongoing currently [188, 190, 191], we expect that
in the near future, SCS could become a standard tool for
clinical monitoring cell states and developing more effec-
tive CAR-T cell therapies.

NK cells

NK cells have been identified as the primary effector cells
of innate immunity [192-194]. Numerous studies have
demonstrated the significance roles of NK cells in killing
cancer cells or in tumor progression regulation [193, 195,
196]. Impairments of NK cell maturation, chemotaxis,
cytokine production, and expression of effector mol-
ecules have been described in the context of MM [197,
198]. Therefore, restoring or enhancing the cytotoxicity
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of NK cells for MM treatment has become one of the
key topics in recent years. In the first scRNA-seq study
analyzing the alterations in immune microenvironment
along MM progression, the authors identified 3 major
NK subpopulations including CXCR4" NK, CX3CR1*
NK and a less frequent CD56"#" NK population, and
showed that NK cell proportion is frequently increased
in the precursor stages indicating an early onset of an
immune response [39]. Another recent study applied
scRNA-seq to profile CD56" NK cells from NDMM
BM samples, have also acknowledged the CD56"rght
NK population [133]. They further revealed three novel
NK cell populations at single-cell level: adaptive NK-
cell cluster characterized by high expression of KLRC2
and low expression of FCERI1G, the terminal NK cluster
expressed ZEB2 and B3GAT1 genes, a NK-HSP cluster
characterized by the high expression of genes for heat
shock protein (HSP), which was considered as stressed
NK cells due to sample freezing and thawing. The uncov-
ered population of adaptive NK was also identified in a
recent study utilized scRNA-seq to dissect TME of MM
patients receiving bortezomib-based treatment [140].
Their further investigation demonstrated that unlike
conventional NK cells, adaptive NK cells displayed dis-
tinct immunophenotypic features with low expression of
inhibitory receptors such as killer cell immunoglobulin
like receptor (KIR), TIGIT and NKG2A. More impor-
tantly, with daratumumab treatment, adaptive NK cells
from NDMM patients exhibited enhanced cytokine
production and increased degranulation compared with
conventional NK cells, suggesting that adaptive NK cells
serve as an important mediator of antibody-dependent
cellular cytotoxicity (ADCC) in MM.

Through conventional measuring methods, such as
flow cytometry and bulk RNA-seq, the exhausted pheno-
type of NK cells in MM has been described in previous
studies, reflected by expressions of immunosuppres-
sive molecules, such as PD-1 [199, 200]. However, the
detailed mechanisms driving NK exhaustion in mye-
loma have not been completely elucidated. Innovative
studies are needed to dissect molecular mechanisms
involving NK cell dysfunction. In order to characterize
potential mediators of NK-cell exhaustion, our previ-
ous study performed single-cell transcriptome profiling
on NK cells from MM patients and HD, and identified
a distinct NK subset that enriched in MM patients [35].
This MM-specific NK cluster exhibited exhaustion phe-
notypes by upregulating inhibitory receptors including
LAG3, KLRG], and KIR. More importantly, we further
identified a vital transcription factor ZNF683 that might
be responsible for the NK-cell exhaustion. Mechanisti-
cally, ZNF683 can directly suppress SH2D1B (EAT-2)
expression, thus disrupting EAT-2/SLAMF7-mediated
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activating signals and eventually promoting NK cell
exhaustion. Likewise, a ZNF683" NK cell subset was also
found in nonkeratinizing nasopharyngeal carcinoma
exhibiting similar exhausted phenotypes with upregu-
lated LAG3 and TIGIT expressions [201]. These consist-
ent findings lead to a confirmation of ZNF683*NK cell
present in cancer context and highlight potential roles of
ZNF683 in regulating NK cell function. These findings
were uncovered mainly based on scRNA-seq profiling
on NK cells in both studies, and we believe it may largely
rely on the sensitivity of single-cell technology in captur-
ing low abundant cells that conventional methods cannot
provide.

Monocytes/macrophages

Among the most important regulators of inflammation,
monocytes and macrophages play important roles in
cancer-associated inflammation [202, 203]. Their criti-
cal roles in tumor progression have been extensively
described in solid tumors and hematological malignan-
cies, including MM [204, 205]. Indeed, it has been pro-
posed that within the BME, tumor-associated monocytes
and macrophages (TAMs) are able to protect MM cells
from treatment-induced apoptosis, promote angiogene-
sis and immune evasion [206]. In addition, several studies
confirmed the roles of TAM in contributing resistance to
common anti-MM regimens such as melphalan or bort-
ezomib [207, 208].

Currently, a number of surface markers have been used
to characterize TAMs (including CD14, CD68, CD163
and CD206), and two major functional macrophage
states have been identified: M1 (inflammatory or “clas-
sically activated”), activating during infections and M2
(suppressive, “alternative pathway”) involving in wound
healing and angiogenesis. Notably, M1 and M2 mac-
rophages should be considered as two extremes instead
of a continuum, however TAMs often exhibit a mixed
transcriptional profile [209-211]. Consistently, a recent
study applied scRNA-seq to dissect TME during disease
progression of myeloma, and found that reprogrammed
TAMs displayed a mixed phenotype with both M1 and
M2 features. They also identified two TAM clusters exclu-
sively emerged in the MM stage and exhibited higher M2
scores, suggesting higher pro-myeloma activity of these
TAMs clusters [142]. Besides, a similar polarization pat-
tern has also been observed in monocytes. In particular,
three major subsets are recognized including classical
(CD147CD167), intermediate (CD14%/~ CD16°%), and
non-classical monocytes (CD14"CD16"), and the lat-
ter subset is considered to harbor a tumor-promoting
phenotype [212]. In the absence of standard detection
tool, the TAMs percentage within BM of MM patients
has been found to be highly variable (ranging from near
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0 up to 25%). TAMs frequency displays an increase dur-
ing the development from MGUS to MM, and patients
with a high CD163" and CD206" TAM infiltration are
associated with worse prognosis [205, 213]. A recent
scRNA-seq study reported that even though reduced
in MGUS compared to advanced stages, mature mono-
cytes/macrophages are already impaired, presenting a
phenotypic transition resulting in the loss of MHC class
II surface representation affecting their antigen-present-
ing capability [39]. Another scRNA-seq study on RRMM
patient samples also revealed 3 distinct TAM clusters,
in which TAM cluster 3 showed a unique profile with
specific expression of immunosuppressive genes (e.g.,
CD84 and VSIG4) [38]. Additional immune cell interac-
tion networks showed that TAMs presented as nodes of
high connectivity with other immune cells in TME, and
IL18R1/IL18RAP was identified as an immunosuppres-
sive interaction between TAM3 and NKP" 8" cells [38].

Dendritic cells

Dendritic cells (DCs) are vital antigen-presenting cells
(APCs), which serve as a bridge between innate and
adaptive immunity in response to various pathogens
[214]. These cells can be distinguished into two sub-
groups based on their function: conventional DC (cDC)
and plasmacytoid DC (pDC). DCs have been found play-
ing crucial roles in the pathogenesis and disease progres-
sion of MM [215, 216]. There is a significant difference
between MM patients and HDs, with a near 50% reduc-
tion in myeloid DCs and pDCs in PB [216, 217]. Inter-
estingly, the evolution from MGUS to MM is linked
to increase in both ¢cDCs and pDCs from the BME. As
a consequence of MM, DCs also display a significantly
altered immunophenotypic profile [215]. The expres-
sion levels of CCR5, CCR7 and DEC205 down-regulated
on DC subtypes in MM compared to those from healthy
individuals [217]. Downregulation of CCR5 and CCR7
impairs DC migration to inflammation sites, whereas
reduced DEC-205 expression dampens antigen uptake.
Recent studies in transcriptomics have moved beyond
expression arrays of bulk populations to single-cell profil-
ing, helping to identify novel surface markers, reveal het-
erogeneity within subpopulations and to identify rare but
crucial DC subclusters. A recent single-cell study iden-
tified four DC subclusters in BM samples from NDMM
and HDs, in which ¢cDC2 showed a reduction in MM
patients compared with HD samples. And ¢cDC1 popula-
tion showed higher expressions of MHC I/II molecules
and inflammatory cytokines and chemokines in MM
with low tumor infiltration than MM with high tumor
infiltration group [185]. These findings imply that anti-
gen presentation still can be triggered by cDCI1 in the
context of low myeloma cell infiltration, but suppressed



Chen et al. Biomarker Research (2023) 11:55

with the increased myeloma cell infiltration. Further
pathway analysis suggested that the metabolic pattern of
cDC1 was affected by high level of myeloma cells. pDC is
a unique DC subset defined by its essential properties of
secretory plasmacytoid morphology and abundant endo-
plasmic reticulum, and key roles in antiviral responses
by producing type I interferon (IFN) [218]. This “non-
canonical” DC subset have been reported to accumulate
in the BM of MM patients, and these pDC failed to stim-
ulate T-cell proliferation but supported malignant cell
growth and survival by direct contact with myeloma cells
[219]. Recently, Tirier et al. generated scRNA-seq profiles
from 20 RRMM tumour samples to analyze the impacts
of treatments on BME cell type abundance and pheno-
type [38]. They found pDCs showed an expansion upon
IMiD-based treatment, as well as exhibited upregulation
of inhibitory receptors including LGALS9, CLEC4A and
CD300A in pDCs from RRMM. These data suggested
that a remodeling pro-tumorigenic phenotype of pDC
contributes to RRMM immunosuppression and resist-
ance to IMiD-based treatment. Therefore, these studies
confirm that targeting pDC-MM interplay offers a prom-
ising therapeutic strategy for overcoming drug resistance
in MM.

Collectively, the DC impairment in MM leads to dys-
functional capability of antigen presentation and pro-
tumor activity. Through improved understanding of
the interactions between myeloma cell, cDC and pDC
via single-cell methodologies, targeting the crosstalk
between these cells may pave the way to successful DC-
targeting immunotherapies in the future.

Mesenchymal stromal cells

As an important component of the nonimmune micro-
environment, mesenchymal stromal cell (MSC) has
been reported to promote MM proliferation and induce
drug resistance [160, 220]. Despite great enthusiasm
in exploring the roles of MSCs in MM progression, the
low frequency of MSCs in BM aspirates has hampered
detailed investigations into the roles these cells. A recent
scRNA-seq report conducted by de Jong et al. presents
the first study using scRNA-seq to profile MSCs, as well
as immune and myeloma cells, from patients with MM
and healthy individuals to comprehensively dissect the
microenvironment crosstalk in MM [132]. Using sam-
ples with over 200 million mononuclear cells and MSC
enrichment allowed the authors to profile ~1,000-1,500
MSCs per patient. They identified total five MSC subsets,
two of which (MSC1 and MSC2) were termed as iMSCs
and were nearly exclusive to the MM samples. These cells
were characterized by expressing inflammatory cytokines
and chemokines, including several MSC regulators
reported previously, such as IL6, CXCL8, CXCL2, PTGS2
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and VEGFA, proteins involving in the tumor necrosis
factor (TNF) pathway and CCL2, which has been shown
to support myeloma cell migration via interacting with
CCR2 [220-222]. Additionally, these iMSC subpopula-
tions also expressed genes encoding CXCL5, CXCL3
and CD44, and the later one has been suggested as an
iMSC marker in flow cytometry analysis. De Jong et al.
demonstrated that IL-1B and TNF receptors were iden-
tified as key phenotypic mediators of iMSCs, which was
further confirmed by the IL-1p and TNF induced activa-
tion of MSCs in vitro. The authors further investigated
the intercellular crosstalk between MSC and immune
or myeloma cells, and they found that TNF and IL-1p
were mainly expressed by cytotoxic T cells, NK cells and
monocytes respectively. Aside from communicating with
myeloid subsets, iMSCs committed with proliferating
MM cells via the CCL2-CCR2 signaling pathway. More
importantly, they demonstrated that stromal inflamma-
tion in myeloma BME induced by immune cells persisted
even achieving successful induction therapy, indicating a
potential effect of iMSCs in myeloma relapse.

Taken together, high-throughput SCS technologies
enhance the ability of researchers to comprehensively
characterize the cellular heterogeneity, temporal/spatial
evolution of tumor cells and infiltrated immune and stro-
mal cells in MM. These approaches provide insights into
the mechanisms of drug resistance, immune suppression,
and disease relapse in individual MM patients, thereby
contributing to develop more effective and personalized
anti-myeloma therapeutics.

Future perspectives and directions

Our understanding of myeloma biology has been
improved dramatically, owing to the rapid develop-
ment and application of single-cell technologies.
Some remained fundamental questions in myeloma
research can be further explored by SCS. First, MM is
an extremely complex disease whose origin and inherit-
ability remain controversial and require detailed inves-
tigation. To explore myeloma origin, a comprehensive
strategy for the identification of MMSCs could be aided
by advanced SCS techniques. Owing to its ability to cap-
ture rare cell population with high-purity, and to unravel
initiating point along the differential trajectory, SCS
holds promise to detected the MMSCs population and
identify its real markers. Indeed, scRNA-seq have been
utilized to unravel the hierarchies of tumors and their
progenitor cancer stem cells (CSCs) in many cancer types
[223-227]. In addition to application in deciphering
tumor origin, sScCRNA-seq can also be used to characterize
unknown features of CSC subtypes, such as its hetero-
geneity, unique stem/stem-like features [103, 228, 229],
which will provide novel insights into the underlying
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mechanisms of CSC mediated self-renewal and drug
resistance. Second, single-cell profiling of myeloma cells
and the surrounding immune/stromal cells enables the
characterization of the sophisticated BM ecosystem,
specially the complex crosstalk inferred from scRNA-
seq data via predicting interactions of ligand-receptor
pairs between different cell subsets. Novel approaches
are also being developed to allow the investigation of
physical intercellular interactions, especially the spatially
resolved scRNA-seq methods. These attempts will bring
a better understanding of the intricately cellular interac-
tions within the BME. Besides, single-cell T cell recep-
tor sequencing (scTCR-seq), with the capability to track
each T-cell clone through paired sequencing of the T-cell
receptor genes, can be integrated with high-dimensional
single-cell spatial analysis, which has become particularly
relevant to immuno-oncology [29]. And combination of
scRNA-seq and scTCR-seq offers an effective method
to analyze the phenotypic and functional characteristics
of immune cells during disease progression or over the
course of treatment. Third, high throughput spatial tech-
nologies are particularly suitable for BM and extramed-
ullary exploration of MM, which presents a spatially
divergent disease with multi-region genomic heterogene-
ity [135, 150]. Combined with imaging modalities, spatial
transcriptomic techniques will be able to add important
information on cellular location within the bone niche,
contributing to a better understanding of myeloma
bone disease. Extramedullary disease (EMD) presents
an aggressive form of MM, which is linked to high-risk
genomic alterations, increased proliferation and poor
survival [230]. Innovative technologies recently revealed
a complex spatial architecture of solid tumors [231-234]
marked by multicellular niches supporting tumor growth
or preventing immune cell infiltration. However, whether
these observations hold true for EMD is largely unknown.
Thus, investigating the EMD microenvironment in a spa-
tial context using spatial omics technologies will provide
a deeper understanding of ecosystems outside the BM
and underlying mechanisms involving extramedullary
spread.

SCS technologies also offer powerful tools for unbi-
ased discovery of novel drug targets for MM treatment.
For example, Frede et al. showed that in RRMM patients,
treatment induced significant changes in chromatin
accessibility by scATAC-seq, and they identified a sur-
face protein CXCR4 as an attractive candidate as surface
markers that can be targeted by immunotherapy [36].
Furthermore, another study that paves a way for incor-
porating scRNA-seq in clinical trials, identified PPIA as
a potent therapeutic target to overcome resistance [131].
A multi-omics tool called scDAb-seq was generated
[235] by combining of scDNA-seq with surface protein
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mapping (AB-seq [236]), which enables the characteri-
zation of both genotypic and phenotypic features. Using
this elegant assay, it’s possible to determine the proteog-
enomic profile of clones at specific stages. Additionally,
this approach allows researchers to determine the vast
cell-surface proteome or “surfaceome” that regulates
direct or indirect cell-cell interactions, ligand-receptor
induced signaling, presentation of MM-specific antigens
for immunotherapy. Impressive progresses have been
achieved on determining myeloma cell surface proteome
and enable unbiased discovery of novel therapeutic tar-
gets [237, 238]. CyTOF offers a new cytometric method
for deep profiling single-cell protein on myeloma cells
[37, 239] and immune populations [141, 240, 241]. Given
the great success in immunotherapy in myeloma, we
believe that application of single-cell proteomic sequenc-
ing will revolutionize the research in cancer pathology,
especially when combined with multi-omic platforms,
such as genetic and transcriptomic data at a single-cell
resolution, and more importantly, dramatically contrib-
ute to identify novel targets for MM immunotherapy.
Preclinical models including human-derived cell lines
[242] and mouse models [243] represent solid platforms
for drug testing and investigation of disease mechanisms.
Owing to technological advances, single-cell omics have
been employed in numerous studies using clinical sam-
ples and preclinical models to investigate various patho-
logic conditions [244—-247]. Inter-patient heterogeneity
remains a key barrier to transform the preclinical findings
into the clinic, with some of the patients failed to benefit
from new drugs in clinical trials. With the power to dis-
sect tumor heterogeneity, SCS can be applied in different
model systems and provides rich information related to
genomic, phenotypic heterogeneity and tumor evolution,
thus promoting precision medicine. In the condition of
MM with genetical diversity, it’s hard to recapitulate all
the clinical queries by preclinical models. A recent study
represents an excellent example of preclinical research by
establishing fifteen genetically engineered mouse models
that covered the keys factors during MM pathogenesis,
including diverse genetic heterogeneity, disease progres-
sion and BM microenvironment changes [248]. Their
integrative results from coupled scRNA-seq and TCR-
seq highlighted the values of applying high throughput
SCS on mouse and patient samples to test and predict
response to immunotherapy drug combinations. There-
fore, with innovations in unprecedented resolution and
unbiased insights from SCS, preclinical models will accel-
erate our ability to answer fundamental and pivotal ques-
tions from bench to bedside, and to reproducibly apply
these technologies across cancer patient populations.
Beyond being exploratory tools, SCS technologies can
undoubtedly achieve more values when translated and
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adopted into clinical practice. Regarding the clinical util-
ity, in our view, SCS assessments should be conducted
based on the clinical needs, thus help to resolve problems
encountered in the clinic. For instance, accurately moni-
toring measurable residual disease (MRD), identifying
high risk patients and overcoming drug resistance rep-
resent three of the major unmet medical needs in MM.
For the MRD measurement, a recent study has developed
a single-cell MRD (scMRD) assay by combining flow
cytometric enrichment of the targeted precursor/blast
population in AML samples with integrated scDNA-seq
and immunophenotyping, and achieved significantly
high sensitivity [249]. This attempt encourages us to
test single-cell based MRD monitoring on MM patients,
which would be particularly helpful in disease monitor-
ing. High-risk MM (HRMM) patients have been shown
to have poor prognosis, thus accurately identifying high-
risk features is a critical issue in MM. Genomic charac-
terization of functional HRMM patients was proposed in
a recent report [250], suggesting that factors outside of
the myeloma cells may be critical for us to recognize the
real HRMM. Thus, we can expect that comprehensively
profiling both tumor cells and immune/stromal cells by
single-cell approaches holds a great potential for this pur-
pose. RRMM patients remain hard to treat, mainly due
to drug resistance. The great power in predicting drug
resistance in MM patients by scRNA-seq has been shown
in a recent multicenter clinical trial [131], which offers
a blueprint for applying SCS in clinical trials to build a
drug-resistance atlas, and to promote biomarkers discov-
ery for novel therapeutics [251].

However, applications of current SCS approaches out-
lined in this review are confronting with costs and tech-
nological challenges, which impeding our next step on
the road to the clinic. By far the most expensive part of
SCS is the sequencing itself. With the rapid advance-
ments in sequencing technologies and exploitation of
cost-reduction strategies, we believe that the sequencing
costs will continue to reduce. Besides, there are several
important frameworks and infrastructure are required
for clinical use, including: (1) introducing standard-
ized analytic pipelines and quality-controlled workflows
when dealing with large amount of SCS data. In particu-
lar, batch effects should be carefully examined and cor-
rected to bring reliable clinical results; (2) controlling
false positive or negative rates. SCRNA-seq and scDNA-
seq data would generate false negative or positive results
due to the data sparsity [252], coverage nonuniformity
and allelic dropout events [253]. Thus, it’s necessary to
select computational methods to reduce potential false-
positive/negative errors. (3) establishing clear biospeci-
men collection and processing procedures based on the
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experimental design and goals, such as what types and
formats (fresh, snap-frozen and/or FFPE) of samples
should be collected, optimal timepoints to collect and
how sample materials should be stored; (4) developing
devices or systems that automate these SCS technolo-
gies and are compatible with existing clinical laboratory
workflows, thus saving time and reducing labor efforts;
(5) specializing core facilities that enable secure big-
data storage and enhancing collaboration between cli-
nicians and translational scientists; Together, with the
rapid advancements and further technical improvements
of SCS technologies, we will be able to make single-cell
assessments feasible for real-world applications in the
coming years.

Conclusion

In closing, SCS technologies have already revolutionized
many aspects of cancer translational research and are
prepared to have a greater impact in clinic. As the last
decade has seen NGS technologies transform modern
oncology, we believe that single-cell methodologies will
influence many areas of MM medicine in the same way,
and will become a powerful tool that can be implemented
for clinical practice. Over the coming years, emerg-
ing technologies such as spatial SCS and multi-omics
approaches will further expand their utility in myeloma
research, and bring benefits for MM patients on person-
alized medicine and precision prevention. Overall, we
expect that the implementation of single-cell technolo-
gies in myeloma medicine over the next decade will bring
huge improvements in the clinical translation and treat-
ment of MM patients.
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