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Single‑cell technologies in multiple 
myeloma: new insights into disease 
pathogenesis and translational implications
Mengping Chen1†, Jinxing Jiang1† and Jian Hou1* 

Abstract 

Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of plasma cells. Although 
therapeutic advances have been made to improve clinical outcomes and to prolong patients’ survival in the past 
two decades, MM remains largely incurable. Single-cell sequencing (SCS) is a powerful method to dissect the cellular 
and molecular landscape at single-cell resolution, instead of providing averaged results. The application of single-cell 
technologies promises to address outstanding questions in myeloma biology and has revolutionized our understand-
ing of the inter- and intra-tumor heterogeneity, tumor microenvironment, and mechanisms of therapeutic resistance 
in MM. In this review, we summarize the recently developed SCS methodologies and latest MM research progress 
achieved by single-cell profiling, including information regarding the cancer and immune cell landscapes, tumor het-
erogeneities, underlying mechanisms and biomarkers associated with therapeutic response and resistance. We also 
discuss future directions of applying transformative SCS approaches with contribution to clinical translation.

Keywords  Multiple myeloma, Single-cell sequencing, Tumor heterogeneity, Tumor microenvironment, Clinical 
translation

Introduction
MM is a hematological cancer characterized by uncon-
trolled proliferation of malignant plasma cells (PCs) 
in the bone marrow (BM) which remains largely incur-
able [1]. MM accounts for around 10% of hematologi-
cal cancers with about 155,688 patients to be diagnosed 
worldwide per year [2]. The survival in MM patients has 
significantly improved over the past decade [3], owing 
to the introduction of effective novel regimens includ-
ing proteasome inhibitors (PIs), monoclonal antibodies 

and immunomodulatory drugs (IMiDs). However, these 
patients ultimately develop disease relapse, thus further 
treatment is required [4]. Clonal evolution and diversity 
of MM cells and BM microenvironment (BME) changes 
are the major causes of the disease relapse and poor 
response rate, and these diverse alterations pose both 
challenges and opportunities for myeloma therapy [5, 
6]. With the development of the high throughput next 
generation sequencing (NGS), we have gained greater 
insights into MM biology by exploring its intricate 
genomic landscape [7–10]. Integrated examination of 
bulk genomic, transcriptomic and exome sequencing has 
provided valuable information regarding disease driv-
ers including translocations, copy number alterations, 
somatic mutations, and altered gene expression. Besides, 
at cellular level, active interactions between myeloma 
cells and their microenvironment, including bone mar-
row stromal cells (BMSCs) and immune cells have been 
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extensively discussed [11, 12]. The molecular mecha-
nisms underlying the progression of this malignancy are 
driven by signals coming from the BME and immune 
surveillance failure [13, 14]. An increasing number of evi-
dences suggests that the impairments of immunological 
processes contribute to myeloma evasion from immune 
surveillance and resistance to effector cells mediated 
cytotoxicity, resulting in an immune suppressive BME of 
myeloma [15, 16].

Despite the impressive progress in understanding 
the molecular pathogenesis of MM, in developing new 
therapies and improving in transplant technology [17], 
many important questions have yet to be addressed, 
leading to several confronting issues and challenges in 
the MM field (Fig.  1). One of the key questions is that 
the identity of the MM cell origin remains controver-
sial. Researchers revealed that cancer stem cell might 
be responsible for the development of MM, although 
there is ongoing debate regarding the identity of the 
MM stem cells (MMSCs) [18–20]. Several markers such 

as side population (SP) [21], ALDH1+ [22] and CD24+ 
[23] have been used to identify MMSCs. Verifying the 
origin of myeloma cells represents a significant effort to 
achieve effective cancer treatment. Clonal evolution is 
also a key topic in MM research field which drives tumor 
progression, chemoresistance and relapse in myeloma 
[9, 10, 24–26]. NGS studies have demonstrated differ-
ent types of clonal changes over the course of disease, 
which are categorized into stable, linear, and branching 
evolution of myeloma clones [27, 28]. The major queries 
are how these subclones arise and how they are selected. 
As a consequence of current bulk sequencing methods, 
the answer is certainly equivocal and more powerful 
technologies are needed. BM myeloma cells are highly 
dependent on neighboring cell signals for survival which 
allows them to grow and proliferate. The BME consists 
of multiple cellular compartments, including mesenchy-
mal stromal cells (MSCs), immune cells, endothelial cells, 
osteoblasts and osteoclasts, creating a distinct milieu that 
supports immune escape and promotes progression of 

Fig. 1  Unresolved questions in the field of myeloma biology research. Studying MM biology in both myeloma intrinsic and extrinsic contexts will 
advance understanding of how the complex cross-talk between myeloma cells and surrounding non-cancer cells results in the successful growth of 
malignant subclones, with impacts on clonal revolution and resistance to therapies. MM: multiple myeloma; MMSCs: multiple myeloma stem cells; 
TME: tumor microenvironment; BM: bone marrow
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myeloma cells. The mechanisms by which the BM niche 
contributes to MM pathogenesis remain largely unex-
plored. Despite landmark therapeutic advancements 
to treat MM, one of the major challenges remains that 
the majority of patients eventually relapse and become 
refractory to anti-myeloma drugs. Additionally, there are 
no reliable biomarkers available for the accurate predic-
tion of responses to specific drug classes, limiting our 
ability to select a more personalized treatment strategy. 
Therefore, it is becoming increasingly obvious that there 
is a prominent need to develop and exploit more power-
ful and precise approaches to fully dissect the molecular 
and cellular landscape during disease pathogenesis, and 
to discover new biomarkers for predicting drug efficacy 
or resistance, thus providing opportunities for precision 
medicine of MM.

Traditional microarrays and NGS assays require bulk 
DNA or RNA from large number of cells, and they are 
limited to providing average information of a popula-
tion of cells. Furthermore, rare cell populations or unique 
cellular states could be critical in tumor transformation 
and pathogenesis, such as cancer stem cells (CSCs) or 
immune cell subsets, which might not be detected in bulk 
analyses [29]. The advent of single-cell sequencing (SCS) 
has overcome these limitations through revealing the 
genomic/transcriptomic profile of each cell within given 
samples at high resolution and throughput [30–32]. SCS 
has been widely applied in the field of myeloma research, 
providing the analysis of cellular heterogeneity [33, 34], 
identifying new cell subtypes [35], distinct cellular states 
[36], and elucidating dynamic cellular transitions during 
tumour evolution and microenvironment remodeling 
[37–39]. These multi-faceted, high-dimensional dissec-
tions at genomic, epigenomic, transcriptomic, and prot-
eomic levels in tumour cells and the related immune or 
stromal cells allow the in-depth characterization of can-
cer biology, the intricate interactions between cancer 
cells and surrounding compartments in BME, and details 
of the clonal evolution in each MM tumour. In this 
review, we summarize recent progress in the SCS work-
flow and techniques that have been used in MM research 
and further discuss the findings of clonal revolution, 
cancer cellular heterogeneity, stromal cells and immune 
microenvironment explored by SCS. We further discuss 
the growing applications of single-cell approaches for 
answering important research questions and their impli-
cations in clinical translation.

Emerging single‑cell sequencing technologies
Breakthroughs in single-cell capture, sequencing tech-
nologies, and analytical bioinformatics have led to rapid 
progress in SCS analysis methodologies which have been 
reviewed extensively elsewhere [40–43]. The success of 

single-cell approaches benefits from concurrent improve-
ments in methodological pipeline and analytics, such as 
the isolation of single cells, high-dimensional reduction, 
unsupervised clustering, evolutionary modelling, multi-
ple datasets integration, lineage tracing and ligand-recep-
tor interaction predicting [43–45]. Single-cell approaches 
have the unique potential to help answer many important 
questions that lie in cancer research, including: the roles 
of cancer and immune cells heterogeneities; the rela-
tions between tumor cell clonotype and phenotype; the 
network of ligand-receptor interactions present in the 
tumor microenvironment (TME); as well as the spatio-
temporal crosstalk between cancer cells and immune 
populations. With the rapid advancements of SCS tech-
nologies, numerous methods have been developed, 
offering unprecedented opportunities not only to profile 
DNA, mRNA, chromatin and proteins through different 
single-cell omics, but also to measure multiple modalities 
one cell at a time by various multi-omics tools (Table 1). 
In this part, we will discuss the most important single-
cell approaches and platforms that have been utilized in 
disease research (Fig. 2).

Single‑cell transcriptomics
Single-cell RNA sequencing (scRNA-seq) is a procedure 
that enables non-targeted quantification of transcripts 
in individual cells [86]. This technique is largely inde-
pendent of previous biology knowledge, and it allows 
for the detailed description of tissue subtypes and cell 
states. Multiple efficient high-throughput protocols for 
single-cell separation have been developed (for exam-
ple, the Fluidigm C1 platform [87], droplet microfluid-
ics [46] and microwells [88]). And various scRNA-seq 
approaches such as Drop-seq [47], Smart-seq2 [89], CEL-
seq2 [52], MARS-seq [54], CytoSeq [50], sci-RNA-seq 
[53] have contributed to the discovery of novel and rare 
cell types, cellular heterogeneity within complex tissues, 
and biological mechanisms in healthy and disease condi-
tions. A high-throughput sequencing method for mRNA 
transcriptomics at a single-cell level was first reported 
in 2009 [90]. Islam et  al. developed single-cell tagged 
reverse transcription sequencing method in 2011, allow-
ing for detecting mixed cell samples including highly het-
erogeneous tumor samples on a large scale [91]. In 2012, 
Smart-seq was introduced to facilitate the measurement 
of full-length transcripts [51]. By enhancing transcrip-
tomic reading coverage, this technology enables accurate 
analysis of alternative splicing and detection of single 
nucleotide polymorphisms (SNP) and other genomic 
mutations. A modified Smart-seq2 was created later by 
Picelli et  al., which improved accuracy, sensitivity and 
coverage in full-length [92].
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In recent years, a number of droplet-based platforms 
for high-throughput scRNA sequencing have attracted 
attention, including 10X Chromium Genomics, inDrop 
and Drop-seq [46, 47, 93]. These technologies share 
similar strategies in generating droplets, isolating single 
cells through on-bead primers with barcodes, and cor-
recting bias by applying unique molecular identifiers 
(UMIs) [94]. However, these technologies differ in cost, 
time, cell capture efficiency, and sensitivity due to differ-
ent manufacturing methods for beads, barcoding, and 
cDNA amplification [94, 95]. In a recent study compar-
ing 10X Genomics and Smart-seq2 sequencing data from 
CD45+ cell samples [96] showed that Smart-seq2 was 
able to capture more features within a single cell with 

high sensitivity, in particular capable to detect those 
cells with low-abundance transcripts and alternative 
spliced transcripts [96]. Although 10X Genomics method 
showed higher dropout rates and noise in lowly expressed 
genes, this tool can detect more genes owing to its pref-
erable coverage of abundant cells, which therefore enable 
the detection of rare cell populations. In another report, 
Smart-Seq2 and 10X Genomics were combined to help 
elucidate the landscape of immune cells and revealed the 
dynamic status features in hepatocellular carcinoma [97].

Single‑cell spatial transcriptome
Single-cell spatially resolved transcriptome technolo-
gies have been developed and improved rapidly in recent 

Fig. 2  Single-cell approaches utilized in disease research. Single-cell approaches are developed to profile the genome, epigenome, transcriptome/
spatial transcriptome and proteome, and single-cell multi-omics approaches are built by combining different SCS methods, which have been 
widely used in disease research. SCS: single-cell sequencing; scRNA-seq: single-cell RNA sequencing; scDNA-seq: single-cell DNA sequencing; CNV: 
copy number variation; scATAC-seq: single-cell assay for transposase-accessible chromatin by sequencing; scChIP-seq: single-cell chromatin 
immunoprecipitation followed by sequencing; NGS: next generation sequencing; CITE-seq: cellular indexing of transcriptomes and epitopes by 
sequencing
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years, with a unique capability of capturing cellular spa-
tial distribution and revealing local networks of inter-
cellular communication acting in  situ, which cannot be 
achieved by scRNA-seq. Although there are numerous 
spatial transcriptomic (ST) methods, current ST pro-
tocols can be generally divided into two major groups 
according to their detection strategies. Most ST tech-
niques use either a spatial indexing or imaging-based 
approaches to measure and quantify mRNA molecules 
in situ. In spatial indexing approaches such as 10X Visium 
and Slide-seq, barcodes are locally hybridized to RNA 
molecules, then gene expression profiles are quantified by 
NGS. This approach relies on polyA hybridization, which 
pose a challenge in fresh-frozen and formalin-fixed par-
affin-embedded (FFPE) tissues as mRNA integrity varies 
in these samples. Further solution on this issue is desir-
able as clinical samples are often stored in FFPE blocks. 
Furthermore, achieving single-cell resolution remains a 
technical and computational challenge. Imaging-based 
approaches use fluorescent tagging of mRNA molecules 
in  situ, and high-resolution fluorescence microscopy 
to detect and differentiate between single mRNA tran-
scripts. These methods can achieve single-cell resolution 
but are still constrained by limitations on probe design, 
and low in  situ mRNA abundance and degradation. 
Despite these challenges, ST technologies have added 
a new dimension to single-cell omics and extensively 
broadened our understanding of cancer biology.

The ST profiling and temporal lineage tracing enable 
multi-faceted investigations into the surrounding envi-
ronment and molecular dynamics within a single cell 
[31], thus add another layer of tumor heterogeneity 
which might be critical for disease diagnosis, monitor-
ing and treatment in cancer research [98]. Attaching 
spatial barcodes allows encoding and retrieving location 
information of single cells, providing important and use-
ful information in research and disease diagnosis. For 
instance, by positioning histological sections on spatially 
barcoded microarrays, researchers were able to visual-
ize and quantify the transcriptome with spatial resolu-
tion in tissues of mouse brain and human breast cancer 
[55]. By using this spatial-resolved method, the research-
ers found prominent tumor heterogeneity within a tumor 
biopsy section, reflecting different subclones with vary-
ing genes expression patterns located in the same area 
[55]. In addition, a recent study integrated scRNA-seq 
and microarray-based spatial transcriptomics data from 
pancreatic ductal adenocarcinomas (PDAC) samples, 
and revealed that cancer cells with high expression of the 
stress module colocalized with inflammatory fibroblasts, 
which may contribute to therapy resistance [99]. Tumor 
progression is a complex and dynamic process involving 
multiple steps evolving from initiation, progression to 

the emergence of therapeutics resistance [100]. Defini-
tion of the molecular and temporal nature during these 
processes is crucial to understand tumor biology and 
develop effective therapeutics strategies. Lineage tracing 
by  nuclease-activated editing of ubiquitous sequences 
(LINNAEUS) is a newly developed tool for lineage trac-
ing and has successfully applied to reconstruct lineage 
trees in zebrafish [101]. CRISPR-Cas9 coupled single-cell 
analysis was utilized in a KRAS mutant mouse model to 
decipher a comprehensive spectrum of cancer cells [101]. 
This approach improved the sensitivity of low mutation, 
and showed the ability to illustrate the detailed changing 
of tumor subtypes, and allow tracking the spread pattern 
of lung cancer cells [102]. These findings suggest that in 
patients with KRAS mutations, targeted therapy may be 
developed and clinical management could be improved 
through these approaches [102]. Another study combin-
ing high-confidence clonal tracing and scRNA-seq led 
to a detailed dissection of leukemic stem cells, providing 
novel insights into the understanding of leukemia onco-
genesis and therapeutics [103].

Single‑cell genomics
Single-cell genomics aims to extend our understand-
ing of genetics by bringing the research of genomes to 
the cellular level. Thus, rare and unique mutations and 
copy-number variations (CNVs) can be detected faith-
fully to reveal the clonal heterogeneity and evolution, 
which may be involved in disease processes. Sequenc-
ing an entire genome of a cell requires whole-genome 
amplification (WGA) by three major methods including 
degenerate oligonucleotide primed PCR (DOP-PCR), 
multiple displacement amplification (MDA) and mul-
tiple annealing and looping based amplification cycles 
(MALBAC) [104]. DOP-PCR often yields low genome 
coverage, which is pertinent to the exponential amplifi-
cation of PCR. MDA is considered to be the most suit-
able method for detecting single nucleotide variants 
(SNVs) and insertions/deletions at the genome-wide 
level, owing to its capacity to amplify the majority of a 
human genome with a high-fidelity polymerase. MAL-
BAC achieves more accuracy for CNV detection and 
a low false negative rate for SNV detection [104, 105]. 
High-throughput single-cell DNA sequencing (scDNA-
seq) using different sing-cell isolation strategies have 
been developed by several commercial platforms [106, 
107], thus providing higher scalability, allowing cell selec-
tion with lower costs, and offering more flexibility for 
customized chemistry steps. At present, CNV profiling 
is one of the most common applications of scDNA-seq. 
Despite the high throughput (up to 10 K cells) achieved 
by microdroplets (10X Genomics) and combinatorial 
indexing for single-cell CNV profiling, these methods 
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face challenges of lower data quality and limited genomic 
resolution. By contrast, FACS, nanowells and microflu-
idic platforms utilizing tagmentation chemistry [108, 
109] are able to provide much high-quality CNV data at 
single-cell resolution, but provide modest throughput 
(hundreds to 1,000 cells). Mutation detection presents 
another major application of scDNA-seq, which requires 
in-depth coverage of a certain mutation site. While early 
studies carried out whole-genome or exome sequenc-
ing of single cells [110, 111], high cost prevented these 
studies from profiling large number of cells. In order to 
increase throughput and reduce costs, later approaches 
aimed to profile targeted regions of the genome, such as 
specific cancer gene panels [112, 113]. A microdroplets 
approach have been developed and commercialized for 
scaling up scDNA-seq [107], which conducts PCR ampli-
fication of single cells at hundreds of targeted genomic 
regions. ScDNAseq approaches provide a reliable resolu-
tion in examining clonal substructure and reconstruct-
ing clonal lineages during cancer evolution in the context 
of premalignant status, metastasis and drug resistance. 
Technologies for scDNA-seq are particularly helpful to 
resolve mutual exclusivity and mutation co-occurrence 
in different clonal subpopulations, which are difficult to 
identified by bulk sequencing data [113].

Single‑cell epigenomics
Research into epigenetic regulation at the single-cell 
level has helped to define epigenetic landscape by profil-
ing DNA modifications, chromatin accessibility and his-
tone modifications. A variety of epigenomic sequencing 
approaches at single-cell level have been developed, such 
as single-cell reduced-representation bisulfite sequencing 
(scRRBS) to measure DNA methylation [114], single-cell 
chromatin immunoprecipitation followed by  sequenc-
ing (scChIP-seq) to measure histone modifications [72] 
and protein-DNA interactions [115], and single-cell 
assay for transposase accessible chromatin sequencing 
(scATAC-seq) to measure chromatin accessibility [69, 
70, 116]. A major advantage of scATAC-seq compared 
with scRNA-seq is that it offers greater insights into 
gene regulation and transcription along with cell line-
age and identity information [117]. Transcript-indexed 
ATAC-seq (T-ATAC-seq) approach was built by combin-
ing scATAC-seq with sequencing of the T cell receptor 
(TCR) repertoire, which allows for studying both the epi-
genomic state and the TCR specificity simultaneously at 
the single-cell level [118]. Apart from mapping chromatin 
accessibility, investigating diverse chromatin modifica-
tions may provide further insights into epigenomic states. 
Recently, a new method named single-cell cleavage under 
targets and tagmentation (CUT&Tag) technology was 
established to profile multiple histone modifications and 

DNA-protein interactions [73]. This novel technology 
generates high-quality data with ultra-low cell inputs 
compared to traditional ChIP-seq, and helps to study the 
comprehensive histone modifications and dynamic regu-
latory interactions with high throughput and sensitivity 
within each single cell [73].

For better understanding of genomic organiza-
tion, in  situ genome sequencing (IGS) has been used 
by researchers for simultaneous in  situ imaging and 
sequencing of the genomes within the same single cell 
[119]. This process includes the construction of in  situ 
genomics DNA libraries, in situ sequencing of amplicons 
and spatially localized sequences, amplicon dissociation, 
PCR and ex situ sequencing of amplicons, revealing the 
accurate localization of distinct DNA sequences. It is 
clear that IGS presents a valuable mean of addressing 
biological questions involving the relationships between 
genomic architecture and disease [119]. Furthermore, 
integrated high-resolution multiple annealing and loop-
ing-based amplify cycles was applied by another study to 
analyze transcriptomic dynamics and define the three-
dimensional genomic architecture at single-cell level 
[120]. Using this method, researchers can specifically 
unravel the roles of transcriptomic and genomic architec-
ture during oncogenesis, as well as the interplay among 
anatomy, function, transcription, and cell types along 
with cancer progression [120].

Single‑cell proteomics
Proteins are essential macromolecules that are respon-
sible for the main functional machinery within a cell, 
including regulations of gene expression, signaling path-
way and catalytic reaction. Proteome measurements 
based on mass spectrometry (MS) have historically been 
limited to bulk samples containing thousands or millions 
of cells. The rise of single-cell proteomics leads to an in-
depth and unbiased profile of protein expression within 
single cells. This emerging technology is mainly based on 
two methods: MS-based method, in which the proteomic 
content of the cell is digested and analyzed; and antibody-
based method, which typically target a certain number of 
predefined proteins [75]. The use of MS is the basis for 
detecting and quantifying proteomes, but it is only useful 
for identifying the most abundant proteins. By improving 
protein preparation and isolation procedures, research-
ers have been able to decrease protein loss and perform 
quantitative proteomics sequences at a single-cell reso-
lution. By combining the principles of MS with flow 
cytometry, mass cytometry by time of flight (CyTOF) 
uses metal isotope-labeled antibodies conjugated with 
specific molecules on the cell surface or inside cells, 
allowing for the examination of 100 specific proteins in 
single cells [121]. Based on immunohistochemistry with 
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metal-labeled antibodies and CyTOF, imaging mass 
cytometry (IMC) has been developed [122]. Through 
IMC, up to 40 protein markers can be analyzed simulta-
neously, along with their spatial architecture and interac-
tions, which would be lost with traditional lysis of tissue 
to single cells [123]. Furthermore, IMC can be performed 
on paraffin-embedded tissue sections, making it useful 
for retrospective analysis of patient cohorts with known 
outcomes, ultimately benefitting individualized medicine. 
Liquid chromatography-mass spectrometry (LC-MS) 
is another technology for single-cell proteomics analy-
sis [124], which is a bioanalytical method for analyzing 
proteins quantitatively and is widely used in drug devel-
opment and drug toxicology research. Furthermore, a 
multiplexed single-cell proteomics (SCoPE-MS) method 
has been developed to increase throughput by multiplex-
ing, and enhance peptide sequence identification using 
an isobaric carrier [125]. As expected, the application of 
single-cell proteomic sequencing will revolutionize the 
pathological investigation, particularly when combined 
with multi-omics platforms, such as transcriptomic and 
genomic profiling at the single-cell resolution.

Single‑cell multi‑omics
Multi-omics single-cell methods interrogate multiple 
levels of molecular information from a single cell, such 
as DNA & RNA, RNA & protein, or three layers com-
bined [126]. By combining these methods, it is feasible 
to gain deeper insight into genotype-phenotype relation-
ships and how genomics affects gene expression and pro-
tein level. For instance, the transcriptome and targeted 
genomic regions can be simultaneously profiled within 
a single cell, which allows to provide better coverage of 
the targeted genomic loci for detecting SNVs, deletion 
mutations as well as CNVs, which are related to drug 
resistance in lung cancer [127].Quantification of the 
transcriptome and DNA-protein interactome simultane-
ously in a single cell will lead to a better understanding 
of the transcriptional changes during the process of DNA 
binding to a specific protein, and such quantification 
has been applied by scDam&T-seq [128]. Furthermore, 
a new single-cell method named scM&T-Seq was devel-
oped for parallel sequencing of DNA methylome and 
transcriptome in one cell, enabling in-depth analyses of 
how epigenetic heterogeneity relates to gene expression 
output at each locus [79]. Moreover, the transcriptome 
and proteome can also be delineated simultaneously 
using several technologies, such as CITE-seq [83], REAP-
seq [82] and RAID [84]. In a recent study, an integrative 
pipeline using 3D imaging and the rapid clearing agent 
FUnGI were used in breast cancer and demonstrated 
that tumor clones were significantly reduced during 
oncogenesis, with the luminal progenitor serving as the 

key cells of origin [129]. In conjunction with multicolor 
lineage tracing and molecular analysis, LSR-3D imaging 
offers crucial visual and spatial information within the 
tumor to describe biological processes, highlighting the 
nature of tumors with inherent plasticity. Future devel-
opments of these multi-omic SCS methods hold promise 
for overcoming technical hurdles, thereby allowing their 
widespread adoption in translational research in the near 
future.

Applications of single‐cell sequencing in MM 
biology and pathogenesis
A growing number of studies have begun to investi-
gate the genomic, epigenetic, and transcriptional land-
scape in MM at the single-cell level, as summarized in 
Table 2. Herein we summarized the recent SCS studies in 
MM research and discussed the insights they have pro-
vided, which can be roughly categorized into three main 
aspects: (1) clonal evolution and heterogeneity, (2) repro-
gramming of the BM microenvironment, (3) response or 
resistant to anti-myeloma therapy (Fig. 3).

Understanding the heterogeneity of MM
MM is a clonal disease with strong inter- and intra-
tumoral heterogeneity, and these heterogeneities are 
reflected genetically, epigenetically, and phenotypically 
[5, 7, 143]. Intra-tumoural heterogeneity occurs when 
different tumour cells within a patient display different 
genetic or phenotypic characteristics. On the other hand, 
inter-tumoural heterogeneity indicates genomic and 
biological variations across different MM individuals. 
In the search for potential target therapies, gene expres-
sion profiling is a widely used method to characterize 
tumor phenotype in individual patients, however, most 
cancers display intra-tumoral heterogeneity, which may 
have impacts on drug response to specific therapeutics 
and clinical outcomes. With SCS technologies, tumor 
heterogeneity in myeloma can be assessed at a single-cell 
resolution, enabling researchers to unravel the complex 
biological nature of MM.

In the initial studies of scRNA-seq, samples were taken 
from patients at multiple time points in order to trace 
the dynamic tumoral evolution. In an early single-cell 
whole-exome sequencing (WES) study of six patients 
with t(11;14) MM, it was found that there were two to 
six major subclones present at the time of the diagno-
sis of MM and the existence of clones with both linear 
and branching evolution patterns [144]. As a result of 
subsequent single-cell genomic efforts, SCS have been 
applied to pursued molecular profiling of MM and its 
premalignant stages, with higher resolution than con-
ventional NGS method. Recently, Liu et  al. analyzed 14 
MM patients throughout the disease progression by 
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multi-omic combining bulk DNA and scRNA sequenc-
ing, and identified three patterns of clonal evolution, 
including stability (from premalignancy to diagnosis), 
and gain or loss (from diagnosis to relapse) [37]. Nota-
bly, by mapping PCs together with B cell lineage, they 
found “B cell-like” plasma cell subpopulations that clus-
ter closely with B cells. This study provides an impor-
tant guide to delineate plasma/myeloma cells origin, and 
motivates us go deeper into investigating myeloma cells 
development and its implications in MM malignancy.

By examining scRNA-seq data from patients with 
MGUS, SMM, MM, and light chain amyloidosis, the 
authors found that myeloma heterogeneity persisted 
throughout these different disease stages [33]. In addi-
tion, a recent scRNA-seq study of plasma cells from 26 
patients at different disease stages revealed comprehen-
sive intratumor heterogeneity by capturing shared tran-
scriptional programs across patients, and demonstrated 
that scRNA-seq is sensitive enough to detect latent 
cytogenetic alterations in patients at asymptomatic stages 
with low tumor burden [145]. These findings emphasize 
the feasibility of applying scRNA-seq to detect changes 
in BM myeloma cells earlier than methods implemented 
currently in the clinic. Apart from human myeloma stud-
ies, a model of disease progression in Vκ*MYC mice 
was subjected to longitudinal single-cell depiction, and 
revealed that tumors at early stage contained subclonal 
CNVs which persisted throughout the disease progres-
sion [146]. More importantly, researchers identified a 
tumoral program involving GCN2 stress response that 
progressively activated during myeloma progression, 
and indicated the potential role of GCN2 as a promising 
therapeutic target [146]. These studies together highlight 
the application of single-cell technologies to profile the 
genetic and transcriptomic heterogeneity of tumor cells, 
and emphasize the necessity for their combination in 
studies aimed to explore disease progression of MM.

Multiple relapses and drug resistance are hall-
marks of MM [147]. In recent studies, scRNA-seq was 
performed to extensively dissect MM resistance in 
refractory/relapsed patients. Through single-cell tran-
scriptomic and chromatin accessibility profiling, Frede 
et  al. demonstrated coexisting transcriptional pro-
grams in single tumor cells of relapsed refractory MM 
(RRMM) [36]. They detected six distinct expression 
programs across RRMM patients including cell cycle, 
different cell signaling pathways, including KRAS-
MAPK, IL-6-STAT3 and IL-2-STAT5 pathways, as well 
as the interferon response. More importantly, pseudo-
time trajectories showed that myeloma cells exhibited 
a higher developmental potential than normal plasma 
cells, suggesting their lineage infidelity and plasticity. 
They further demonstrated that standard treatment 

can reduce differential potential while increase regu-
lon activity, and CXCR4 may represent an attractive 
therapeutic target, since clinical trials have already 
tested CXCR4 antagonist for relapsed myeloma [148] 
and use for other clinical applications [149]. In another 
study published recently, scRNA-seq and variable-
diversity-joining regions-targeted sequencing (scVDJ-
seq) were performed to showed the transcriptomic and 
clonal diversity in newly diagnosed MM (NDMM) and 
RRMM patients [34]. Similarly, they observed universal 
intra-tumoral heterogeneity after identifying 8 meta-
programs covered diverse biological functions, includ-
ing the cell cycle that have been identified previously 
[36]. Comparing to NDMM, RRMM-specific myeloma 
cell clusters showed upregulations of the expression 
signatures of several immature progenitors (e.g. MMP 
and CLP) and representative target genes including 
STMN1, TUBB, TYMS, TUBA1B and HMGN2, which 
may contribute to relapse risk and dismal overall sur-
vival (OS).

In MM, clonal PCs accumulate in the BM, resulting in 
bone destruction and focal lesions [143]. The number of 
focal lesions served as a prognostic factor due to its cor-
relation with the disease progression [150]. BM samples 
are collected mainly from the posterior iliac crest or from 
the sternum. Limited by this invasive procedure, repeated 
samplings are restricted. Nonetheless, Rasche et  al. ele-
gantly revealed genomic heterogeneity spatially, which 
was found in most of the patients at both chromosomal 
and mutational levels [150]. For instance, del(17p) exhib-
ited spatial variation in two out of six MM patients. Pro-
gression events are frequently restricted to focal events, 
however initiating events are uniformly spread. High-risk 
disease distribution can be heterogeneous, and taking a 
"snapshot" at diagnosis at only one locus misses impor-
tant information [151, 152]. Despite limited evidence of 
spatial heterogeneity from whole-exome sequencing, a 
recent report used scRNA-seq might provide potential 
mechanisms by which myeloma cells induce osteolytic 
lesions (OL) in one region, whereas other regions show 
no indications of bone destruction despite subtotal infil-
tration. Beyond the characterization of inter- and intra-
tumor heterogeneity, the study identified OL-specific 
differentially expressed genes like DKK1, HGF and 
TIMP-1 compared to PCs from BM, and contributed to 
the understanding of mechanisms underlying myeloma 
bone disease [135].

Collectively, by integrated analysis of single-cell 
sequencing, these studies elucidated multiple layers of 
complexity regarding myeloma heterogeneity, including 
inter- and intra-patient heterogeneity across disease pro-
gression from precursor stages to active MM and relapse 
status, as well as additional spatial assessment in bone 
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lesions. These data have proved fruitfully in resolving 
intricate molecular dynamics of MM pathogenesis and 
disease relapse by SCS technologies.

Uncovering the mechanisms of drug resistance
The main goals of anti-myeloma therapy are to achieve 
greater depth of response and improve outcome of MM 
patients. Drug-induced changes possess the potential to 
reveal important insights into the molecular mechanisms 
in action of chemotherapeutics. A better understand-
ing of the specific molecular signatures changed during 
the course of treatment is key to understand the detailed 
mechanisms behind drug response or resistance. With 
the capacity to investigate tumour-intrinsic transcrip-
tome profiles, and tumour heterogeneity, scRNA-seq 
analysis combined with dynamic sampling and detailed 
genetic profiling could largely support the identifica-
tion of drug-response genes and the understanding of 
drug-induced changes in the clonal dynamics. A recent 
scRNA-seq analysis of BM cells derived from 20 RRMM 
patients revealed that MM consists of diverse genetic 
clones with marked transcriptional changes and clonal 
dynamics before and after treatment [38]. Gain/amplifi-
cation of chromosome 1q (1q +) region has been shown 
to be associated with poor outcomes of patients with MM 
[153, 154]. Using scRNA-seq tool, Tirier et  al. detected 
rare subclones harboring 1q + that comprised ~ 2% of 

the cells, and these cells cannot be separated into a cer-
tain transcriptional cluster, demonstrating the sensitivity 
of SCS in detecting rare subclones in MM [38]. In clone 
dynamics during treatment in RRMM, they found that 
1q + clones often showed expansion or remained stable 
and therefore displayed a compelling robustness anti-
myeloma drug in RRMM. Interestingly, by screening the 
upregulated genes located in 1q, they found 18 genes 
were exclusively detected by scRNA-seq, which were not 
found in bulk RNA-seq, and these genes were associated 
with various biological processes, such as apoptosis, pro-
teasome, and signaling from BME, which may explain 
mechanisms of drug resistance in different treatment 
strategies. Additionally, the 1q + specific tumor program 
can be used to faithfully detected 1q + subclones with low 
abundant before treatment, which could be exploited in 
other scRNA-seq data sets of MM.

Longitudinal monitoring during treatment and remis-
sion allowed the researchers to evaluate disease sta-
tus, drug response and provide real-time notification of 
clonal emergence or reduction for clinicians. ScRNA-
seq analysis can be incorporated with longitudinal sam-
pling and intensive genetic and transcriptional profiling, 
which would bring a deeper understanding of treatment-
induced alterations in the clonal dynamics and identifi-
cation of drug-response genes. Masuda et al. performed 
scRNA-seq on MM cells from a patient with relapsed 

Fig. 3  Applications of SCS in myeloma research. SCS has impacted various areas of cancer research and improved our understanding of clonal 
evolution, tumor heterogeneity, tumor microenvironment, therapeutic resistance in MM, which offers a profound opportunity to improve 
the diagnosis and identify biomarkers for precision medicine of MM. SCS: single-cell sequencing; MM: multiple myeloma; MGUS: monoclonal 
gammopathy of undetermined significance; SMM: smoldering multiple myeloma; RRMM: relapsed refractory multiple myeloma
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MM by temporal sampling during multiple anti-MM 
drugs [139]. Although only one sample was assessed, 
they identified a distinct cell cluster which arose after 
lenalidomide treatment and eliminated after PI treat-
ment. Further investigation identified a drug-responsive 
gene, PELI2, which may confer PI sensitivity, and in vitro 
experiments and computational analysis further con-
firmed that PELI2 presents a predictive biomarker of the 
PI responsiveness in MM patients. This study highlights 
the advantages of SCS in detecting myeloma cell popula-
tion with low abundance during therapy and examining 
drug-induced cellular changes. These findings warrant 
further research on more MM patients by utilizing SCS 
approaches. In another recent study assessing drug 
response in a larger sample size, scRNA-seq data were 
collected from optimal responders (ORs) who achieved 
the best response in CR or VGPR and suboptimal 
responders (SORs) with best response of PR, MR, SD, or 
PD. By comparing ORs with SORs, the authors identified 
a 24-gene signature that upregulated in SORs, and further 
validated its association with bortezomib responsiveness 
and poor prognosis [140]. Additionally, our recent study 
that performed scRNA-seq on MM samples during anti-
myeloma treatment, revealed dynamic changes in both 
tumoral and microenvironmental programs, and high-
lighted the SCS derived-benefits for comprehensively 
understanding overall and detailed features in myeloma 
BM ecosystems during therapy [155].

Based on the capability of predicting drug response, 
scRNA-seq can be used in clinical trials to predict resist-
ance and guide therapy development for resensitizing 
tumors to treatment [131]. In this study, the authors 
applied massively parallel RNA SCS framework (MARS-
Seq) on BM samples from a cohort of 41 individuals with 
primary refractory MM (PRMM), who experienced pri-
mary resistance or early relapse after a first-line borte-
zomib-based agent [131]. These patients were enrolled in 
the KYDAR trial and treated with a combination agent: 
daratumumab, carfilzomib, lenalidomide, and dexameth-
asone (DARA-KRD). Through exploring drug resistant 
mechanism, the authors found 66 differential expressed 
genes that could be clustered into 3 modules with capac-
ity to distinguish PRMM from NDMM, and integrat-
ing both ≥ double hit and module 1-high in multivariate 
analyses was found to increase the prediction power of 
examining patients’ outcomes. Moreover, by compar-
ing responders and non-responders during DARA-KRD 
treatment, they generated a resistance signature, which 
contained substantial overlap genes with module 1 and 
suggested that this newly discovered resistant signatures 
may be relevant throughout the course of several lines of 
therapy. Clinical utility of these signatures might facili-
tate to predict the risk of drug resistance in a group of 

MM patients. This approach could be implemented using 
routine methods such as qPCR and also by machine 
learning-based method. Another implication of this 
study is that by combining longitudinal scRNA-seq and 
clonal analysis using B-cell receptor sequencing (BCR-
seq), they were able to score a single clone in every tumor 
and detected small resistant clones that appeared dur-
ing treatment. Thus, this study presents a framework for 
developing a drug-resistance atlas that could revolution-
ize clinical practice in the future.

Dissecting bone marrow microenvironment
The interplay between myeloma cells and the BME is 
crucial for tumor development, treatment and disease 
progression [11, 156–158]. Several cell types in BME 
including stromal cells [159, 160], osteoblasts [156, 161], 
osteoclasts [161], immune cells [13, 162, 163] (e.g., B cells, 
T cells, natural killer cells, monocytes, myeloid-derived 
suppressor cells) and endothelial cells [156, 164] present 
in the BM and generate a unique milieu that favors MM 
cells immune evasion, bone disease and promotes drug 
resistance. Reciprocal interactions between the various 
compartments in BME and the MM cells are essential to 
regulate differentiation, migration, growth and survival 
of the malignant plasma cells. In-depth understanding 
of the tumour ecosystem and cell-cell interactions could 
faithfully provide insights for developing novel and more 
effective therapeutics for MM patients. One limitation 
of traditional genomic studies is that they are focused 
on the myeloma cells only and thus ignore the complex 
interactions with microenvironment. Single-cell technol-
ogy is a powerful approach to investigate the sophisti-
cated TME and can be exploited for precision medicine 
and overcoming treatment resistance. Here, we briefly 
introduce several key studies performing SCS approaches 
to explore TME in MM.

T cells
T cells play central roles in anti-tumor immunity. In 
recent years, a variety of reports have revealed quantita-
tive and functional T cell abnormalities in MM patients 
[165–168]. Early study on T cell subsets revealed three 
major abnormalities of T cells in myeloma, includ-
ing (1) the emergence of cytotoxic T cell harboring the 
senescence-associated secretory phenotype (SASP) [166, 
167]; (2) increase in the ratio between the regulatory 
T (Treg) cell and T helper 17 (Th17) [169, 170]. (3) the 
acquired Treg leading to immunosuppression [169, 171]. 
Single-cell profiling has allowed high-resolution map-
ping and comprehensive analysis of T cell heterogene-
ity and function. In an early study of MM that utilized 
scRNA-seq on patient-derived BME samples (CD138− 
or CD45+ cell populations) from patients with MGUS, 
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low-risk or high-risk SMM, and active MM, the authors 
revealed early alterations in immune cell composition at 
the precursor stages, with substantial T cells enrichment 
in particular [39]. This study demonstrated a shift from 
the manifestation of less-mature cytotoxic memory T 
cells with high GZMK expressing in non-malignant and 
MGUS patients, to an enrichment in more-mature cyto-
toxic memory T cells with GZMB expression at the SMM 
and MM stages. Later in vivo experiments using C57BL/
KaLwRij mice with 5TGM1 cells injection revealed 
that this transition may reflect a mechanism that drives 
immune evasion during disease progression of MM. In 
regard to dissect T cell atlas and function in precursor 
stages, another SCS study of T cells from MGUS, SMM 
to active MM was conducted [172]. To increase the sam-
ple size, the authors combined their in-house data with 
samples from a published SCS data set [39] to perform 
a meta-analysis. They found that the anti-tumor immune 
response showed a decline from MGUS, SMM to MM, 
evident by a general decrease in naïve and memory CD4+ 
T cells and an increase of Treg together with CD8+ Eff 2 
cells with an inhibitory phenotype. These two single-cell 
studies jointly demonstrated that early alterations of T 
cell populations have arisen in asymptomatic conditions 
of MGUS and SMM stages [39, 172]. Identifying the early 
immune events that promote MM progression by single-
cell technologies will help to stratify patients based on 
their risk of progression, and offer therapeutic opportu-
nities for early intervention.

Except for these quantitative changes, MM patients 
also exhibited relevant defects of T cell functions. Early 
studies showed that under the influence of TGF-β, 
released by regulatory immune cells and myeloma cells, 
T cells presented a remarkable reduction in IL-2-medi-
ated autocrine proliferation [167], and diverse signal-
ing impairment, including the downregulation of CD28, 
CD152, p56lck, ZAP-70, and PI3K, which were found 
in both CD4+ and CD8+ T cells in MM patients with 
advanced-stage [173]. A combined analysis of scRNA-seq 
and mass cytometric assay on immune cells in the MGUS 
and MM showed that during disease progression, T cell 
clusters with stem-like and tissue-resident signature, 
were depleted during MGUS-to-MM progression [174]. 
In particular, more substantial T cell exhaustion and 
senescence at the tumor site (BM) were observed than 
peripheral blood (PB) by expressing multiple molecules 
related to exhaustion (PD-1, CD160, 2B4, CTLA-4) and 
senescence (CD57, lack of CD28) [166]. Additionally, 
these T cells displayed reduced proliferative capability, 
defective cytotoxicity, and disability in IFN-γ produc-
tion after antigen stimulation. In another report with in-
depth immune checkpoints phenotyping of BM T cells 
in MM using mass cytometry-based single-cell analysis, 

Wang et  al. confirmed higher expression of these con-
ventional immune checkpoints in T cells and ligands in 
myeloma cells from MM patients compared with healthy 
donors (HDs), as well as several newly identified immune 
checkpoints including LAG3, Tim-3, and TIGIT [175]. 
Notably, a recent scRNA-seq study refined the molecu-
lar features of T cell by comparing MM patients with 
different bortezomib treatment responses [140], and 
the authors found that dysfunctional T cells expressing 
exhausting genes (PD-1, TIGIT, TIM3, CD244, LAG3, 
CTLA4 and TOX) were enriched in SORs compared to 
the ORs patients. Moreover, an upregulation of LAG3, 
KLRG1, CD47 and IFNG which have been previously 
linked to dysfunctional T cells in RRMM patients, point-
ing to the key roles of T cell dysfunction in drug resist-
ance. In the immune cell populations that play roles in 
the tumor microenvironment, innate-like T cells express-
ing T cell receptors composed of γ and δ chains (γδ T 
cells) are of particular interest, and previous reports have 
demonstrated their impaired immune function during 
MM disease progression [176]. Interestingly, Tirier et al. 
showed that among all T cell populations, the highest 
expression of the exhaustion signature was detected in 
γδ T cells of RRMM patients by upregulating expres-
sions of multiple inhibitory receptors, including LAG3, 
KLRG1, VSIR and TIGIT [38]. And in some patients, 
this exhaustion signature showed increased after treat-
ment. By exerting antigen-driven cytotoxicity against tar-
get cells in an MHC-independent fashion, γδ T cells can 
recognize a broad variety of antigens to exert their potent 
and broad anti-tumour activity [177]. The findings of 
exhaustion of γδ T in RRMM and other infiltrated tumor 
tissues [178–180] suggest that these cells have a simi-
lar ability to respond to immune checkpoint inhibitors 
(ICIs) as traditional effector T cells. Thus, we can expect 
that reinvigorating γδ T cells by targeting inhibitory mol-
ecules might be beneficial for developing novel effective 
immunotherapies.

Recent studies have illustrated that defective metabolic 
flexibility related to cancer cells can lead to an inefficacy 
in anti-tumor immune response and linked to cancer 
progression [181–183]. The impaired energetic metabo-
lism also involved with the myeloma oncogenesis and 
clinical outcomes of MM patients [184]. In a recent study, 
Lv et  al. performed scRNA-seq on immune cells from 
NDMM and HD, and found that CD8+ T effector cells 
and natural killing (NK) cells with high tumor infiltration 
exhibited distinct metabolic features with comparison 
to those with low tumor infiltration and HD [185]. The 
abnormal metabolism was reflected by impaired metab-
olism amino acid including arginine, proline, glycine, 
serine metabolism and enhanced glycolysis/gluconeo-
genesis, oxidative phosphorylation and lipid metabolism 
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in CD8-XCL2 memory T cells and CD8-GNLY effector 
T cells. The finding of defective metabolism was depend-
ent on pathway analysis, further functional investigation 
would be needed to confirm the observations and dissect 
the detailed underlying mechanisms. The authors also 
revealed an upregulation of PIM kinases in effector CD8 
T cells, supporting that targeting PIM kinases served as 
a feasible strategy to restore the immune cells function 
through metabolism regulation.

Chimeric antigen receptor (CAR) T-cell therapies have 
achieved impressive efficacy in MM but also bring its 
own set of challenges including durability of CAR-T cells, 
toxicities and therapeutic resistance [186–188]. A recent 
study performed single-cell genomic on temporal sam-
ples from a MM patient who relapsed after initial anti-
BCMA CAR-T cell treatment [137]. The authors reported 
a clone selection with acquired deletion of BCMA, which 
resulted in lack of CAR-T cell proliferation following 
the second infusion, supporting the notion that antigen 
escape is one of the possible causes of CAR-T therapy 
failure [186, 189]. Interestingly, a recent study demon-
strated that CAR level played a critical role in CAR-T cell 
activity with notable influence on clinical response [136]. 
To better understand the heterogeneity of CAR-T cells 
and the influence of CAR density on the transcriptional 
profile, the authors performed scRNA-seq and identified 
23 clusters of CAR-T cell populations and observed that 
CAR​High T cells mainly localized within activated CD4+ 
cells. Furthermore, in the CD8+ T cell subset, CAR​High T 
cells showed a pre-exhausted feature. They then demon-
strated that CAR density was associated with differential 
activation of regulatory networks, evident by activation 
of transcription factors NR4A1 and MAF, low active 
SATB1 regulon in CAR​High T cells, which could explain 
their exhausted phenotype. Therefore, single-cell omics 
enables the high-resolution molecular characterization of 
the activation and functional states of T cells, thus hold-
ing great potential for understanding CAR-T cell behav-
ior. Given the very active clinical research on CAR-T cells 
in MM ongoing currently [188, 190, 191], we expect that 
in the near future, SCS could become a standard tool for 
clinical monitoring cell states and developing more effec-
tive CAR-T cell therapies.

NK cells
NK cells have been identified as the primary effector cells 
of innate immunity [192–194]. Numerous studies have 
demonstrated the significance roles of NK cells in killing 
cancer cells or in tumor progression regulation [193, 195, 
196]. Impairments of NK cell maturation, chemotaxis, 
cytokine production, and expression of effector mol-
ecules have been described in the context of MM [197, 
198]. Therefore, restoring or enhancing the cytotoxicity 

of NK cells for MM treatment has become one of the 
key topics in recent years. In the first scRNA-seq study 
analyzing the alterations in immune microenvironment 
along MM progression, the authors identified 3 major 
NK subpopulations including CXCR4+ NK, CX3CR1+ 
NK and a less frequent CD56bright NK population, and 
showed that NK cell proportion is frequently increased 
in the precursor stages indicating an early onset of an 
immune response [39]. Another recent study applied 
scRNA-seq to profile CD56+ NK cells from NDMM 
BM samples, have also acknowledged the CD56bright 
NK population [133]. They further revealed three novel 
NK cell populations at single-cell level: adaptive NK-
cell cluster characterized by high expression of KLRC2 
and low expression of FCER1G, the terminal NK cluster 
expressed ZEB2 and B3GAT1 genes, a NK-HSP cluster 
characterized by the high expression of genes for heat 
shock protein (HSP), which was considered as stressed 
NK cells due to sample freezing and thawing. The uncov-
ered population of adaptive NK was also identified in a 
recent study utilized scRNA-seq to dissect TME of MM 
patients receiving bortezomib-based treatment [140]. 
Their further investigation demonstrated that unlike 
conventional NK cells, adaptive NK cells displayed dis-
tinct immunophenotypic features with low expression of 
inhibitory receptors such as killer cell immunoglobulin 
like receptor (KIR), TIGIT and NKG2A. More impor-
tantly, with daratumumab treatment, adaptive NK cells 
from NDMM patients exhibited enhanced cytokine 
production and increased degranulation compared with 
conventional NK cells, suggesting that adaptive NK cells 
serve as an important mediator of antibody-dependent 
cellular cytotoxicity (ADCC) in MM.

Through conventional measuring methods, such as 
flow cytometry and bulk RNA-seq, the exhausted pheno-
type of NK cells in MM has been described in previous 
studies, reflected by expressions of immunosuppres-
sive molecules, such as PD-1 [199, 200]. However, the 
detailed mechanisms driving NK exhaustion in mye-
loma have not been completely elucidated. Innovative 
studies are needed to dissect molecular mechanisms 
involving NK cell dysfunction. In order to characterize 
potential mediators of NK-cell exhaustion, our previ-
ous study performed single-cell transcriptome profiling 
on NK cells from MM patients and HD, and identified 
a distinct NK subset that enriched in MM patients [35]. 
This MM-specific NK cluster exhibited exhaustion phe-
notypes by upregulating inhibitory receptors including 
LAG3, KLRG1, and KIR. More importantly, we further 
identified a vital transcription factor ZNF683 that might 
be responsible for the NK-cell exhaustion. Mechanisti-
cally, ZNF683 can directly suppress SH2D1B (EAT-2) 
expression, thus disrupting EAT-2/SLAMF7-mediated 
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activating signals and eventually promoting NK cell 
exhaustion. Likewise, a ZNF683+ NK cell subset was also 
found in nonkeratinizing nasopharyngeal carcinoma 
exhibiting similar exhausted phenotypes with upregu-
lated LAG3 and TIGIT expressions [201]. These consist-
ent findings lead to a confirmation of ZNF683+ NK cell 
present in cancer context and highlight potential roles of 
ZNF683 in regulating NK cell function. These findings 
were uncovered mainly based on scRNA-seq profiling 
on NK cells in both studies, and we believe it may largely 
rely on the sensitivity of single-cell technology in captur-
ing low abundant cells that conventional methods cannot 
provide.

Monocytes/macrophages
Among the most important regulators of inflammation, 
monocytes and macrophages play important roles in 
cancer-associated inflammation [202, 203]. Their criti-
cal roles in tumor progression have been extensively 
described in solid tumors and hematological malignan-
cies, including MM [204, 205]. Indeed, it has been pro-
posed that within the BME, tumor-associated monocytes 
and macrophages (TAMs) are able to protect MM cells 
from treatment-induced apoptosis, promote angiogene-
sis and immune evasion [206]. In addition, several studies 
confirmed the roles of TAM in contributing resistance to 
common anti-MM regimens such as melphalan or bort-
ezomib [207, 208].

Currently, a number of surface markers have been used 
to characterize TAMs (including CD14, CD68, CD163 
and CD206), and two major functional macrophage 
states have been identified: M1 (inflammatory or “clas-
sically activated”), activating during infections and M2 
(suppressive, “alternative pathway”) involving in wound 
healing and angiogenesis. Notably, M1 and M2 mac-
rophages should be considered as two extremes instead 
of a continuum, however TAMs often exhibit a mixed 
transcriptional profile [209–211]. Consistently, a recent 
study applied scRNA-seq to dissect TME during disease 
progression of myeloma, and found that reprogrammed 
TAMs displayed a mixed phenotype with both M1 and 
M2 features. They also identified two TAM clusters exclu-
sively emerged in the MM stage and exhibited higher M2 
scores, suggesting higher pro-myeloma activity of these 
TAMs clusters [142]. Besides, a similar polarization pat-
tern has also been observed in monocytes. In particular, 
three major subsets are recognized including classical 
(CD14+CD16−), intermediate (CD14+/− CD16low), and 
non-classical monocytes (CD14−CD16+), and the lat-
ter subset is considered to harbor a tumor-promoting 
phenotype [212]. In the absence of standard detection 
tool, the TAMs percentage within BM of MM patients 
has been found to be highly variable (ranging from near 

0 up to 25%). TAMs frequency displays an increase dur-
ing the development from MGUS to MM, and patients 
with a high CD163+ and CD206+ TAM infiltration are 
associated with worse prognosis [205, 213]. A recent 
scRNA-seq study reported that even though reduced 
in MGUS compared to advanced stages, mature mono-
cytes/macrophages are already impaired, presenting a 
phenotypic transition resulting in the loss of MHC class 
II surface representation affecting their antigen-present-
ing capability [39]. Another scRNA-seq study on RRMM 
patient samples also revealed 3 distinct TAM clusters, 
in which TAM cluster 3 showed a unique profile with 
specific expression of immunosuppressive genes (e.g., 
CD84 and VSIG4) [38]. Additional immune cell interac-
tion networks showed that TAMs presented as nodes of 
high connectivity with other immune cells in TME, and 
IL18R1/IL18RAP was identified as an immunosuppres-
sive interaction between TAM3 and NKbright cells [38].

Dendritic cells
Dendritic cells (DCs) are vital antigen-presenting cells 
(APCs), which serve as a bridge between innate and 
adaptive immunity in response to various pathogens 
[214]. These cells can be distinguished into two sub-
groups based on their function: conventional DC (cDC) 
and plasmacytoid DC (pDC). DCs have been found play-
ing crucial roles in the pathogenesis and disease progres-
sion of MM [215, 216]. There is a significant difference 
between MM patients and HDs, with a near 50% reduc-
tion in myeloid DCs and pDCs in PB [216, 217]. Inter-
estingly, the evolution from MGUS to MM is linked 
to increase in both cDCs and pDCs from the BME. As 
a consequence of MM, DCs also display a significantly 
altered immunophenotypic profile [215]. The expres-
sion levels of CCR5, CCR7 and DEC205 down-regulated 
on DC subtypes in MM compared to those from healthy 
individuals [217]. Downregulation of CCR5 and CCR7 
impairs DC migration to inflammation sites, whereas 
reduced DEC-205 expression dampens antigen uptake. 
Recent studies in transcriptomics have moved beyond 
expression arrays of bulk populations to single-cell profil-
ing, helping to identify novel surface markers, reveal het-
erogeneity within subpopulations and to identify rare but 
crucial DC subclusters. A recent single-cell study iden-
tified four DC subclusters in BM samples from NDMM 
and HDs, in which cDC2 showed a reduction in MM 
patients compared with HD samples. And cDC1 popula-
tion showed higher expressions of MHC I/II molecules 
and inflammatory cytokines and chemokines in MM 
with low tumor infiltration than MM with high tumor 
infiltration group [185]. These findings imply that anti-
gen presentation still can be triggered by cDC1 in the 
context of low myeloma cell infiltration, but suppressed 
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with the increased myeloma cell infiltration. Further 
pathway analysis suggested that the metabolic pattern of 
cDC1 was affected by high level of myeloma cells. pDC is 
a unique DC subset defined by its essential properties of 
secretory plasmacytoid morphology and abundant endo-
plasmic reticulum, and key roles in antiviral responses 
by producing type I interferon (IFN) [218]. This “non-
canonical” DC subset have been reported to accumulate 
in the BM of MM patients, and these pDC failed to stim-
ulate T-cell proliferation but supported malignant cell 
growth and survival by direct contact with myeloma cells 
[219]. Recently, Tirier et al. generated scRNA-seq profiles 
from 20 RRMM tumour samples to analyze the impacts 
of treatments on BME cell type abundance and pheno-
type [38]. They found pDCs showed an expansion upon 
IMiD-based treatment, as well as exhibited upregulation 
of inhibitory receptors including LGALS9, CLEC4A and 
CD300A in pDCs from RRMM. These data suggested 
that a remodeling pro-tumorigenic phenotype of pDC 
contributes to RRMM immunosuppression and resist-
ance to IMiD-based treatment. Therefore, these studies 
confirm that targeting pDC-MM interplay offers a prom-
ising therapeutic strategy for overcoming drug resistance 
in MM.

Collectively, the DC impairment in MM leads to dys-
functional capability of antigen presentation and pro-
tumor activity. Through improved understanding of 
the interactions between myeloma cell, cDC and pDC 
via single-cell methodologies, targeting the crosstalk 
between these cells may pave the way to successful DC-
targeting immunotherapies in the future.

Mesenchymal stromal cells
As an important component of the nonimmune micro-
environment, mesenchymal stromal cell (MSC) has 
been reported to promote MM proliferation and induce 
drug resistance [160, 220]. Despite great enthusiasm 
in exploring the roles of MSCs in MM progression, the 
low frequency of MSCs in BM aspirates has hampered 
detailed investigations into the roles these cells. A recent 
scRNA-seq report conducted by de Jong et  al. presents 
the first study using scRNA-seq to profile MSCs, as well 
as immune and myeloma cells, from patients with MM 
and healthy individuals to comprehensively dissect the 
microenvironment crosstalk in MM [132]. Using sam-
ples with over 200 million mononuclear cells and MSC 
enrichment allowed the authors to profile ~ 1,000-1,500 
MSCs per patient. They identified total five MSC subsets, 
two of which (MSC1 and MSC2) were termed as iMSCs 
and were nearly exclusive to the MM samples. These cells 
were characterized by expressing inflammatory cytokines 
and chemokines, including several MSC regulators 
reported previously, such as IL6, CXCL8, CXCL2, PTGS2 

and VEGFA, proteins involving in the tumor necrosis 
factor (TNF) pathway and CCL2, which has been shown 
to support myeloma cell migration via interacting with 
CCR2 [220–222]. Additionally, these iMSC subpopula-
tions also expressed genes encoding CXCL5, CXCL3 
and CD44, and the later one has been suggested as an 
iMSC marker in flow cytometry analysis. De Jong et  al. 
demonstrated that IL-1β and TNF receptors were iden-
tified as key phenotypic mediators of iMSCs, which was 
further confirmed by the IL-1β and TNF induced activa-
tion of MSCs in  vitro. The authors further investigated 
the intercellular crosstalk between MSC and immune 
or myeloma cells, and they found that TNF and IL-1β 
were mainly expressed by cytotoxic T cells, NK cells and 
monocytes respectively. Aside from communicating with 
myeloid subsets, iMSCs committed with proliferating 
MM cells via the CCL2-CCR2 signaling pathway. More 
importantly, they demonstrated that stromal inflamma-
tion in myeloma BME induced by immune cells persisted 
even achieving successful induction therapy, indicating a 
potential effect of iMSCs in myeloma relapse.

Taken together, high-throughput SCS technologies 
enhance the ability of researchers to comprehensively 
characterize the cellular heterogeneity, temporal/spatial 
evolution of tumor cells and infiltrated immune and stro-
mal cells in MM. These approaches provide insights into 
the mechanisms of drug resistance, immune suppression, 
and disease relapse in individual MM patients, thereby 
contributing to develop more effective and personalized 
anti-myeloma therapeutics.

Future perspectives and directions
Our understanding of myeloma biology has been 
improved dramatically, owing to the rapid develop-
ment and application of single-cell technologies. 
Some remained fundamental questions in myeloma 
research can be further explored by SCS. First, MM is 
an extremely complex disease whose origin and inherit-
ability remain controversial and require detailed inves-
tigation. To explore myeloma origin, a comprehensive 
strategy for the identification of MMSCs could be aided 
by advanced SCS techniques. Owing to its ability to cap-
ture rare cell population with high-purity, and to unravel 
initiating point along the differential trajectory, SCS 
holds promise to detected the MMSCs population and 
identify its real markers. Indeed, scRNA-seq have been 
utilized to unravel the hierarchies of tumors and their 
progenitor cancer stem cells (CSCs) in many cancer types 
[223–227]. In addition to application in deciphering 
tumor origin, scRNA-seq can also be used to characterize 
unknown features of CSC subtypes, such as its hetero-
geneity, unique stem/stem-like features [103, 228, 229], 
which will provide novel insights into the underlying 



Page 20 of 28Chen et al. Biomarker Research           (2023) 11:55 

mechanisms of CSC mediated self-renewal and drug 
resistance. Second, single-cell profiling of myeloma cells 
and the surrounding immune/stromal cells enables the 
characterization of the sophisticated BM ecosystem, 
specially the complex crosstalk inferred from scRNA-
seq data via predicting interactions of ligand-receptor 
pairs between different cell subsets. Novel approaches 
are also being developed to allow the investigation of 
physical intercellular interactions, especially the spatially 
resolved scRNA-seq methods. These attempts will bring 
a better understanding of the intricately cellular interac-
tions within the BME. Besides, single-cell T cell recep-
tor sequencing (scTCR-seq), with the capability to track 
each T-cell clone through paired sequencing of the T-cell 
receptor genes, can be integrated with high-dimensional 
single-cell spatial analysis, which has become particularly 
relevant to immuno-oncology [29]. And combination of 
scRNA-seq and scTCR-seq offers an effective method 
to analyze the phenotypic and functional characteristics 
of immune cells during disease progression or over the 
course of treatment. Third, high throughput spatial tech-
nologies are particularly suitable for BM and extramed-
ullary exploration of MM, which presents a spatially 
divergent disease with multi-region genomic heterogene-
ity [135, 150]. Combined with imaging modalities, spatial 
transcriptomic techniques will be able to add important 
information on cellular location within the bone niche, 
contributing to a better understanding of myeloma 
bone disease. Extramedullary disease (EMD) presents 
an aggressive form of MM, which is linked to high-risk 
genomic alterations, increased proliferation and poor 
survival [230]. Innovative technologies recently revealed 
a complex spatial architecture of solid tumors [231–234] 
marked by multicellular niches supporting tumor growth 
or preventing immune cell infiltration. However, whether 
these observations hold true for EMD is largely unknown. 
Thus, investigating the EMD microenvironment in a spa-
tial context using spatial omics technologies will provide 
a deeper understanding of ecosystems outside the BM 
and underlying mechanisms involving extramedullary 
spread.

SCS technologies also offer powerful tools for unbi-
ased discovery of novel drug targets for MM treatment. 
For example, Frede et al. showed that in RRMM patients, 
treatment induced significant changes in chromatin 
accessibility by scATAC-seq, and they identified a sur-
face protein CXCR4 as an attractive candidate as surface 
markers that can be targeted by immunotherapy [36]. 
Furthermore, another study that paves a way for incor-
porating scRNA-seq in clinical trials, identified PPIA as 
a potent therapeutic target to overcome resistance [131]. 
A multi-omics tool called scDAb-seq was generated 
[235] by combining of scDNA-seq with surface protein 

mapping (AB-seq [236]), which enables the characteri-
zation of both genotypic and phenotypic features. Using 
this elegant assay, it’s possible to determine the proteog-
enomic profile of clones at specific stages. Additionally, 
this approach allows researchers to determine the vast 
cell-surface proteome or “surfaceome” that regulates 
direct or indirect cell-cell interactions, ligand-receptor 
induced signaling, presentation of MM-specific antigens 
for immunotherapy. Impressive progresses have been 
achieved on determining myeloma cell surface proteome 
and enable unbiased discovery of novel therapeutic tar-
gets [237, 238]. CyTOF offers a new cytometric method 
for deep profiling single-cell protein on myeloma cells 
[37, 239] and immune populations [141, 240, 241]. Given 
the great success in immunotherapy in myeloma, we 
believe that application of single-cell proteomic sequenc-
ing will revolutionize the research in cancer pathology, 
especially when combined with multi-omic platforms, 
such as genetic and transcriptomic data at a single-cell 
resolution, and more importantly, dramatically contrib-
ute to identify novel targets for MM immunotherapy.

Preclinical models including human-derived cell lines 
[242] and mouse models [243] represent solid platforms 
for drug testing and investigation of disease mechanisms. 
Owing to technological advances, single-cell omics have 
been employed in numerous studies using clinical sam-
ples and preclinical models to investigate various patho-
logic conditions [244–247]. Inter-patient heterogeneity 
remains a key barrier to transform the preclinical findings 
into the clinic, with some of the patients failed to benefit 
from new drugs in clinical trials. With the power to dis-
sect tumor heterogeneity, SCS can be applied in different 
model systems and provides rich information related to 
genomic, phenotypic heterogeneity and tumor evolution, 
thus promoting precision medicine. In the condition of 
MM with genetical diversity, it’s hard to recapitulate all 
the clinical queries by preclinical models. A recent study 
represents an excellent example of preclinical research by 
establishing fifteen genetically engineered mouse models 
that covered the keys factors during MM pathogenesis, 
including diverse genetic heterogeneity, disease progres-
sion and BM microenvironment changes [248]. Their 
integrative results from coupled scRNA-seq and TCR-
seq highlighted the values of applying high throughput 
SCS on mouse and patient samples to test and predict 
response to immunotherapy drug combinations. There-
fore, with innovations in unprecedented resolution and 
unbiased insights from SCS, preclinical models will accel-
erate our ability to answer fundamental and pivotal ques-
tions from bench to bedside, and to reproducibly apply 
these technologies across cancer patient populations.

Beyond being exploratory tools, SCS technologies can 
undoubtedly achieve more values when translated and 
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adopted into clinical practice. Regarding the clinical util-
ity, in our view, SCS assessments should be conducted 
based on the clinical needs, thus help to resolve problems 
encountered in the clinic. For instance, accurately moni-
toring measurable residual disease (MRD), identifying 
high risk patients and overcoming drug resistance rep-
resent three of the major unmet medical needs in MM. 
For the MRD measurement, a recent study has developed 
a single-cell MRD (scMRD) assay by combining flow 
cytometric enrichment of the targeted precursor/blast 
population in AML samples with integrated scDNA-seq 
and immunophenotyping, and achieved significantly 
high sensitivity [249]. This attempt encourages us to 
test single-cell based MRD monitoring on MM patients, 
which would be particularly helpful in disease monitor-
ing. High-risk MM (HRMM) patients have been shown 
to have poor prognosis, thus accurately identifying high-
risk features is a critical issue in MM. Genomic charac-
terization of functional HRMM patients was proposed in 
a recent report [250], suggesting that factors outside of 
the myeloma cells may be critical for us to recognize the 
real HRMM. Thus, we can expect that comprehensively 
profiling both tumor cells and immune/stromal cells by 
single-cell approaches holds a great potential for this pur-
pose. RRMM patients remain hard to treat, mainly due 
to drug resistance. The great power in predicting drug 
resistance in MM patients by scRNA-seq has been shown 
in a recent multicenter clinical trial [131], which offers 
a blueprint for applying SCS in clinical trials to build a 
drug-resistance atlas, and to promote biomarkers discov-
ery for novel therapeutics [251].

However, applications of current SCS approaches out-
lined in this review are confronting with costs and tech-
nological challenges, which impeding our next step on 
the road to the clinic. By far the most expensive part of 
SCS is the sequencing itself. With the rapid advance-
ments in sequencing technologies and exploitation of 
cost-reduction strategies, we believe that the sequencing 
costs will continue to reduce. Besides, there are several 
important frameworks and infrastructure are required 
for clinical use, including: (1) introducing standard-
ized analytic pipelines and quality-controlled workflows 
when dealing with large amount of SCS data. In particu-
lar, batch effects should be carefully examined and cor-
rected to bring reliable clinical results; (2) controlling 
false positive or negative rates. ScRNA-seq and scDNA-
seq data would generate false negative or positive results 
due to the data sparsity [252], coverage nonuniformity 
and allelic dropout events [253]. Thus, it’s necessary to 
select computational methods to reduce potential false-
positive/negative errors. (3) establishing clear biospeci-
men collection and processing procedures based on the 

experimental design and goals, such as what types and 
formats (fresh, snap-frozen and/or FFPE) of samples 
should be collected, optimal timepoints to collect and 
how sample materials should be stored; (4) developing 
devices or systems that automate these SCS technolo-
gies and are compatible with existing clinical laboratory 
workflows, thus saving time and reducing labor efforts; 
(5) specializing core facilities that enable secure big-
data storage and enhancing collaboration between cli-
nicians and translational scientists; Together, with the 
rapid advancements and further technical improvements 
of SCS technologies, we will be able to make single-cell 
assessments feasible for real-world applications in the 
coming years.

Conclusion
In closing, SCS technologies have already revolutionized 
many aspects of cancer translational research and are 
prepared to have a greater impact in clinic. As the last 
decade has seen NGS technologies transform modern 
oncology, we believe that single-cell methodologies will 
influence many areas of MM medicine in the same way, 
and will become a powerful tool that can be implemented 
for clinical practice. Over the coming years, emerg-
ing technologies such as spatial SCS and multi-omics 
approaches will further expand their utility in myeloma 
research, and bring benefits for MM patients on person-
alized medicine and precision prevention. Overall, we 
expect that the implementation of single-cell technolo-
gies in myeloma medicine over the next decade will bring 
huge improvements in the clinical translation and treat-
ment of MM patients.
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MR	� Minimal response
SD	� Stable disease
PD	� Progressive disease
PRMM	� Primary refractory multiple myeloma
SASP	� Senescence-associated secretory phenotype
ICIs	� Immune checkpoint inhibitors
CAR-T	� Chimeric antigen receptor-T
HSP	� Heat shock protein
KIR	� Killer cell immunoglobulin like receptor
ADCC	� Antibody-dependent cellular cytotoxicity
TF	� Transcription factor
TAMs	� Tumor-associated macrophages
DC	� Dendritic cell
APCs	� Antigen-presenting cells
cDC	� Conventional dendritic cell
pDC	� Plasmacytoid dendritic cell
MSC	� Mesenchymal stromal cell
TNF	� Tumor necrosis factor
CSCs	� Cancer stem cells
scTCR-seq	� Single-cell T cell receptor sequencing
EMD	� Extramedullary disease
MRD	� Measurable residual disease
scMRD	� Single-cell measurable residual disease
HRMM	� High-risk multiple myeloma
FFPE	� Formalin-fixed paraffin-embedded
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