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Abstract
Background  Definitive chemoradiotherapy (dCRT) is a standard treatment option for locally advanced stage 
inoperable esophageal squamous cell carcinoma (ESCC). Evaluating clinical outcome prior to dCRT remains 
challenging. This study aimed to investigate the predictive power of computed tomography (CT)-based radiomics 
combined with genomics for the treatment efficacy of dCRT in ESCC patients.

Methods  This retrospective study included 118 ESCC patients who received dCRT. These patients were randomly 
divided into training (n = 82) and validation (n = 36) groups. Radiomic features were derived from the region of the 
primary tumor on CT images. Least absolute shrinkage and selection operator (LASSO) regression was conducted to 
select optimal radiomic features, and Rad-score was calculated to predict progression-free survival (PFS) in training 
group. Genomic DNA was extracted from formalin-fixed and paraffin-embedded pre-treatment biopsy tissue. 
Univariate and multivariate Cox analyses were undertaken to identify predictors of survival for model development. 
The area under the receiver operating characteristic curve (AUC) and C-index were used to evaluate the predictive 
performance and discriminatory ability of the prediction models, respectively.

Results  The Rad-score was constructed from six radiomic features to predict PFS. Multivariate analysis demonstrated 
that the Rad-score and homologous recombination repair (HRR) pathway alterations were independent prognostic 
factors correlating with PFS. The C-index for the integrated model combining radiomics and genomics was better 
than that of the radiomics or genomics models in the training group (0.616 vs. 0.587 or 0.557) and the validation 
group (0.649 vs. 0.625 or 0.586).
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Introduction
The high incidence and mortality of esophageal carci-
noma (EC) make this cancer type a major contributor 
to the global cancer burden [1]. Esophageal squamous 
cell carcinoma (ESCC) accounts for 90% of patients with 
esophageal cancer in China, which differs from the pre-
dominant occurrence of adenocarcinoma among esopha-
geal cancer patients in Western countries.

Currently, definitive chemoradiotherapy (dCRT) 
has become the standard of care for inoperable locally 
advanced ESCC. However, despite rapid advances in 
radiotherapy techniques, the prognosis of inoperable 
ESCC remains disappointing. More than 50% of ESCC 
patients eventually experience disease progression after 
dCRT, with a 3-year progression-free survival (PFS) rate 
of only 25–33% [2]. Notably, differences in PFS exist 
among patients treated with the same dCRT regimen. 
Thus, the ability to predict PFS after dCRT could help 
physicians provide individualized treatment for ESCC 
patients with different risk levels, applying appropriately 
tailored treatment strategies early for patients at high risk 
of progression.

In addition to clinical features, radiomics features 
extracted from pre-treatment contrast-enhanced com-
puted tomography (CT) and gene mutation informa-
tion extracted from pre-treatment tissues may provide 
valuable data for predictive models. Radiomics is a non-
invasive tool that provides useful additional informa-
tion by extracting high-throughput quantitative features 
from images (e.g., CT, magnetic resonance [MR], and 
positron emission tomography [PET]), which holds great 
promise for cancer prognosis, diagnosis, and prediction 
of response to therapy [3–5]. Gong et al. [6] found that a 
model combining contrast-enhanced CT-based radiomic 
features and clinical characteristics could predict the 
recurrence risk of EC among patients treated with dCRT. 
Larue et al. [7] extracted five radiomic features from CT 
images before chemoradiotherapy to characterize tumor 
heterogeneity and found that together the five features 
could predict the 3-year survival rate of EC patients after 
neo-chemoradiotherapy. However, these previous studies 
built predictive models based on clinical risk factors and 
radiomics features only.

A key feature of cancer cells is a highly unstable 
genome, which results in the accumulation of somatic 
mutations in critical oncogenic/oncosuppressor genes 
that drive uncontrolled cancer cell proliferation [8]. 
Genetic information has been widely used in the clinic 

as prognostic biomarkers to predict survival or treat-
ment response in support of clinical decision making 
[9]. For example, Kirienko et al. [10] demonstrated that 
radiomics features and gene expression profiles can 
predict recurrence of non-small cell lung cancer. How-
ever, to our knowledge, the potential prognostic value 
of radiomics features combined with a genetic signature 
in ESCC patients treated with dCRT has not previously 
been investigated.

In the present study, using data from pre-treatment 
contrast-enhanced CT images and genomic analysis of 
locally advanced stage unresectable ESCC, we attempted 
to develop and validate radiomics and genomics mod-
els for predicting PFS after dCRT in these patients and 
investigated the value of these models for individual PFS 
estimation.

Methods and materials
Patients
This retrospective study included patients with stage II–
III ESCC who received dCRT in our hospital from 2015 
to 2019. The inclusion criteria were as follows: (1) patho-
logical diagnosis of ESCC; (2) availability of clinical infor-
mation, such as alcohol consumption history, smoking 
status, treatment information, tumor location, survival, 
etc.; (3) availability of pretreatment contrast-enhanced 
CT and tumor samples; and (4) treatment with dCRT. 
The patients recruitment and selection process was 
showed in Fig. 1. Ultimately, a total of 118 patients were 
randomized to two groups in a 7:3 ratio, with 82 patients 
in the training group and 36 patients in the validation 
group (Table  1). PFS was defined from the date of the 
pathologic diagnosis of ESCC to the date of progressive 
disease or death. The workflow of this study is depicted 
in Fig. 2.

The study was approved by the ethical review commit-
tee of our hospital. A completed informed consent form 
was acquired from each patient in accordance with the 
guidelines of the Institutional Review Board and the Dec-
laration of Helsinki.

CT image acquisition
All patients underwent contrast-enhanced CT exami-
nation before treatment. A 64-layer spiral CT scanner 
(Definition AS+, Siemens SOMATOM) was used for CT 
image acquisition. The scanning parameters were: slice 
thickness of 5.0  mm, tube voltage of 120  kV, and tube 
current of 220 mA. Iodinated contrast agent (300  mg/

Conclusion  The Rad-score and HRR pathway alterations could predict PFS after dCRT for patients with ESCC, with the 
combined radiomics and genomics model demonstrating the best predictive efficacy.
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Prognosis



Page 3 of 11Cui et al. Biomarker Research           (2023) 11:44 

mL) at a dose of 1.5 ml/kg body mass was injected rap-
idly at a flow rate of 2 mL/s through the patient’s elbow 
vein using a high-pressure syringe. To ensure more stan-
dardized images, we uniformly take patient arterial phase 
images after contract injection. Enhanced CT images in 
DICOM format were extracted from the PACS system 
and used for feature extraction.

ROI segmentation and radiomics feature extraction
Two radiologists with 10 years of clinical diagnostic 
experience delineated separately the primary tumor as 
the region of interest (ROI) on CT images (Fig. 2) using 
3D-Slicer software (Version 4.11.0). Primary tumors, 
defined as lesions with esophageal wall thickening > 5 mm 
or lumen occlusion diameter > 10  mm and excluding 

intraluminal gas and oral contrast agent. The two radiol-
ogists were blinded to the pathological and clinical data. 
A total of 851 features were extracted from the manually 
segmented tumors of each patient using the open-source 
package Pyradiomics in 3D-Slicer.

Radiomics feature selection and rad-score construction
The characteristics of each patient were normalized using 
Z-score normalization to ensure comparability among 
the data. To minimize any type of bias or overfitting due 
to an excessive number of features, feature selection 
was performed in two steps using the inter-class cor-
relation coefficient (ICC) and least absolute shrinkage 
and selection operator (LASSO) regression. Radiomics 
features of 20 patients extracted by the two physicians 

Fig. 1  Recruitment and selection process of patients
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separately were used to calculate ICC. Only the fea-
tures with ICC ≥ 0.800 were selected for further analy-
sis. The optimum parameter lambda (λ) was selected 
from the LASSO model using 10-fold cross validation 
with the minimum mean square error (MSE). The most 
predictive features and weight coefficients for PFS were 
selected, and the selected features and corresponding 
weight coefficients were linearly combined to establish 
the Rad-score.

Gene mutation signatures
As our previously described [11], target sequencing of 
474 cancer-related genes was performed on tumor tissue 
samples from each patient. Univariate and multivariate 

analyses were performed to identify the mutations asso-
ciated with reduced PFS in ESCC patients. Our result 
demonstrated that CHEK2 mutations, NOTCH2 muta-
tions, and mutated homologous recombinant repair 
(HRR) pathways were related to shorter PFS in ESCC 
patients in univariate analyses, and HRR pathway altera-
tions was independent prognostic factors of PFS in mul-
tivariate analyses.

Construction and validation of models for survival 
prediction
The receiver operating characteristic (ROC) curve for the 
ability of the Rad-score to predict PFS was plotted, and 
the point on the curve with the largest Youden index was 
selected as the cut-off value for the Rad-score. The opti-
mum selected radiomics features, gene mutation char-
acteristics, and clinical factors were used to construct 
survival prediction models through Cox proportional 
hazard regression in the training group. The performance 
of the models in the training and validation groups was 
evaluated using the ROC curve and C-index.

Statistical analysis
The clinical features of patients in the two groups were 
compared using the chi-squared test. All statistical analy-
ses were conducted using Python version 3.9, R version 
4.2.1 and SPSS version 25.0. The Kaplan–Meier method 
was used to plot PFS curves, and the log-rank test was 
applied to compare survival differences between the 
groups. Cox proportional risk regression models were 
used for univariate and multivariate analyses. The 
“timeROC” package was applied to draw ROC curves. 
The “rms” package was applied to calculate the C-index 
of each prediction model. LASSO regression was imple-
mented using “Python” software. All statistical tests in 
this study were two-tailed, and p < 0.05 was considered to 
be statistically significant.

Results
Patient characteristics
A total of 118 patients with ESCC who underwent dCRT 
in our hospital were included in this study. The charac-
teristics of patients in the training and validation groups 
are presented in Table  1. No significant differences in 
characteristics were observed between the two groups. 
After a median follow-up time of 33.4 months, 76 indi-
viduals experienced progression. The median PFS in the 
whole cohort was 11.8 months.

Rad‑score construction from six radiomics features
A total of 851 features from each patient ROI were 
extracted using the open-source package Pyradiomics 
in 3D-Slicer software. The extracted radiomics features 
included shape features, first order statistical features, 

Table 1  Comparison of patients’ characteristics between 
training and validation groups
Variables Training 

group
(N = 82)

Valida-
tion 
group
(N = 36)

p

Gender Male 59 28 0.508

Female 23 8

Age ≤ 65 34 18 0.390

>65 48 18

KPS ≤ 80 44 15 0.230

>80 38 21

Smoking status Never 41 18 1

Former/current 41 18

Alcohol consumption Never 52 22 0.812

Former/current 30 14

Tumor location Cervical 4 5 0.203

Upper thoracic 36 11

Middle thoracic 27 15

Lower thoracic 15 5

Clinical stage II 11 7 0.402

III 71 29

Radiation dose > 60 Gy 13 3 0.546

> 50.4 Gy ≤ 60 Gy 52 25

≤ 50.4 Gy 17 8

Chemoradiotherapy SCRT 39 21 0.281

CCRT 43 15

Radiation therapy 3D-CRT 14 7 0.756

IMRT 68 29

CHEK2 Wild 77 34 1

Mutation 5 2

NOTCH2 Wild 75 33 1

Mutation 7 3

HRR pathway status Wild 70 28 0.312

Mutation 12 8

Rad-score ≤ 0.36 32 14 0.989

> 0.36 50 22
Abbreviations: KPS Karnofsky performance status, SCRT sequential 
chemoradiotherapy, CCRT concurrent chemoradiotherapy; IMRT intensity 
modulated radiation therapy, 3D-CRT 3-dimensional conformal radiation 
therapy
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gray level co-occurrence matrix (GLCM), gray level 
dependence matrix (GLDM), gray level run-length 
matrix (GLRLM), gray level size zone matrix (GLSZM), 
neighbor gray tone difference matrix (NGTDM), and 
features obtained via wavelet filtering processing. The 
mathematical meanings of these radiomic signatures 
have been described previously [12] and are available at 
https://pyradiomics.readthedocs.io/en/latest/.

For Rad-score construction, first the features with 
an ICC < 0.8 were removed (Fig.  3). After this step, 638 
radiomics features were included in the subsequent 
data analysis as stable feature parameters. Next, LASSO 
regression was applied and identified six radiomics fea-
tures with non-zero coefficients (Fig.  4a and b). These 
features and the corresponding coefficients are presented 

in the Table  2. The calculation method for Rad-score 
based on these features is as follows:

Table 2  Radiomics features associated with PFS selected by 
LASSO regression
Radiomics features Coefficients
original_shape_SurfaceVolumeRatio -0.24799156283072044

original_glcm_SumEntropy -0.1361746133085625

wavelet-LLH_gldm_LargeDependenceLow-
GrayLevelEmphasis

0.006448868786596698

wavelet-LHL_glcm_Idmn 0.49200413399592363

wavelet-HHL_glszm_GrayLevelVariance 0.1013747131127634

wavelet-LLL_glcm_Imc2 -0.23295948882404996

Fig. 3  Evaluation of the stability of radiomics features based on ICC.
 Features with ICC < 0.8 were removed, and the remaining 638 radiomics features were included in the data analysis as stable feature parameters

 

Fig. 2  Workflow of the current study

 

https://pyradiomics.readthedocs.io/en/latest/
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Rad − score =
− 0.24799156283072044 ∗ original_shape
_SurfaceVolumeRatio
+ −0.1361746133085625 ∗ original_glcm_SumEntropy
+ 0.006448868786596698 ∗ wavelet_LLH_gldm
_LargeDependenceLowGrayLevelEmphasis
+ 0.49200413399592363 ∗ wavelet − LHL_glcm_Idmn
+ 0.1013747131127634 ∗ wavelet − HHL_glszm
_GrayLevelVariance
+ −0.23295948882404996 ∗ wavelet − LLL_glcm_Imc2

Prediction models based on radiomics and genomics 
features
For the radiomics model for PFS prediction based on 
the Rad-score, ROC curve analysis identified 0.36 as 
the optimum cut-off value for the Rad-score. Accord-
ingly, patients with a Rad-score > 0.36 were classified 
as having a high risk of progression, and those with a 
Rad-score ≤ 0.36 were classified as having a lower risk of 
progression. Univariate and multivariate Cox regression 
analyses then confirmed that the Rad-score was an inde-
pendent predictor of PFS in the training group (Table 3).

For the genomic model for PFS prediction, a gene 
mutation signature was identified by analysis of the 
sequencing results for tumor samples from ESCC 
patients. Univariate analysis identified CHEK2 mutations 
and mutations in the HRR pathway as related to shorter 
PFS in ESCC patients in the training group, and the HRR 
pathway alterations remained independent prognostic 
factors for PFS on multivariate analyses (Table 4).

Three predictive models for predicting the efficacy 
of dCRT based on PFS were constructed: the radiomics 
model, the genomics model, and a model integrating 
both radiomics and genomic features.

Predictive performance of the radiomics, genomics, and 
integrated models
Based on radiomics model, patients in the training with 
a high risk of progression according to the Rad-score had 
a significantly shorter median PFS than those with a low 
risk of progression (Figs. 5a 8.5 months vs. 13.9 months, 
p = 0.022). The same result was observed in the validation 
group (Figs.  5b 11.1 months vs. 23.2 months, p = 0.029). 
The ROC curve analysis results for the performance of 
the radiomics model for predicting 1-year, 2-year, and 
3-year PFS probability are shown in Fig.  6a and b. In 
the training group, the area under the curve (AUC) val-
ues for the prediction of 1-year, 2-year, and 3-year PFS 
probability with this model were 0.604 (95% confidence 
interval [CI] 0.490–0.718), 0.605 (95% CI 0.437–0.774), 
and 0.528 (95% CI 0.328–0.728), respectively. In the vali-
dation group, the corresponding AUC values were 0.618 
(95% CI 0.446–0.789), 0.662 (95% CI 0.474–0.849), and 
0.731 (95% CI 0.529–0.933), respectively. The C-index for 
the radiomics model was 0.587 (95% CI 0.516–0.658) in 
the training group and 0.625 (95% CI 0.535–0.715) in the 
validation group.

According to the genomics model, patients with HRR 
pathway mutations had a significantly shorter median 
PFS than those without these HRR pathway mutations 
(wild-type) in the training group (Figs. 5c 7.97 months vs. 
12.8 months, p = 0.0064). The same result was observed 
in the validation group (Figs.  5d 10.4 months vs. 21.2 
months, p = 0.022). The ROC curve analysis results for 
the performance of the genomics model for predicting 
1-year, 2-year, and 3-years PFS probability are shown in 
Fig. 6c and d. In the training group, the AUC values for 
the prediction of 1-year, 2-year, and 3-year PFS prob-
ability with this model were 0.615 (95% CI 0.537–0.693), 
0.593 (95% CI 0.540–0.646), and 0.589 (95% CI 0.538–
0.640), respectively. In the validation group, the corre-
sponding AUC values were 0.582 (95% CI 0.440–0.723), 

Fig. 4  Selection of radiomic features associated with PFS based on LASSO regression models. (a): The crossvalidation curve. The vertical axis is mean 
square error, and the horizontal axis is lambda (λ). (b): Coefficient curves for radiomic features. The vertical axis represents the radiomic features’ coef-
ficients, and the horizontal axis is λ
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0.642 (95% CI 0.544–0.740), and 0.621 (95% CI 0.535–
0.708), respectively. The C-index for the genomics model 
was 0.557 (95% CI 0.506–0.609) in the training group and 
0.586 (95% CI 0.501–0.671) in the validation group.

In the integrated model combining radiomics features 
and the genomic signature, patients were separated into 
high, intermediate, and low progression risk groups 

based on the Rad-score and HRR pathway mutation sta-
tus. Patients with a high risk of progression had a signifi-
cantly shorter median PFS than those with intermediate 
or low risk of progression in the training group (Figs. 5e 
and 6.18 months vs. 9.93 months vs. 14.4 months, 
p < 0.001). The same results were observed in the valida-
tion group (Figs. 5f and 10.4 months vs. 12.3 months vs. 
23.2 months, p = 0.026). The ROC curve analysis results 
for the performance of the integrated model in predict-
ing 1-year, 2-year, and 3-year PFS probability are shown 
in Fig. 6e and f. In the training cohort, the AUC values 
for the prediction of 1-year, 2-year, and 3-year PFS prob-
ability with this model were 0.676 (95% CI 0.568–0.783), 
0.662 (95% CI 0.511–0.813), and 0.594 (95% CI 0.415–
0.772), respectively. In the validation group, the corre-
sponding AUC values were 0.642 (95% CI 0.458–0.826), 
0.709 (95% CI 0.543–0.875), and 0.756 (95% CI 0.585–
0.926), respectively. The C-index for the integrated model 
was 0.616 (95% CI 0.542–0.690) in the training group and 
0.649 (95% CI 0.553–0.745) in the validation group.

The results regarding the predictive performance of 
the three models for the 1-year, 2-year, and 3-year PFS 
probability of every patient in the training and validation 
groups are summarized in Table 4 and 5. The integrated 
model combining radiomics and genomics outperformed 
the radiomics or genomics models for predicting PFS in 
ESCC patients after dCRT.

Discussion
In this study, we developed three models for predicting 
the efficacy of dCRT in ESCC patients, including a CT-
based radiomics model, a genomics model, and an inte-
grated model combining both radiomics and genomics 
futures. We then confirmed and compared the predictive 
performance of these models in a validation cohort. Our 
results demonstrated that stratification of patients into 
high and low progression risk groups could be achieved 
based on CT-based radiomic features and HRR pathway 
mutation status, and these features had significant value 

Table 3  PFS-related univariate and multivariate analysis in the 
training group
Variables Training cohort

Univariate analysis Multivariate 
analysis

HR (95% CI) p HR 
(95% 
CI)

p

Gender (Male vs. Female) 0.685 
(0.364–1.29)

0.241

Age (≤ 65 vs. >65) 0.853 
(0.483–1.509)

0.586

KPS (≤ 80 vs. >80) 0.871 
(0.501–1.513)

0.623

Smoking status (Never vs. 
Former/current)

1.231 
(0.711–2.132)

0.458

Alcohol consumption 
(Never vs. Former/current)

1.674 
(0.959–2.922)

0.070

Tumor location (Cervical 
reference)

0.294

  Upper thoracic 2.94 
(0.396–21.828)

0.292

  Middle thoracic 3.321 
(0.443–24.883)

0.243

  Lower thoracic 5.333 
(0.67-42.442)

0.114

Clinical stage (II vs. III) 2.497 
(0.988–6.307)

0.053

Radiation dose (>60 Gy 
reference)

0.246

  >50.4 Gy ≤ 60 Gy 0.768 
(0.375–1.575)

0.471

  ≤50.4 Gy 1.374 
(0.58–3.253)

0.470

Chemoradiotherapy (SCRT 
vs. CCRT)

0.596 
(0.341–1.041)

0.069

Radiation therapy (3D-CRT 
vs. IMRT)

1.008 
(0.499–2.035)

0.983

CHEK2 (Wild vs. Mutation) 2.658 
(1.029–6.867)

0.044

NOTCH2 (Wild vs. Mutation) 1.77 
(0.694–4.515)

0.232

HRR (Wild vs. Mutation) 2.671 
(1.281–5.569)

0.009 2.747 
(1.313–
5.748)

0.007

Rad-score (≤ 0.36 vs. > 0.36) 2.016 
(1.09–3.728)

0.025 2.052 
(1.109–
3.798)

0.022

Abbreviations: KPS Karnofsky performance status, SCRT sequential 
chemoradiotherapy, CCRT concurrent chemoradiotherapy; IMRT intensity 
modulated radiation therapy, 3D-CRT 3-dimensional conformal radiation 
therapy

Table  4  Predictive performance of the three models in the 
training group for PFS.
Model AUC (95%CI) C-index 

(95%CI)
1-year PFS 2-years PFS 3-years PFS

Rad-score 0.604
(0.490–0.718)

0.605
(0.437–0.774)

0.528
(0.328–0.728)

0.587
(0.516–
0.658)

HRR pathway 
status

0.615
(0.537–0.693)

0.593
(0.540–0.646)

0.589
(0.538–0.640)

0.557
(0.506–
0.609)

Rad_HRR 0.676
(0.568–0.783)

0.662
(0.511–0.813)

0.594
(0.415–0.772)

0.616
(0.542–
0.690)

Abbreviations: PFS progression-free survival, AUC area under curve
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for predicting PFS among ESCC patients. Importantly, 
the integrated model combining the radiomics features 
and genomics signature was superior to either model 
based on only one type of data.

Radiomics is an emerging image analysis method that 
can extract a great number of quantitative features from 
imaging data to quantify tumor heterogeneity, which is 
significant for personalized oncology [13–15]. Several 
radiomics studies have investigated the role of CT-based 
radiomics features in predicting treatment response [16, 
17] and prognosis in EC patients [7, 18, 19]. Ganeshan 
et al. [20] first researched the CT radiological features 
of patients with EC before treatment and suggested that 
radiological signatures representing homogeneity param-
eters differed significantly between stage III/IV and I/
II disease and could serve an independent predictors of 
prognosis. Larue et al. [7] developed a random forest 
model predicting 3-year overall survival (OS) based on 
pre-treatment CT radiomic signatures and validated it 

in two independent cohorts of ESCC patients with AUC 
values ranging from 0.61 to 0.69. Hou et al. [21] retro-
spectively explored pre-treatment CT images of 49 ESCC 
patients undergoing CRT and reported that CT data 
could predict the response of tumors to CRT with an 
AUC ranging from 0.69 to 0.73. All of these studies dem-
onstrated that radiomic features can be useful for assess-
ing the prognosis and treatment response of EC, a finding 
also supported by our results. However, these previous 
studies included only clinical and imaging factors, not 
considering molecular signatures, and their findings may 
be further limited by their small sample sizes and lack of 
independent validation cohorts. Additionally, the effec-
tiveness of radiomics for predicting progression risk in 
ESCC patients treated with dCRT had not been deter-
mined. In the present study, our CT-based radiomics 
model was found to predict PFS in ESCC patients after 
dCRT with a C-index of 0.587), and its performance was 
confirmed in a validation group (C-index = 0.625). Thus, 

Fig. 5  Kaplan–Meier survival curves constructed based on the three models
 Applying the radiomics model, PFS curves for patients with Rad-score ≥ 0.36 (Rad-score = 1) and Rad-score < 0.36 (Rad-score = 0) in the training (a) and 
validation (b) groups. Applying the genomics model, PFS curves for patients with HRR pathway mutations (HRR = 1) and without (wild-type, HRR = 0) in 
the training (c) and validation (d) groups. Applying the integrated model, PFS curves for patients with high (Rad_HRR = 2), intermediate (Rad_HRR = 1), 
and low (Rad_HRR = 0) progression risk in the training (e) and validation (f) groups
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our study supports current evidence for the value of 
radiomics in predicting progression of locally advanced 
ESSC after dCRT.

Abnormalities in genes regulating cell cycle progres-
sion have been implicated in the development of a vari-
ety of cancers, including ESCC [22, 23]. Moreover, some 
genetic alterations are known to affect the efficacy of 
treatment for cancer patients. Research revealed that the 

HRR pathway is associated with the sensitivity of patients 
with different cancer types to chemotherapy [24]. A pre-
vious study in a large pan-cancer cohort of the Cancer 
Genome Atlas (TCGA) showed that mutations linked 
to the HRR pathway are associated with inferior clinical 
outcomes [25]. Similarly, we previously investigated the 
relationship between genetic characteristics and disease 
outcome in EC patients treated with dCRT and found 
that HRR pathway alterations can be used as a prognos-
tic marker for PFS [11]. Therefore, the introduction of 
genetic features is expected to further improve the reli-
ability and accuracy of a radiomics prediction model 
developed on a limited training data set. A study con-
ducted by Xie CY et al. [26] proposed a genomics-based 
feature selection approach to create CT-based radiomics 
model using differentially expressed genes to reduce 
the number of radiomic features. The results showed 
that the radiomic signature with differentially expressed 
genes feature selection achieved better performance for 
disease-free survival prediction than without. Through 
Cox univariate analysis in patients with primary colorec-
tal cancers, Badic et al. [27] found that ABCC2 mRNA 
level, stage III, node status (N), and radiomic features, 

Table 5  Predictive performance of the three models in the 
validation group for PFS.
Model AUC (95%CI) C-index 

(95%CI)
1-year PFS 2-years PFS 3-years PFS

Rad-score 0.618
(0.446–0.789)

0.662
(0.474–0.849)

0.731
(0.529–0.933)

0.625
(0.535–
0.715)

HRR pathway 
status

0.582
(0.440–0.723)

0.642
(0.544–0.740)

0.621
(0.535–0.708)

0.586
(0.501–
0.671)

Rad_HRR 0.642
(0.458–0.826)

0.709
(0.543–0.875)

0.756
(0.585–0.926)

0.649
(0.553–
0.745)

Abbreviations: PFS progression-free survival, AUC area under curve

Fig. 6  Evaluation of the predictive performances for the three models for PFS in ESCC patients after dCRT. Receiver operating characteristic 
curves showing the predictive performances of the radiomics model (a, b), genomics model (c, d), and integrated model (e, f) in the training and valida-
tion groups, respectively
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including flatness, sum entropy (SENTR), entropy from 
grey-level-co-occurrence-matrix (EntropyGLCME), and 
grey-level non-uniformity (GLNUL) are predictive fac-
tors for PFS. Further multivariate analysis identified 
EntropyGLCME, ABCC2, and Stage III as independent 
prognostic factors for PFS in this population (p = 0.0001). 
From the Cox model, the combination of clinical and 
radiologic features in their study was associated with a 
hazard ratio (HR) greater than 22, while lower HR values 
were observed for the different types of features individu-
ally. To the best of our knowledge, our study is the first 
to explore the predictive value of radiogenomics for EC 
survival. Multivariate Cox regression analysis demon-
strated that the Rad-score developed in our study and 
the HRR pathway alterations identified in our study were 
independent prognostic factors for PFS in ESCC patients 
treated with dCRT. Our integrated model incorporating 
the radiomic signature and HRR pathway mutation sta-
tus offered even more significant predictive prognostic 
performance than the radiomics model (C-index, 0.616 
vs. 0.587) and the genomics model (C-index, 0.616 vs. 
0.557) in the training cohort. Therefore, integration of 
radiomics models with genetic predictors has potential 
advantages for predicting the risk of progression in ESCC 
patients receiving dCRT.

Although our study established and validated prog-
nosis prediction models, it has several limitations. First, 
the study was conducted on a relatively small sample 
size of patients, which may limit the generalizability of 
the results. Second, the study was conducted in a single 
center, which may limit the generalizability of the find-
ings to other centers with different patient populations 
and imaging protocols. Third, the study design was ret-
rospective, which may introduce bias and limit the ability 
to control for confounding variables. Last, the study did 
not include external validation. The integrated predic-
tion model developed in this study needs to be further 
validated by data for a larger sample size collected from 
more medical centers.

Conclusion
In summary, this study explored the utility of radiomics 
and genomics models as a feasible approach to predict 
the PFS of patients with locally advanced ESCC treated 
with dCRT. Compared with either the radiomics model 
or genomics model, the integrated model combining 
both types of data offered superior predictive perfor-
mance. We conclude that our integrated model may be 
useful for early screening to identify ESCC patients at 
high risk of progression in order to guide more effective 
personalized treatment and closer follow-up to prevent 
progression.
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