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LncRNA AC006064.4–201 serves 
as a novel molecular marker in alleviating 
cartilage senescence and protecting 
against osteoarthritis by destabilizing CDKN1B 
mRNA via interacting with PTBP1
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Abstract 

Background  Osteoarthritis (OA) is the most prevalent age-related disease in the world. Chondrocytes undergo an 
age-dependent decline in their proliferation and synthetic capacity, which is the main cause of OA development. 
However, the intrinsic mechanism of chondrocyte senescence is still unclear. This study aimed to investigate the role 
of a novel long non-coding RNA (lncRNA), AC006064.4–201 in the regulation of chondrocyte senescence and OA 
progression and to elucidate the underlying molecular mechanisms.

Methods  The function of AC006064.4–201 in chondrocytes was assessed using western blotting, quantitative real-
time polymerase chain reaction (qRT-PCR), immunofluorescence (IF) and β-galactosidase staining. The interaction 
between AC006064.4–201 and polypyrimidine tract-binding protein 1 (PTBP1), as well as cyclin-dependent kinase 
inhibitor 1B (CDKN1B), was evaluated using RPD-MS, fluorescence in situ hybridization (FISH), RNA immunoprecipita-
tion (RIP) and RNA pull-down assays. Mice models were used to investigate the role of AC006064.4–201 in post-trau-
matic and age-related OA in vivo.

Results  Our research revealed that AC006064.4–201 was downregulated in senescent and degenerated human 
cartilage, which could alleviate senescence and regulate metabolism in chondrocytes. Mechanically, AC006064.4–201 
directly interacts with PTBP1 and blocks the binding between PTBP1 and CDKN1B mRNA, thereby destabilizing 
CDKN1B mRNA and decreasing the translation of CDKN1B. The in vivo experiments were consistent with the results of 
the in vitro experiments.
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Conclusions  The AC006064.4–201/PTBP1/CDKN1B axis plays an important role in OA development and provides 
new molecular markers for the early diagnosis and treatment of OA in the future.

Keywords  lncRNAs, Osteoarthritis, Senescence, PTBP1, CDKN1B

Graphical Abstract
Schematic diagram of AC006064.4–201 mechanism. A schematic diagram of the mechanism underlying the effect of 
AC006064.4–201

Introduction
OA is the most prevalent degenerative disease and the 
main cause of disability in older adults worldwide. It 
has affected 32.5 million adults in the United States, 
at an annual cost of $136.8 billion a year [1, 2]. There 
are many risk factors for OA, including aging, sex, obe-
sity, genetics, early joint trauma, and muscle weakness, 
of which the most important is aging [3, 4]. With the 
extension of human life, the morbidity of OA will grad-
ually increase. It is predicted that more than 67 million 

people in the United States will suffer from OA by 2030 
and exceed 78.4 million by 2040 [5, 6]. However, patho-
genesis of OA remains unclear.

Cellular senescence is a stress response induced by 
multiple intrinsic and extrinsic stimulators [7]. It is 
currently one of the most rapidly developing branches 
of science and has been directly implicated as a key 
driver of age-related diseases [8, 9]. Secondary senes-
cence and aggravated tissue damage are caused by the 
local accumulation of Senescent cells (SnCs) [10]. As 
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the only cell type in cartilage, chondrocytes undergo 
an age-related decline in proliferation and synthetic 
capacity, resulting in an imbalanced metabolism of 
the extracellular matrix (ECM) and the progression 
of OA [11, 12]. Therefore, alleviating chondrocyte 
senescence is expected to be an effective method for 
treating OA.

Long non-coding RNAs (lncRNAs) are a subclass of non-
coding RNAs (ncRNAs), with a length of approximately 
200 nucleotides [13]. Previous studies have demonstrated 
the participation of lncRNAs in many human diseases, 
including OA [14–16]. Accumulating evidence also showed 
the involvement of lncRNAs in the senescence progres-
sion of multiple cells, such as fibrocytes, cardiomyocytes 
and vascular endothelial cells [17–19]. Hence, chondrocyte 
senescence may be closely related to lncRNAs, however, no 
research has yet focused on this area.

In the current study, we identified a novel biomarker 
(AC006064.4–201) in chondrocytes that was negatively 
correlated with the processes of chondrocyte senes-
cence and OA development. In terms of mechanism, 
AC006064.4–201 could inhibit the binding of cyclin-
dependent kinase inhibitor 1B (CDKN1B) mRNA to 
polypyrimidine tract-binding protein 1 (PTBP1), thereby 
downregulating CDKN1B protein translation. The 
AC006064.4–201/PTBP1/CDKN1B axis is expected to 
be a potential target for OA treatment in the future.

Materials and methods
Human tissue collection
This study was approved by the Ethics Committee of 
Sir Run Run Shaw Hospital (Hangzhou, China). Human 
knee joint samples were obtained from patients of dif-
ferent ages who had undergone total knee replacement 
surgery, and written informed consent was obtained 
from each patient. Patients with autoimmune and met-
abolic diseases such as hyperlipidemia, hypertension, 
diabetes, rheumatoid arthritis, and other diseases that 
affect the joints were excluded from this study. Samples 
were divided into two groups according to the age of 
the corresponding patients: samples from patients aged 
50–65 years were taken as the young group, while sam-
ples from patients aged 66–80 years were taken as the old 
group.

Chondrocytes isolation and culture
Human cartilage tissues were isolated from human knee 
joint samples and mouse cartilage tissues were isolated 
from mice that were 5  days old. Cartilage tissues were 
shredded using the physical method, washed with ster-
ile phosphate buffered saline (PBS), and treated with 
0.2% type II collagenase (Sigma-Aldrich, USA) for 24  h 
at 37 °C. The mixture was filtered using a 0.075 mm cell 
strainer and centrifuged at 1500 rpm for 10 min. Finally, 
the sediments were cultured evenly in Dulbecco’s Modi-
fied Eagle Medium (DMEM) supplemented with 10% 
FBS (Thermo Fisher Scientific, Waltham, MA, USA), and 
maintained in an incubator set to 37 °C with 5% CO2 and 
100% humidity.

Animal studies
All animal experiments were approved by the Institute 
of Health Sciences Institutional Animal Care and Use 
Committee.

The adeno-associated virus (AAV) Gm49317-201 short 
hairpin RNA (shRNA), CDKN1B shRNA and negative 
control lentivirus were constructed and packaged by 
HanBio (Shanghai, China).

For post-traumatic arthritis animal models, forty 
adult male C57BL/6 mice, aged 12  weeks, were used 
for in  vivo experiments. As a positive control, an 
OA model was introduced using destabilization of 
the medial meniscus (DMM) surgery, as previously 
described [20]. Briefly, 30 mice were anesthetized, and 
the knee joints were exposed using a medial capsular 
incision. The medial meniscotibial ligament (MMTL) 
was then transected, and the medial meniscus was dis-
placed medially using a dissecting microscope. Finally, 
the joints were irrigated with sterile saline and then 
closed. The sham operation was performed in parallel. 
Briefly, 10 mice were anesthetized and the knee joint 
was opened, irrigated with sterile saline, and closed. 
One week after surgery, the unoperated mice were 
randomly divided into three groups (Control injec-
tion, sh Gm49317-201 injection and sh Gm49317-
201 + sh CDKN1B injection) with 10 mice in each 
group. A total of 10  μl (approximately 1 × 10^11PFU/
mL) of the control virus, Sh Gm49317-201 virus or Sh 
CDKN1B virus was injected into the knee joints with 

(See figure on next page.)
Fig. 1  AC006064.4–201 exhibits lower expression in senescent and degenerated HCs. A Heat map of differentially expressed lncRNAs between 
normal human chondrocytes (HCP0) and senescent human chondrocytes (HCP3). B Quantitative real time (qRT-PCR) of AC006064.4–201 in specific 
sections of human knee cartilages of different ages (n = 15). * p < 0.05, ** p < 0.01. C Representative images of Safranin O / Fast green staining, FISH 
staining for AC006064.4–201, and IF staining for p16INK4a and Mmp3 in specific sections of human knee cartilages of different ages. Scale bars, 1 mm, 
500 µm and 200 µm. D Expression of AC006064.4–201 in HCs after cheating with different concentrations of Bleomycin (0 ug/ml, 50ug/ml and 
100ug/ml) (n = 9, 3 donors for three replicates) *** p < 0.001. E Expression of AC006064.4–201 assessed by qRT-PCR in the nuclear and cytoplasmic 
fractions. F RNA FISH showed that AC006064.4–201 was predominantly localized in the cytoplasm. Scale bar, 25 µm
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Fig. 1  (See legend on previous page.)



Page 5 of 20Shen et al. Biomarker Research           (2023) 11:39 	

a microinjector. Seven weeks after the injection, the 
mice were sacrificed and the knee joints were sepa-
rated for micro-computed tomography (micro-CT) 
evaluation and histological analysis.

For the natural senescence animal model, 30 adult male 
C57BL/6 mice, aged 4  months, were used for in  vivo 
experiments. Briefly, the mice were randomly divided 
into three groups (control injection, sh Gm49317-201 
injection and sh Gm49317-201 + sh CDKN1B injection) 
with 10 mice in each group. A total of 10  μl (approxi-
mately 1 × 10^11 PFU/mL) of the control virus, Sh 
Gm49317-201 virus or Sh CDKN1B virus was injected 
into the knee joints with a microinjector. The injection 
was repeated 4  months after the first injection. Four 
months after the second injection, the mice were sacri-
ficed and the knee joints were separated for micro-CT 
evaluation and histological analysis.

Transfection
The Antisense Oligonucleotides (ASOs) 
lAC006064.4–201 and Gm49317-201 were designed 
and constructed by RiboBio (Guangzhou, China). 
Lipofectamine RNAiMAX (Thermo Fisher Scientific) 
was used for ASO transfection, according to the man-
ufacturer’s instructions. The sequences are listed in 
Supplementary Table S4.

Virus infection
Overexpression plasmids and shRNA plasmids of 
PTBP1 and CDKN1B were designed and constructed 
by TsingkeBio (Beijing, China). Virus vectors and pack-
aging plasmids were co-transfected into HEK-293  T 
cells using Lipofectamine 3000 transfection reagent 
(Thermo Fisher Scientific), according to the manu-
facturer’s instructions. The medium was changed 6  h 
after transfection. HEK-293  T cells were transfected 
for 48  h, and the medium was collected, centrifuged 
at 3000 rpm for 10 min, supplemented with 10 μg/mL 
polybrene (SolarBio), and added to human or mouse 

chondrocytes. Finally, the cells were selected using 
2 μg/mL puromycin for 24 h.

Western blotting analysis
Chondrocytes were lysed with radioimmunoprecipita-
tion assay buffer (RIPA, Beyotime, China) containing 
100 mM phenylmethanesulfonyl fluoride (PMSF) on ice 
for 20 min. Protein concentrations were determined by 
bicinchoninic acid (BCA) analysis (Beyotime, China). 
Equivalent amounts of proteins were then separated 
by sodium dodecyl sulphate-polycrylamide gel elec-
trophoresis (SDS-PAGE) at different concentrations, 
transferred onto polyvinylidene fluoride membranes 
(Bio-Rad), blocked with 5% nonfat milk at room tem-
perature for 1 h, and incubated with primary antibody 
at 4  °C overnight. The following day, the membranes 
were washed by tris-buffered saline (TBST) and incu-
bated with a secondary antibody at room temperature 
for 1 h. Finally, the protein bands were visualized using 
FDbio-Femto ECL (Fudebio, Hangzhou, China) and a 
chemiluminescence system (Bio-Rad, USA). The anti-
bodies used in this study are listed in Supplementary 
Table S5.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR) analysis
Total RNA was extracted from primary chondrocytes 
or cartilage tissues using RNAEX reagent (Accurate 
Biotechnology, Hunan, China), according to the man-
ufacturer’s instructions. Specific mRNAs were quali-
fied using SYBR® Green Premix Pro Taq HS qPCR kit 
(Accurate Biotechnology, Hunan, China), according 
to the manufacturer’s instructions. The levels of lncR-
NAs and mRNAs were normalized to those of glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH). The 
primers used are shown in Supplementary Table S3.

RNA FISH
Cy3-labeled lncAC006064.4–201 and Gm49317-201 
probes were designed and synthesized by HaokeBIO 

Fig. 2  AC006064.4–201 alleviates the senescence of HCs. A MRNA levels of Mmp3, Mmp13, Sox9, Aggrecan, p16INK4a, p21 and p53 assessed by 
qRT-PCR in HCs after treating with AC006064.4–201 Antisense Oligonucleotides (ASOs) (n = 9, 3 donors for three replicates) * p < 0.05, ** p < 0.01, *** 
p < 0.001. B Protein levels of Mmp3, Mmp13, Sox9, Aggrecan, p21 and p53 assessed by western blotting in HCs after treating with AC006064.4–201 
ASOs. C Representative images of β-galactosidase staining in HCs after treating with AC006064.4–201 ASOs. D Representative photomicrographs 
of IF staining of p16INK4a and Col2a1 when AC006064.4–201 was downregulated in HCs. Scale bar, 50 µm. E Quantification of SA-β-Gal staining 
and fluorescence intensity of IF staining of p16INK4a and Col2a1 in the above three groups. * p < 0.05, ** p < 0.01. F MRNA levels of Mmp3, Mmp13, 
Sox9, Aggrecan, p16INK4a, p21 and p53 assessed by qRT-PCR when AC006064.4–201 was upregulated in HCs (n = 9, 3 donors for three replicates) * 
p < 0.05, ** p < 0.01, *** p < 0.001. G Protein levels of Mmp3, Mmp13, Sox9, Aggrecan, p21 and p53 assessed by western blotting when AC006064.4–
201 was overexpressed in HCs. H Representative images of β-galactosidase staining in HCs when AC006064.4–201 was overexpressed in HCs. 
I Representative photomicrographs of IF staining of p16INK4a and Col2a1 when AC006064.4–201 was upregulated in HCs. Scale bar, 50 µm. J 
Quantification of SA-β-Gal staining and fluorescence intensity of IF staining of p16INK4a and Col2a1 in the above two groups. * p < 0.05, ** p < 0.01

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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(Hangzhou, China). Probe signals were detected using 
a FISH kit (RiboBio), according to the manufacturer’s 
instructions. Nuclei were stained with DAPI. Images 
were acquired using a fluorescence microscope (Eclipse 
E600; Nikon Corporation, Tokyo, Japan). The Cy3-labled 
probes used in this study are listed in Supplementary 
Table S4.

Immunofluorescence
For cell immunofluorescence (IF), chondrocytes were 
fixed with 4% paraformaldehyde for 30 min and perme-
ated with 0.5% tritonX-100 for 30 min. For tissue IF, car-
tilage specimens were fixed in 4% paraformaldehyde for 
paraffin embedding and sectioned at 5 μm. Then, the cells 
or sections were blocked with 5% bovine serum albumin 
(BSA) at room temperature for 1  h and incubated with 
primary antibody at 4  °C overnight. After washing with 
PBS, cells or sections were incubated with CL594- or 
CL488-conjugated secondary antibodies (Proteintech 
Group, Rosemount, IL, USA) for 1 h. Nuclei were stained 
with DAPI. Images were acquired using a fluorescence 
microscope (Eclipse E600; Nikon Corporation, Tokyo, 
Japan). The fluorescence intensities were quantified as 
previously described [21]. The antibodies used in this 
study are listed in Supplementary Table S5.

β‑galactosidase
Chondrocyte senescence was determined using a 
Senescence β-Galactosidase Staining Kit (Beyotime 
Biotechnology, Shanghai, China), according to the man-
ufacturer’s instructions. The percentage of positive cells 
was calculated using Image-Pro Plus 6.0 (NIH, Bethesda, 
MD, USA).

RNA immunoprecipitation (RIP)
HEK-293  T cells were transfected with PTBP1 plasmid 
or vector. A Magna RIP RNA-Binding Protein Immu-
noprecipitation Kit (Millipore, Billerica, MA, USA) was 
used to perform RIP experiments. Briefly, approximately 
1 × 107 HEK-293  T cells were pelleted and resuspended 
in 100 μL of RIP Lysis Buffer supplemented with a pro-
tease inhibitors cocktail and ribonuclease inhibitors. 
Then, the cell lysates were incubated with antibody 

against PTBP1 (Abcam) or IgG at 4  °C overnight and 
treated with proteinase K buffer. Finally, the immunopre-
cipitated RNA were extracted using a RNeasy MinElute 
Cleanup Kit (Qiagen) and reverse transcribed (Accurate 
Biotechnology, Hunan, China). The expression levels of 
AC006064.4–201 were determined by qRT-PCR.

RNA pull‑down assay
Biotinylated AC006064.4–201 and Gm49317-201 probes 
were designed and synthesized by RiboBio (Guangzhou, 
China). An RNA pull-down kit (BersinBio, Guangzhou, 
China) were used for RNA pull-down assay. Approxi-
mately 1 × 107 human or mouse chondrocytes were har-
vested and lysed. The AC006064.4–201, Gm49317-201 
and Oligo probes were added to the magnetic beads. The 
cell lysates were incubated with these probe-coated beads 
at 4  °C overnight. The RNA–protein complexes were 
then eluted for western blotting analysis. The biotinylated 
probes used in this study are listed in Supplementary 
Table S4.

Micro CT analysis
Mouse knee joint samples were fixed in 70% ethanol 
and scanned using a high-resolution a high-resolution 
micro-CT instrument (InspeXio SMX-225 CT FPD HR; 
Shimadzu Co. Ltd., Kyoto, Japan), according to the manu-
facturer’s instructions. The data were analyzed using Sky-
scan software.

Histological analysis and Osteoarthritis Research Society 
International (OARSI) score
Cartilage specimens were fixed in 4% paraformaldehyde 
for paraffin embedding and sectioned at 5  μm. The sec-
tions were dehydrated and stained with Safranin-O/
Fast green (Solarbio, Beijing, China), according to the 
manufacturer’s instructions. The Osteoarthritis Research 
Society International (OARSI) score was based on safra-
nin O/fast green staining of each specimen, as previous 
described [22].

Statistical analysis
Statistical analysis was performed using the SPSS ver-
sion 18.0 software (IBM Corporation, USA). Data were 

(See figure on next page.)
Fig. 3  AC006064.4–201 directly interacts with Polypyrimidine tract-binding protein 1 (PTBP1) in HCs. A Five proteins with highest pep score of 
AC006064.4–201 RPD-MS and their effects on Mmp13, Aggrecan, p21 and p53 assessed by western blotting analysis. B Coomassie brilliant blue 
staining of proteins binding to AC006064.4–201. C Western blotting of PTPB1 in HCs after pulled-down with the biotinylated AC006064.4–201 
mixed probes. D RNA immunoprecipitation (RIP) assay for AC006064.4–201 levels in HEK-293 T cells transfected with PTBP1-Flag (n = 9, 3 donors for 
three replicates) *** p < 0.001. E RNA–protein colocalization assay confirmed the interaction between AC006064.4–201 and PTBP1 in HCs. Scale bar, 
25 µm. F Interacting regions between AC006064.4–201 and PTBP1 predicted by catRAPID tool. G Schematic diagram of truncated AC006064.4–201, 
and RIP assay identified the binding sequence of AC006064.4–201 for PTBP1 (n = 9, 3 donors for three replicates) *** p < 0.001. H MRNA levels of 
PTBP1 assessed by qRT-PCR when AC006064.4–201 was knocked down or upregulated in HCs (n = 9, 3 donors for three replicates) I Protein levels of 
PTBP1 assessed by western blotting analysis when AC006064.4–201 was knocked down or upregulated in HCs
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analyzed using Student’s t-test, Fisher’s exact test, and 
one-way analysis of variance (ANOVA). The results are 
presented as the mean ± standard deviation (SD). Group 
differences were considered statistically different for 
p < 0.05 between groups.

Results
AC006064.4–201 exhibits lower expression in senescent 
and degenerated human chondrocytes (HCs)
After continuous passage of human chondrocytes 
(HCs), we performed RNA-seq analyses on first-pas-
saging and third-passaging chondrocytes and identified 
ten lncRNAs that were most differentially downregu-
lated with the senescence of HCs (Table 1 and Fig. 1A). 
Among the above 10 candidates, qRT-PCR analysis 
showed that a novel lncRNA, AC006064.4–201, was 
significantly decreased in cases of both inflamma-
tion and senescence (Supplementary Fig.  1A). To 
further verify the expression of AC006064.4–201 in 
human articular cartilage, 30 human knee joint tissues 
were collected and divided into two groups accord-
ing to age (n = 15), and the medial tibial plateau was 
compared with the lateral tibial plateau. The results 
demonstrated that AC006064.4–201 exhibited lower 
expression in the older group and decreased expres-
sion on the medial side of the tibial plateau (Fig.  1B 
and C, Supplementary Fig. 1B). Safranin O/Fast green 
staining showed more severe wear on the medial side 
of the tibial plateau in each group (Fig.  1C). Accord-
ing to the results of immunofluorescence (IF) stain-
ing, compared to the younger group and the lateral 
cartilage, both Mmp3 and p16INK4a were higher in the 
older group and the medial cartilage (Fig.  1C, Sup-
plementary Fig. 1B). Different concentrations of bleo-
mycin and doxorubicin were used to induce human 
chondrocyte senescence in vitro, and the results indi-
cated that AC006064.4–201 exhibited a concentra-
tion-related downward trend (Fig. 1D, Supplementary 
1C). Finally, nuclear separation experiments coupled 
with qRT-PCR analysis and RNA FISH revealed that 
AC006064.4–201 was predominantly localized to the 
cytoplasm (Fig. 1E and F). Cumulatively, these results 
demonstrated AC006064.4–201 was downregulated 

in senescent and degenerated HCs and thus may play 
an important role in chondrocyte senescence and OA 
progression.

AC006064.4–201 alleviates the senescence of HCs
To further investigate whether AC006064.4–201 
is involved in the regulation of HCs senescence, 
two AC006064.4–201 Antisense Oligonucleotides 
(ASOs) that could specifically and stably knock down 
AC006064.4–201 in HCs were used (Supplementary 
Fig.  2A). qRT-PCR analysis demonstrated that knock-
down of AC006064.4–201 in HCs resulted in sig-
nificantly increased mRNA levels of cell senescence 
factors (p16INK4a, p21, and p53) and degradation enzymes 
(Mmp3 and Mmp13) and reduced mRNA levels of Sox9, 
Aggrecan and Col2a1 (Fig.  2A). The results of western 
blotting and IF staining were consistent with the results 
of qRT-PCR analysis (Fig.  2B, D  and E). Moreover, 
β-galactosidase staining analysis was performed to detect 
senescent HCs, and the results indicated that the knock-
down of AC006064.4–201 considerably enhanced the 
number of senescent HCs (Fig. 2C and E).

Subsequently, we studied the therapeutic effect of 
AC006064.4–201 in HCs. An overexpression plas-
mid was constructed and transfected to upregulate 
AC006064.4–201 expression (Supplementary Fig.  2B). 
qRT-PCR analysis, western blotting and IF staining 
showed that the increase of AC006064.4–201 reduced 
the levels of p16INK4a, p21, p53, Mmp3 and Mmp13, 
however, it promoted the expression of Sox9, Aggrecan 
and Col2a1  (Fig.  2F, G, I  and J). Additionally, the num-
ber of senescent HCs decreased with the upregulation of 
AC006064.4–201 (Fig. 2H and J).

Taken together, these results illustrated that 
AC006064.4–201 could protect against OA by alleviating 
the senescence and degeneration of HCs.

AC006064.4–201 directly interacts with PTBP1 in HCs
Studies have revealed that lncRNAs are associated 
with a plethora of cellular functions, but most of them 
require interactions with one or more RNA-binding 
proteins (RBPs) [23–26]. To identify the proteins that 

Fig. 4  AC006064.4–201 blocks PTBP1 from binding to CDKN1B mRNA. A RIP assay for PTPB1 levels in HEK-293 T cells transfected with PTBP1-Flag 
(n = 9, 3 donors for three replicates) ** p < 0.01. B Protein levels of CDKN1B assessed by western blotting analysis when PTBP1 was knocked down or 
upregulated in HCs. C Protein levels of CDKN1B assessed by western blotting analysis when AC006064.4–201 was knocked down or upregulated in 
HCs. D MRNA levels of CDKN1B assessed by qRT-PCR when PTBP1 was knocked down or upregulated in HCs (n = 9, 3 donors for three replicates) E 
MRNA levels of CDKN1B assessed by qRT-PCR when AC006064.4–201 was knocked down or upregulated in HCs (n = 9, 3 donors for three replicates) 
F Western blotting of CDKN1B when AC006064.4–201 and PTBP1 were simultaneously knocked down or upregulated in HCs. G AC006064.4–201 
was upregulated or knocked down in HCs first, and treated with 50 mg/mL CHX for the indicated times, finally the protein levels of CDKN1B were 
assessed by western blotting analysis. H RIP assay revealed the combination levels between CDKN1B and PTBP1 when AC006064.4–201 was 
upregulated or knocked down in HEK-293 T cells (n = 9, 3 donors for three replicates) ** p < 0.01, *** p < 0.001

(See figure on next page.)
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interacted with AC006064.4–201, three biotinylated 
AC006064.4–201 probes at different sites were synthe-
sized and mixed together. Then RPD-MS was employed, 
and 100 proteins were identified (Table 2, Fig. 3B). Five 
of the highest pep- score proteins were selected and 
knocked down to verify their functions (Supplementary 
Fig. 2C). The results revealed that only PTBP1 affected 
the expression of p21, p53, Mmp13 and Sox9 (Fig. 3A). 
Therefore, PTBP1 was selected for further analyses. 
The binding of AC006064.4–201 to PTBP1 was con-
firmed by RNA pull-down and RIP assay (Fig.  3C and 
D). The interaction between AC006064.4–201 and 
PTBP1 was verified with RNA–protein colocalization 
in HCs (Fig.  3E). To further study the binding sites of 
AC006064.4–201 and PTBP1, we used the catRAPID 
tool to predict the interacting regions (Fig.  3F) and 
truncated FL AC006064.4–201 into four segments (S1: 
1–100 nt, S2: 101–223 nt, S3: 224–298 nt, S4: 299–422 
nt) according to the predicted binding sites. The results 
of the RIP assay indicated that only FL and S4 were 
pulled down by PTBP1 (Fig. 3G). Taken together, these 
results demonstrated that AC006064.4–201 directly 
interacts with PTBP1 in HCs.

Subsequently, we explored whether AC006064.4–201 
affects PTBP1 expression. However, qRT-PCR analysis and 
western blotting showed that both the mRNA and protein 
levels of PTBP1 did not change when AC006064.4–201 
was knocked down or overexpressed in the HCs (Fig. 3H 
and I). Therefore, we hypothesized that AC006064.4–201 
functions by influencing the downstream target of PTBP1 
and conducted follow-up research.

AC006064.4–201 blocks PTBP1 from binding to CDKN1B 
mRNA
PTBP1 was shown to bind to the mRNA of CDKN1B 
and improve its stability [27]. This was also verified 
in our study by the RIP assay (Fig.  4A). We subse-
quently tested whether CDKN1B is the downstream 
target of the AC006064.4–201/PTBP1 axis. The results 
of western blotting indicated that the protein level of 
CDKN1B was increased when PTBP1 was overex-
pressed or AC006064.4–201 was knocked down, which 

was similar to the opposite trend (Fig.  4B and C). 
qRT-PCR analysis revealed that AC006064.4–201 and 
PTBP1 had no effect on the mRNA level of CDKN1B 
(Fig.  4D and E). Furthermore, when AC006064.4–201 
and PTBP1 were both downregulated or both overex-
pressed, the effect of AC006064.4–201 on CDKN1B 
was reversed (Fig.  4F). These results suggest that 
AC006064.4–201 influences the protein synthesis 
of CDKN1B by improving the stability of CDKN1B 
mRNA. To confirm this hypothesis, cycloheximide 
(CHX) was used to block protein synthesis. The results 
confirmed that, when the protein synthesis process was 
blocked, the effects of AC006064.4–201 on CDKN1B 
disappeared (Fig.  4G). Finally, the RIP assay indicated 
that the interaction between PTBP1 and CDKN1B was 
enhanced when AC006064.4–201 was knocked down 
and decreased when AC006064.4–201 was upregu-
lated (Fig.  4H). Together, these results demonstrated 
that AC006064.4–201 blocks PTBP1 from binding to 
CDKN1B mRNA and reduces the protein synthesis of 
CDKN1B by reducing its mRNA stability.

CDKN1B mediates the AC006064.4–201/PTBP1 axis in HCs
We examined CDKN1B levels in human cartilage tis-
sues, and the IF staining results indicated that CDKN1B 
expression was higher in the older group and increased 
on the medial side of the tibial plateau (Fig.  5A). To 
further investigate the role of CDKN1B in OA, two 
shRNAs targeting CDKN1B were designed, and their 
knockout efficiency was verified (Supplementary 
Fig.  2D). qRT-PCR, western blotting and IF stain-
ing showed that knockdown of CDKN1B resulted in 
a decrease in p16INK4a, p21, p53, Mmp3 and Mmp13, 
while expression of Sox9, Aggrecan and Col2a1 was 
increased (Fig.  5B, C  and E, Supplementary Fig.  2E). 
The number of senescent HCs declined with CDKN1B 
downregulation (Fig.  5D and E). These results dem-
onstrated that CDKN1B contributes to the senes-
cence and degeneration of HCs. AC006064.4–201 and 
CDKN1B were simultaneously overexpressed to assess 
whether CDKN1B could antagonize the function of 
AC006064.4–201 in HCs. qRT-PCR, western blotting 

(See figure on next page.)
Fig. 5  CDKN1B mediates the AC006064.4–201 / PTBP1 axis in HCs. A Representative images and fluorescence intensity of IF staining for CDKN1B 
in specific sections of human knee cartilages of different ages. ** p < 0.01, *** p < 0.001. Scale bars, 500 µm and 200 µm. B Protein levels of Mmp3, 
Mmp13, Sox9, Aggrecan, CDKN1B, p21 and p53 assessed by western blotting when CDKN1B was knocked down in HCs. C Representative images of 
IF staining for p16INK4a and Col2a1 when CDKN1B was downregulated in HCs. Scale bar, 50 µm. D Representative images of β-galactosidase staining 
in HCs when CDKN1B was downregulated. E Quantification of SA-β-Gal staining and fluorescence intensity of IF staining of p16INK4a and Col2a1 
in the above two groups. * p < 0.05, ** p < 0.01. F Protein levels of Mmp3, Mmp13, Sox9, Aggrecan, CDKN1B, p21 and p53 assessed by western 
blotting when AC006064.4–201 and CDKN1B were co-overexpressed in HCs. G Representative images of IF staining for p16INK4a and Col2a1 when 
AC006064.4–201 and CDKN1B were co-overexpressed in HCs. Scale bar, 50 µm. H Representative images of β-galactosidase staining in HCs when 
AC006064.4–201 and CDKN1B were co-overexpressed. I Quantification of SA-β-Gal staining and fluorescence intensity of IF staining of p16.INK4a and 
Col2a1 in the above two groups. * p < 0.05, ** p < 0.01
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and IF staining indicated that upregulated CDKN1B 
could reverse the altered levels of p16INK4a, p21, p53, 
Mmp3, Mmp13, Sox9, Aggrecan and Col2a1 caused 
by overexpression of AC006064.4–201 (Fig.  5F, G  and 
I, Supplementary Fig.  2F and G). Additionally, the 
reduced senescent HCs was also reversed, as shown by 
β-galactosidase staining analysis (Fig. 5H and I).

Taken together, these results revealed that CDKN1B 
mediates the AC006064.4–201/PTBP1 axis and contrib-
utes to the senescence and degeneration of HCs.

AC006064.4–201 (Gm49317‑201)/PTBP1/CDKN1B axis 
is conserved between humans and mice
To determine the need for in vivo experiments in mice, 
we studied whether there is a conserved lncRNA in 
mice that could regulate the PTBP1/CDKN1B axis. 
According to the Ensemble Database, a similar lncRNA, 
named Gm49317-201, exists in mice and has 179 bases 
identical to AC006064.4–201 (Supplementary Fig. 3A). 
Interestingly, the binding sites of AC006064.4–201 and 
PTBP1 are located in the same base sequences. There-
fore, we speculated that Gm49317-201 has the same 
function as AC006064.4–201 in chondrocytes. Two 
Gm49317-201 ASOs were generated that specifically 
and stably knock down Gm49317-201 in mouse chon-
drocytes (MCs) (Supplementary Fig. 3B). Western blot-
ting and qRT-PCR analysis showed that the knockdown 
of Gm49317-201 resulted in an increase of p16INK4a, 
p21, p53, Mmp3 and Mmp13, while the expressions of 
Sox9, Aggrecan and Col2a1 were decreased, the protein 
level of CDKN1B was increased, and the mRNA was 
unchanged (Fig.  6A and B). The number of senescent 
MCs increased when Gm49317-201 was downregulated 
(Fig. 6C). These results indicate that Gm49317-201 can 
alleviate the senescence and degeneration of MCs.

We then confirmed the binding of Gm49317-201 to 
PTBP1 using an RNA pull-down assay (Supplemen-
tary Fig.  3C). The interaction between Gm49317-201 
and PTBP1 was also verified by RNA–protein colo-
calization in MCs (Fig. 6D). Subsequently, two shRNAs 

targeting CDKN1B in mice were designed, and their 
knockout efficiency was verified (Supplementary 
Fig.  3D). The role of CDKN1B in MCs senescence 
was tested by western blotting, qRT-PCR analysis and 
β-galactosidase staining, which was similar to that 
in HCs (Fig.  6E, F  and G). Finally, Gm49317-201 and 
CDKN1B were both overexpressed in MCs, demon-
strating that the overexpression of CDKN1B could 
antagonize the function of Gm4937-201 in MCs 
(Fig. 6H, I and J).

In summary, these results revealed that the 
AC006064.4–201 (Gm49317-201) / PTBP1 / CDKN1B 
axis is conserved between humans and mice. Moreover, 
AC006064.4–201 and Gm49317-201 had similar func-
tions in HCs and MCs. This prompted us to conduct fur-
ther in vivo experiments using mice.

Gm49317‑201 and CDKN1B affect both age‑related 
and post‑traumatic OA in vivo
To investigate the role of Gm49317-201 in post-trau-
matic OA, a mouse model was introduced in this study, 
as described in the Methods section (Fig.  7A). The 
mice were divided into four groups, and the specific 
AAV efficiently infected the cartilage in these groups 
(Fig.  7B). Safranin O/fast green staining showed that 
the cartilage layer was thinner in DMM mice than in 
sham-operated mice, and the injection of Gm49317-201 
shRNA aav aggravated the damage to the cartilage layer 
caused by DMM surgery, this deterioration was res-
cued by the injection of CDKN1B shRNA aav (Fig.  7C 
and F). 3D reconstruction of the micro-CT of mouse 
knees revealed more osteophytes in the DMM + Vector 
and DMM + Gm49317-201 sh groups than in the sham 
and DMM + Gm49317-201 sh + CDKN1B sh groups 
(Fig. 7D and F). The expression of CDKN1B, Mmp3 and 
Col2a1 were determined by IF staining, and the results 
indicated that DMM + Vector and DMM + Gm49317-
201 sh groups exhibited higher expression of CDKN1B 
and Mmp3 than the sham and DMM + Gm49317-201 

Fig. 6  AC006064.4–201 (Gm49317-201) / PTBP1 / CDKN1B axis was conserved between human and mice. A Western blotting analysis of Mmp3, 
Mmp13, Sox9, Aggrecan, CDKN1B, p21 and p53 in MCs after treating with Gm49317-201 ASOs. B MRNA levels of Mmp3, Mmp13, Sox9, Aggrecan, 
CDKN1B, p21 and p53 assessed by qRT-PCR in MCs after treating with Gm49319 ASOs (n = 9, 3 donors for three replicates) ** p < 0.01, *** p < 0.001. 
C Representative images and quantification of β-galactosidase staining in the above three groups. ** p < 0.01. D RNA–protein colocalization 
assay confirmed the interaction between Gm49317-201 and PTBP1 in MCs. Scale bar, 25 µm. E Western blotting analysis of Mmp3, Mmp13, 
Sox9, Aggrecan, CDKN1B, p21 and p53 in MCs after knocking down of CDKN1B. F MRNA levels of Mmp3, Mmp13, Sox9, Aggrecan, CDKN1B, p21 
and p53 assessed by qRT-PCR in MCs after knocking down of CDKN1B (n = 9, 3 donors for three replicates) * p < 0.05, ** p < 0.01, *** p < 0.001. G 
Representative images and quantification of β-galactosidase staining of MCs after knocking down of CDKN1B. ** p < 0.01. H Western blotting 
analysis of Mmp3, Mmp13, Sox9, Aggrecan, CDKN1B, p21 and p53 in MCs after co-upregulation of Gm49317-201 and CDKN1B. I MRNA levels of 
Mmp3, Mmp13, Sox9, Aggrecan, CDKN1B, p21 and p53 assessed by qRT-PCR in MCs after co-upregulation of Gm49317-201 and CDKN1B (n = 9, 3 
donors for three replicates) * p < 0.05, ** p < 0.01, *** p < 0.001. J Representative images and quantification of β-galactosidase staining in the above 
three groups. * p < 0.05, ** p < 0.01

(See figure on next page.)
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sh + CDKN1B sh groups, whereas the expression of 
Col2a1 was the opposite (Fig.  7E and F, Supplementary 
Fig. 4A). These results demonstrated that decreasing the 
expression of Gm49317-201 in mouse cartilage aggra-
vates post-traumatic OA, and this effect was mediated by 
upregulation of CDKN1B protein levels.

To investigate the role of Gm49317-201 in age-related 
OA, another mouse model was used in this study, as 
described in the Methods section (Fig. 8A). We divided 
the mice into three groups and proved the efficient infec-
tion of specific AAV on the cartilage in these groups 
(Fig. 8B). Safranin O/fast green staining showed that the 
cartilage layer was thinner in the Gm49317-201 sh group 
than in the Vector and Gm49317-201 sh + CDKN1B 
sh groups (Fig.  8C). More osteophytes appeared in the 
Gm49317-201 sh group than in the other two groups 
(Fig.  8D). In addition, IF staining revealed that the 
Gm49317-201 sh group exhibited higher expression of 
CDKN1B and p16INK4a and lower expression of Col2a1 
than the other two groups (Fig.  8E and Supplementary 
Fig. 5A). These results demonstrated that decreasing the 
expression of Gm49317-201 in mouse cartilage would 
accelerate the senescence of mouse cartilage and lead to 
the earlier occurrence of OA in mice.

Discussion
Currently, OA is an incurable orthopedic disease. Cur-
rent treatment strategies for OA, including pharmaco-
logical treatments, regenerative treatments and joint 
replacement surgery, are limited to relieving symptoms 
rather than slowing the biological process of OA pro-
gression [28, 29]. Therefore, new treatment strategies are 
needed, and the field would benefit from a deeper under-
standing of the mechanisms underlying OA development 
and progression.

As an age-related or post-traumatic disease, OA is pri-
marily caused by an imbalance in matrix anabolism and 
catabolism in cartilage [30–32]. Recent studies have con-
sidered chondrocytes senescence as an important cel-
lular event contributing to matrix catabolism, leading to 
the degradation of the cartilage matrix and OA develop-
ment [8, 33]. Which was also confirmed by our present 
study, as we found the expression of p16INK4a and Mmp3 
were increased in cartilage tissues of elderly patients and 

those with severe wear, it proves the closely relationship 
between chondrocyte senescence and OA progression. 
Furthermore, in  vivo experiments in mice conducted 
by previous researches revealed that the local clear-
ance of senescent cells in mouse cartilage attenuated the 
development of post-traumatic OA and created a pro-
regenerative environment [34, 35]. Therefore, relieving 
chondrocyte senescence is expected to become a new 
strategy for OA treatment in the future.

LncRNAs are often found in mammalian epigenetic 
systems and have been shown to participate in various 
cellular events, including senescence, inflammation, 
proliferation, metastasis and apoptosis [23, 36–38]. 
Recent studies have indicated that lncRNAs involved 
in OA development [13, 15, 39]. We identified that 
AC006064.4–201 was closely related to chondrocyte 
senescence and OA development. AC006064.4–201 
is a novel lncRNA that has not been reported before. 
Herein, we found that AC006064.4–201 is downregu-
lated in senescent and degenerated human cartilage. 
Moreover, bleomycin and doxorubicin were used to 
induce HCs senescence as previously reported [40], 
and both of them could decrease the expression of 
AC006064.4–201 in HCs. In  vitro functional experi-
ments indicated that AC006064.4–201 alleviates the 
senescence and degeneration in HCs. For in  vivo 
experiments, two mouse models were introduced to 
separately imitate post-traumatic OA and age-related 
OA. Knocking down the corresponding lncRNA 
Gm49317-201 in mouse cartilage resulted in more 
severe cartilage damage in DMM mice and a much 
earlier occurrence of OA in normal-growing mice. 
Therefore, AC006064.4–201 could be used as a novel 
biomarker of cartilage senescence and degeneration, 
and proved to be a protective factor against the OA 
development.

Complex formation within proteins has been proved 
to be an important mechanism for lncRNAs to perform 
biological functions [24, 41]. We subsequently explored 
the proteins that could interact with AC006064.4–201 
through RPD-MS and identified PTBP1.

As a member of the heterogeneous nuclear ribonucleo-
proteins (hnRNPs) family, PTBP1 is a widely studied RNA 
binding protein that binds to the polypyrimidine sequence 

(See figure on next page.)
Fig. 7  Gm49317-201 and CDKN1B affects post-traumatic OA in vivo. A Establishment of a rescue model for mice post-traumatic OA targeting 
Gm49317-201 and CDKN1B. B Representative images of GFP staining revealed the specific adeno-associated virus (AAV) efficiently infected the 
cartilage of different groups. Scale bar, 200 µm. C Representative images of Safranin O / Fast green staining in mice cartilage of different groups. 
Scale bar, 200 µm. D 3D reconstruction images of micro-CT scanning of the knees and osteophytes (yellow arrow). E Representative images of IF 
staining for Mmp3 in mice cartilage of different groups. Scale bars, 200 µm and 50 µm. F Fluorescence intensity of FISH staining and IF staining, 
OARSI grade according to Safranin O / Fast green staining and number of osteophytes for micro-CT scanning in mice cartilage of different groups 
(n = 10) ** p < 0.01, *** p < 0.001
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Fig. 8  Gm49317-201 and CDKN1B affects age-related OA in vivo. A Establishment of a rescue model for mice age-related OA targeting 
Gm49317-201 and CDKN1B. B Representative images of GFP staining revealed the specific adeno-associated virus (AAV) efficiently infected the 
cartilage of different groups. Scale bar, 200 µm. C Representative images of Safranin O / Fast green staining and OARSI grade use for evaluation 
of cartilage degeneration in mice cartilage of different groups (n = 10) ** p < 0.01, *** p < 0.001. Scale bar, 200 µm. D 3D reconstruction images 
of micro-CT scanning of the knees and the number of osteophytes (yellow arrow) (n = 10) ** p < 0.01, *** p < 0.001. E Representative images and 
Fluorescence intensity of IF staining for p16INK4a in mice cartilage of different groups (n = 10) * p < 0.05. Scale bars, 200 µm and 50 µm
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on the pre-mRNA, and involves in regulating mRNA splic-
ing, translation, stability and localization [42, 43]. Previous 
studies have indicated that PTBP1 plays an important role 
in cancer progression [44, 45], Alzheimer’s disease [46, 47] 
and cardiac fibrosis [48]. However, until now, there has 
been no study on PTBP1 in chondrocyte senescence and 
OA progression. Our research found that AC006064.4–
201 could directly interact with PTBP1 in HCs but had no 
effect on the expression of PTBP1, including the mRNA 
and protein levels. We therefore explored if AC006064.4–
201 functions by influencing the downstream target of 
PTBP1. And the results further revealed that PTBP1 was 
able to bind to the mRNA of CDKN1B and improve its 
stability, resulting in the increased translation of CDKN1B 
protein. Mounting evidence suggested that CDKN1B is a 
key regulator of cell cycle progression, which was recog-
nized as an important senescence marker in aging-related 
diseases such as osteoporosis [49, 50], atherosclerosis 
[51] and Alzheimer’s disease [52]. In the present study, 
we performed functional experiments and reported that 
CDKN1B is positively correlated with chondrocyte senes-
cence and OA progression. Besides, AC006064.4–201 was 
shown to reduce the expression of CDKN1B by blocking 
the binding between PTBP1 and CDKN1B mRNA. And 
co-overexpression experiments indicated that the function 
of AC006064.4–201 could be antagonized by CDKN1B 
in HCs. Hence, CDKN1B serves as an important down-
stream target of the AC006064.4–201/PTBP1 axis. In vivo 
experiments revealed that the downregulation of CDKN1B 
in mouse cartilage could alleviate OA in DMM mice and 
delay cartilage senescence in normal-growing mice.

Taken together, we evaluated the function of the 
AC006064.4–201/PTBP1/CDKN1B axis in cartilage 
senescence and degeneration in this study. However, 
aberrant subchondral remodeling and synovitis are also 
crucial aspects of OA progression, which will be explored 
in future studies.

Conclusions
In summary, our research revealed a novel molecu-
lar marker, AC006064.4–201, that was found to protect 
against OA by alleviating senescence and degeneration of 
cartilage. Mechanistically, AC006064.4–201 could desta-
bilize CDKN1B mRNA by interacting with PTBP1 and 
decreasing the protein expression of CDKN1B. Cumula-
tively, this study provides new molecular targets for the 
early diagnosis and treatment of OA.
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