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Abstract 

In addition to the anti-infection response, neutrophils are linked to tumor progression through the secretion of 
inflammation components and neutrophil extracellular traps (NETs) formation. NET is a web-like structure constituted 
by a chromatin scaffold coated with specific nuclear and cytoplasmic proteins, such as histone and granule peptides. 
Increasing evidence has demonstrated that NETs are favorable factors to promote tumor growth, invasion, migra-
tion, and immunosuppression. However, the cell–cell interaction between NETs and other cells (tumor cells and 
immune cells) is complicated and poorly studied. This work is the first review to focus on the intercellular communi-
cation mediated by NETs in cancer. We summarized the complex cell–cell interaction between NETs and other cells 
in the tumor microenvironment. We also address the significance of NETs as both prognostic/predictive biomarkers 
and molecular targets for cancer therapy. Moreover, we presented a comprehensive landscape of cancer immunity, 
improving the therapeutic efficacy for advanced cancer in the future.
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Introduction
Neutrophils are the most abundant type of leukocytes 
in human peripheral blood serving as the front line in 
innate immunity [1]. Besides infections, ongoing efforts 

have expanded the roles of neutrophils in a wide range 
of human diseases, such as thrombosis, auto-immune 
diseases, pulmonary diseases, and cancer progression 
[2]. The contribution of tumor-associated neutrophils 
(TANs) in cancer remains elusive, as a result of the com-
plex microenvironment of cancer [3]. Research using ani-
mal models has shown that TANs can be polarized into 
an anti-tumor (N1) or pro-tumor (N2) subtype, which is 
driven by the state of TGF-β [4].

In 2004, Brinkmann et  al. discovered that neutrophil 
suicide could release web-like structures decorated with 
depolymerized chromatin and antimicrobial molecules, 
named as NETs. They elicited NETs using PMA and IL-8 
in  vitro and demonstrated that NETs could resist viru-
lence factors and kill bacteria [5]. Apart from PMA and 
IL-8, additional stimuli were found to be responsible for 
the release of NETs, including protozoa, bacteria, fungi, 
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IFN-α/IFN-γ/C5a, GM-CSF/C5a, lipopolysaccharide 
(LPS), antibody-antigen complexes, activated platelets, 
and calcium ionophores [6]. Within NETs, there are 
several proteins coated in the decondensed DNA, such 
as histones, neutrophil elastase (NE), myeloperoxidase 
(MPO) and cathepsin G [7–9].

Like the role of TANs, increasing evidence has recently 
revealed the role of NETs as a fundamental part in cancer 
progression [10–12]. The prior reviews mainly focused 
on the crucial role of NETs in contributing to the devel-
opment and progression of cancer. Consistent with the 
previous studies, our research validated the role of NET 
as an unfavorable prognosis biomarker in most types of 
cancer, by developing a panel of genes signature as NET-
score [13]. Nevertheless, this review first summarizes 
the intercellular communication between NETs, tumor 
cells, and immune cells in carcinogenesis. We aimed to 
figure out the cellular interplay and molecular pathway 
mechanism that regulate the innate immune and adap-
tive immune response in malignancies. The potential of 
NETs as diagnostic and prognostic markers and novel 
treatment targets is also discussed in this review.

The interplay between the tumor cell and NETs
The role of NETs in pro- and anti-tumorigenic func-
tions remains unclear in different cancers. Very few 
articles now illustrated the in-vitro antitumor effect of 
NETs. An experiment in  vitro showed that NETs could 
impede growth and induce apoptosis in colorectal can-
cer cells [14]. Consistently, Schedel F et  al. found NETs 
inhibiting the migration and necrosis of melanoma cells 
in vitro [15]. However, NETs in the tumor microenviron-
ment (TME) mostly exert promotion in the growth and 
progression of cancer, in the onset and spread of tumor 
metastasis, and in the poor response of anti-tumor 
therapy [12, 16–23]. The bond between cancer-cells 
and NETs was revealed in the Ewing sarcoma at first, in 
which the NETs were correlated with poor prognosis 
for patients [12]. Compared to control mice, the neutro-
phils in the tumor-bearing mice represented an increased 
ability to spontaneously form NETs [24, 25], which was 
associated with endothelial-to-mesenchymal transition 
(EMT) driving and cancer metastasis [25–27]. The can-
cer cell-derived factors supporting the NETosis include 
mainly IL-8, G-CSF, GROα/β, and CXCR1/2 chemokine 
receptor agonists [17, 28]. NETs also strengthen the met-
astatic potential of cancer cells by other mechanisms, 
including accumulation in the pre-metastatic niche or 
the circulation for entrapping the circulating tumor cells 
(CTCs) [17, 29].

Szczerba BM et  al. manipulated single-cell RNA 
sequencing (scRNA-seq) and investigated the ligand/
receptor pairs of the CTC–neutrophil cluster. They 

hypothesized that the expression of VCAM1 is a molecu-
lar feature possibly defining the CTC-neutrophil clus-
ter formation in breast cancer [30]. Understanding the 
ligand/receptor pairing may explore new targets in can-
cer therapy.

Recently, several pieces of research demonstrated the 
molecular mechanism of the intracellular network of 
tumor cells and NETs. The most studied example of the 
ligand/receptor interaction was the TLR family in the 
tumor cell and NET-associated factors. The TLR fam-
ily is characterized as the essential part of the innate 
immune and could recognize pathogen-associated 
molecular patterns (PAMPs) [31]. TLR receptors are 
ubiquitously expressed both in tumor and immune cells 
[32, 33], and exert a dual role in cancer [34–37]. To 
date, several TLR agonists have shown inspiring results 
for their survival benefits combined with immune vac-
cination, immune checkpoint inhibitors, and chemo-
therapy in clinical trials, especially for glioma [38, 39]. 
Nonetheless, TLR agonist-associated infection and 
the help of TLR overexpression in the carcinogenesis 
or tumor progression should be emphasized [33, 36, 
40]. Higher levels of intratumor NETs and preopera-
tive serum MPO-DNA as a marker of NETs were cor-
related with shorter survival in metastatic colorectal 
cancer. Mechanistically, NE as NETs-derived stimu-
latory factor directly activated the TLR4 pathway on 
tumor cells and subsequently upregulated Peroxisomes 
proliferator-activated receptor gamma coactivator 
1-alpha (PGC1-α), driving mitochondrial homeostasis 
and favoring the tumor growth [41]. In bladder can-
cer, Shinde-Jadhav S et al. found the level of NETs was 
increased after radiation therapy (RT), which contrib-
uted to tumor radiotherapy resistance. They further 
demonstrated that the activated formation of NETs was 
associated with HMGB1 via a TLR4-dependent manner, 
and inhibiting NETs or HMGB1 could improve radia-
tion response [23]. For diffuse large B-cell lymphoma 
(DLBCL) patients, Nie M et al. investigated the mech-
anism of interleukin-8 (IL-8), secreted by lymphoma 
cells, binding to C-X-C Motif Chemokine Receptor 2 
(CXCR2) on the cell-surface of neutrophil and induc-
ing NET formation. Furthermore, an increased level of 
NETs activated TLR9 on the lymphoma cells, contrib-
uting to NFkB, STAT3, and p38 downstream pathways 
activation. The novel cross-talk as IL8-CXCR2-TLR9 
axis augmented the tumor progression in DLBCL [21]. 
Tohme et  al. proposed that HMGB1 released from 
NETs assisted in the TLR9 activation. TLR9 promoted 
colorectal cancer cell proliferation, migration, or inva-
sion by activating the MAP kinase pathways [42]. The 
neutrophils derived from metastatic hepatocellular 
carcinoma (HCC) harbored an up-regulated capacity 
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of producing NETs, compared with those in healthy 
adults. It was further investigated that NETs enhanced 
the invasion capacity of trapped tumor cells through 
the activation of the TLR4/9 receptor and the phospho-
rylation of P65 and cyclooxygenase-2 (COX2) overex-
pression. The direct inhibition of the TLR4/9-COX2 
pathway wrecked the NET-driven metastatic potential 
[43]. Apart from the TLR ligand-associated pathway, 
CCDC25 is a transmembrane protein on the breast 
cancer cells, which could interact with the NET-DNA 
complex directly. As a result, it enhanced tumor cell 
motility and tumor metastasis by activating the down-
stream pathway including integrin-linked kinase (ILK) 
and β-Parvin. CCDC25-knockout cells abrogated the 
NET-mediated potential metastasis [11]. Cell-to-cell 
adhesion in cancer is complex and involved in each step 
of tumor progression. It enables tumor cells to loosen 
from the primary tumor mass and enhances cell attach-
ment to the metastatic site [44, 45]. In the cell adhesion 
process, the integrin ligands (a combination of α and β 
subunits) determine the central role governing cancer 
cell migration [44]. In a panel of tumor cell lines, Monti 
M et al. revealed that NETs could adhere to tumor cells 
with high levels of integrin α5β1, αvβ3, and αvβ5 [46]. 
Tumor-derived integrin β1 promoted the co-locali-
zation of NETs and tumor cells in  vivo and in  vitro. 
Najmeh S et  al. proposed the hypothesis that NETs 
captured CTC through the mediator integrin β1 [29]. 
Mechanism research demonstrated that NETs-related 
proteases, matrix metalloproteinase 9 (MMP9) and NE, 
resulted in the cleavage of laminin. The NET-remod-
eled laminin-111 subsequently activated the integrin 
a3β1 receptor on the tumor cell. The integrin a3β1 up-
regulated the focal adhesion Kinase (FAK), extracellu-
lar signal-regulated kinase (ERK), and yes-associated 

Protein (YAP) and promoted the dormant tumor cell 
awaken [10].

In conclusion, there is growing evidence from ligand/
receptor pair analysis that NETs primarily promote the 
proliferation, adhesion, and metastatic capacity of tumor 
cells (shown in Table  1). Meanwhile, the molecular 
mechanism of its anti-tumorigenic effects requires fur-
ther exploration. NETs directly or the NETs-associated 
factors interact with the receptors on the tumor cells and 
thus alter the tumor cell function. Nevertheless, there 
are few studies on the mechanism of interplay between 
tumor cells and NETs, especially for their ligand-receptor 
pairs. Furthermore, targeting the ligand-receptor pairing 
or specific kinases rather than neutrophils or tumor cells 
could be a potential strategy for anti-tumor treatment.

Potential interactions between the macrophage and NETs
Macrophages polarize to activated pro-inflammatory 
M1 and anti-inflammatory M2 phenotypes depend-
ing on the microenvironment stimuli [47, 48]. M1 
macrophages exert pro-inflammatory effects through 
secreted cytokines, such as interleukin-1β (IL-1β), inter-
leukin-6 (IL-6), and tumor necrosis factor (TNF). In con-
trast to M1 phenotype macrophages, M2 macrophages 
are predominantly correlated with resolving inflamma-
tion and promoting tissue repair [49]. Tumor-associated 
macrophages (TAMs) are typically altered into M2 and 
mediate immune dysfunction in the TME [50]. Similar to 
neutrophils, macrophages also release web-like structures 
as extracellular traps (ETs) [51]. Macrophage extracellu-
lar traps (METs) exert tumor-promoting roles by assist-
ing tumor growth, progression, and metastasis [51–53]. 
For pancreatic neuroendocrine tumors (pNETs), NETs 
and METs were deemed as the independent prognosis 
indicators for recurrence-free survival (RFS). However, 

Table 1  The interplay between the tumor cell and NETs

Stimulator or Ligand of NETs Receptors in the tumor cell Regulated function Type of Cancer Reference

IL-8, G-CSF, GROα/β - tumor premetastatic niche formation ovarian cancer [17]

CXCR1/CXCR2 Agonists - immune-mediated cytotoxicity solid malignancies [28]

NE TLR4 mitochondrial biogenesis and tumor 
growth

Colorectal cancer [41]

HMGB1 TLR4 radioresistance bladder cancer [23]

NETs TLR9 tumor proliferation, migration, and 
invasion

Colorectal cancer [42]

NETs TLR9 tumor proliferation and metastasis Diffuse large B-cell lymphoma [21]

NETs TLR4/9 tumor metastasis Hepatic cell carcinoma [43]

NET-DNA complex CCDC25 tumor cell motility and tumor metastasis Breast cancer [11]

NETs integrin α5β1, αvβ3, and αvβ5 tumor cell adhesion Pan-cancer [46]

NETs integrin β1 tumor cell adhesion Lung cell carcinoma [29]

NETs-cleaved laminin-111 integrin a3β1 awaken dormant tumor cell Breast cancer [10]
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no significant correlations were founded between NETs 
and METs in this research. It was postulated that NETs 
and METs were regulated by different mechanisms [54]. 
Zhang L et  al. delineated the ability of NET to induce 
the migration and invasion of lung adenocarcinoma cells 
in vitro, which is partly dependent on macrophages [55]. 
Up to now, the molecular mechanism between NETs, 
macrophages, and METs is not fully described in cancer. 
To spur new ideas in cancer, we briefly introduced the 
recent studies, which uncovered the NETs-macrophage 
interaction in non-neoplastic diseases [56–58].

In response to infection, the caspase-1 dependent cell 
death pyroptosis is another regulated defending way in 
addition to generating ETs [59]. The novel mechanism 
was identified as NET-related HMGB1 activated the 
receptor for advanced glycation end products (RAGE) 
pathway signaling and subsequently trigger macrophage 
pyroptosis in sepsis [56]. Li H et  al. indicated the inter-
action between NETs and macrophage pyroptosis, aggra-
vating the inflammation of acute respiratory distress 
syndrome (ARDS) [60]. The inflammatory microenvi-
ronment plays an important role in all stages of tumor 
development and progression. It is necessary to further 
understand whether the interaction between NET and 
macrophages has the effect of amplifying the inflamma-
tory response within the tumor and accelerating tumor 
progression.

A series of research investigated whether NETs could 
induce a cellular response in macrophage differentia-
tion. After stimulation with low-density granulocyte 
(LDG)-derived NETs in the coronavirus disease 2019 
(COVID-19), macrophages were characterized by 
supernatant proinflammatory cytokines secretion [61]. 
The role of NETs-related macrophage inflammatory 
phenotype polarization was similar in diabetic mice, 
contributing to atherosclerosis progression. Apart from 
the inflammasome-associated markers overexpression 
in NETs+ regions, the upregulation of the glycolytic 
pathway also symbolized a shift toward an M1-like phe-
notype in the atherosclerosis plaque area [62, 63]. EGF-
like repeats and discoidin I-like domain 3 (EDIL3) were 
previously reported in the inflammatory regulation and 
neutrophil recruitment inhibition, through the inter-
action with lymphocyte function-associated antigen 
1 (LFA1) or intercellular adhesion molecules (ICAMs) 
[64, 65]. EDIL3 was negatively associated with neutro-
phil recruitment and macrophage expansion in myo-
cardial infarction (MI). The DNA moiety of NETs then 
licensed a switch towards M1-like macrophage polari-
zation in the deficiency of EDIL3. Researchers further 
validated the mechanistic evidence that NETs induced 
inflammatory macrophage polarization via the TLR9 

pathways, exerting DNA sensors to transduce NETs-
macrophage interactive signals [66]. The evidence 
described above shows that the ubiquitously expressed 
TLR receptors are an important bridge for mediating 
NET and tumor cell interaction for cancer Therefore, 
it is crucial to understand whether TLR receptors are 
involved in mediating NET and macrophage interac-
tions in tumor diseases. After inflammation declined 
in the late stage of wound healing, NETs-treated anti-
inflammatory macrophages initiated the fibrotic cas-
cades, resulting in postoperative epidural fibrosis 
formation [67]. Taken together, NETs may exert a dual 
role in the function switch of macrophages.

Based on the finding that the macrophage amount 
was negatively correlated with the localized NETs 
density for patients with abdominal aortic aneurysm, 
Haider P et  al. hypothesized that macrophage may 
clear the NETs in vivo [68]. NET clearance refers to the 
phagocytosis of the NET by macrophage. Apart from 
the inflammatory macrophage phenotype polariza-
tion, aggregation of NETs with reduced clearance by 
macrophages may give rise to an ongoing inflamma-
tory response. Mechanistically, MMP12 was validated 
as a key mediator for macrophages to remove NETs, 
preparing for inflammation degradation and restoring 
immune homeostasis [69]. Furthermore, AMPK-asso-
ciated pathway activation is also an important mecha-
nism for NET clearance. Chiang et  al. explored the 
mechanism that the 13-series resolvins (RvTs) enhanced 
NETs clearance by macrophages through cyclic adeno-
sine monophosphate (cAMP) / protein kinase A (PKA) 
/ AMP-activated protein kinase (AMPK) axis, provid-
ing a molecular mechanism for inflammation resolu-
tion [58]. It was further illustrated that the restoration 
of AMPK in macrophages could recover the NET clear-
ance ability [70].Additionally, the inhibitors preventing 
NETs formation abrogated the proinflammatory mac-
rophage recruitment, macrophage pyroptosis, M1-like 
phenotype polarization, and macrophage-associated 
NET clearance [60, 62, 70–73].

This evidence identified that the crosstalk between NETs 
and macrophages was involved as a fundamental part of 
non-neoplastic disease progression. There is a lack of cell–
cell interaction analysis between NET and macrophages in 
cancer. However, the above results of these studies in non-
neoplastic disease provided potent interest or research 
ideas for the tumor in the future. Further questions remain 
as: Does NET-associated inflammation influences mac-
rophage function in cancer? What is the mechanism for 
the cellular mechanism for NETs-macrophage interaction 
in cancers? Could NETs-macrophages molecular network 
be a potential novel treatment target for the tumor?



Page 5 of 15Shang et al. Biomarker Research           (2023) 11:24 	

Cross‑talk between NETs and lymphocytes
Lymphocytes including T lymphocytes, B lymphocytes, 
and natural killer (NK) cells, serve as a crucial mecha-
nism to mediate the immune system hemostasis and reg-
ulate immune tolerance [74–76].

Recent findings in cancer demonstrated that tumor-
specific lymphocytes primarily presented a dysfunctional 
state, shaped by the immunosuppressive tumor microen-
vironment, and thus promoted tumor escape and therapy 
resistance [75, 77, 78]. Especially T lymphocytes and 
NK cells exerted a fundamental part in tumor develop-
ment and progression. There is increasing evidence that 
the complex interaction between NETs and lymphocytes 
may critically involve the immune function regulation in 
the tumor.

First, NETs exerted an inhibitory role in the amount 
and function of CD8+ T cells. The infiltrating rate of 
CD8+ T lymphocytes was inversely associated with the 
NETs density in human solid tumors including non-small 
cell lung cancer (NSCLC) and bladder cancer (BC) [79]. 
Teijeira Á et  al. illustrated that the motility of CD8+ T 
cells migrating across the transwell was directly weak-
ened by NETs in vitro[28]. Apart from the cell migration 
motility, Kaltenmeier C et al. investigated whether NETs 
could mediate the T cell dysfunction and exhaustion 
responses. In the NETs-rich TME, the tumor-infiltrating 
CD8+ T lymphocytes were characterized with functional 
exhausted phenotype, expressing high levels of exhaus-
tion markers, such as PD-1, LAG-3, or TIM3. The direct 
modulatory role of NETs on CD8+ T cell’s exhaustive 
differentiation was validated in the co-culture experi-
ment. By co-culturing the NETs and CD8+ T cells in vivo, 
the exhausted phenotype changes of CD8+ T cells were 
as same as that in the NETs-rich TME. This phenotype 
shift was further reversed with the NETs inhibitor [80]. 
Second, NETs were illustrated for their positive correla-
tion with CD4+ T cell exhausted phenotype differentia-
tion and Foxp3+ regulatory T cells (Tregs) density [80, 
81]. After the co-culture with NETs, the changes in naïve 
CD4+ T cells that could differentiate into Tregs, which 
presented with activated mitochondrial oxidative phos-
phorylation (OXPHOS) pathway. Naïve CD4+ T cells up-
regulated the Treg-associated markers, including TGFB1, 
ID3, and DUSP4. Meanwhile, effector T cell-related 
genes in the program of effector T cell (Teff) differentia-
tion were reduced [81]. It has been recognized that naïve 
CD4+ T cell differentiation depends on the balance of 
glycolysis and oxidative phosphorylation (OXPHOS) 
[82]. T cells in the NETs-rich area were presented with 
the down-regulated functioning mitochondria, reduced 
glucose but up-regulated fatty acid uptake [80]. The 
OXPHOS inhibitor reversed NETs-associated Treg dif-
ferentiation [81]. Consistent with the previous study [83], 

the TLR4 on the naïve CD4+ T cell exerted an essential 
role in mediating the Treg activation and function. It was 
delineated that NETs directly contacted naïve CD4+ T 
cells mostly through TLR4, thus prompting Treg differ-
entiation [81].

Nevertheless, these studies mentioned above merely 
considered the interrelationship between T cells and 
NETs in cancer. The relationship between NETs and B 
cells is not well understood. Most of the studies in this 
area are concerned about autoimmune diseases. Recent 
research reported that B cells were drivers of chronic 
inflammation in Rheumatoid arthritis (RA). Activated B 
cells were capable to release IL-8 recruiting neutrophils 
to the synovium, and produce autoantibodies activating 
the complement pathway and promoting NETs formation 
[84]. Additionally, citrullinated histones in NETs acted 
as a continuous source of fresh antigens to B cells [85]. 
In Systemic Lupus Erythematosus (SLE), uptake of NETs 
in Lupus Nephritis (LN-NETs) by B cells was found, and 
LN-NETs could also stimulate Naïve B Cells to produce 
IgG2 in SLE [86]. Correlating with disease severity, spon-
taneous NETs formation was enhanced by circulating 
neutrophils in Bullous pemphigoid (BP) patients [87]. 
Mechanism research showed that NETs formation could 
be abrogated by blocking Fcγ receptor and/ or NADPH 
pathway. Additionally, elevated levels of NETs in BP 
patients triggered B cells differentiation into plasma cells, 
producing a large amount of autoantibody, and this pro-
cedure was mediated by the activation of MAPK P38 cas-
cade [87].

The situation becomes more complicated when con-
sidering the relationship between NET, lymphocytes, 
tumor cells, and others. It was postulated that the anti-
tumor effect of lymphocytes was compromised by the 
reduced contact with NETs-shielding tumor cells [28], 
yet, the relevant molecular interaction mechanisms need 
to be further explored. In conclusion, the existing studies 
mostly focused on T lymphocytes, and NETs had a regu-
latory mechanism on the T lymphocytes infiltrating and 
functioning in cancer. The effects of NETs on NK cells 
and B cells are poorly understood and deserve further 
investigation.

A positive feedback cycle between NETs and platelets
In addition to their well-known role in coagulation and 
hemostasis, accumulating evidence shows that plate-
lets also exert a regulative role in the immune system 
[88–90]. The level of NETs is elevated in different can-
cers, including colorectal cancer (CRC), gastric cancer 
(GC),  oral squamous cell carcinoma (OSCC), as well as 
pancreatic tumors, and the inhibition of NETs diminishes 
the hypercoagulability in cancer [91–94].
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Increasing evidence has illustrated the role of plate-
let in NETs formation. Clark et  al. first described plate-
let involved in DNA extracellular trap formation in a 
mouse model of sepsis. They found that platelets, acti-
vated by LPS through TLR4, could bind neutrophils 
and lead to their activation and NETs formation [95]. 
One potent mechanism of platelets-induced NETs for-
mation seems to be the combination of P-selectin to 
its receptor P-selectin glycoprotein ligand-1 (PSGL-
1) on their surface [96]. Animal studies demonstrated 
that platelets from mice with overexpressed P-selectin 
were more prone to generate NETs when co-incubated 
with neutrophils, while platelets from P-selectin knock-
out mice failed to induce NETs [97]. Moreover, using 
anti‐P‐selectin and PSGL‐1 antibodies to abrogate the 
interaction between neutrophils and platelets could 
remarkably decrease NETs formation in the plasma of 
glioma patients [98]. The pro-inflammatory molecule 
platelet-derived high mobility group box  1 (HMGB1), 
secreted from activated platelets has also been shown to 
facilitate NET formation [99]. According to this study, 
platelets from colorectal cancer patients stimulated neu-
trophils to release NETs, which could be abolished by the 
absence of HMGB1 [92]. Meanwhile, platelets acted as 
carriers of tumor-derived exosomes, which in turn con-
tributed to the generation of NETs [90].

It was shown that platelets promote neutrophils to 
generate NET and its components,which in turn acti-
vate platelets as wel l[100]. NETs could function in pro-
coagulant response by providing a scaffold for platelets, 
red blood cells, extracellular vesicles, and pro-coagulant 
molecules [101–103]. NETs could convert platelets to a 
procoagulant phenotype and stimulate the activation and 
aggregation of platelets by upregulating phosphatidylser-
ine and P-selectin expression on its membrane [98, 104]. 
Brian A. Boone et al. found that DNA and its receptor for 
advanced glycation end products (RAGE) were necessary 
for NETs-relevant platelet aggregation and RAGE KO 
tumor-bearing mice exhibited decreased platelet aggre-
gation [93]. Another study showed that DNase I treat-
ment could attenuate platelet aggregation, while some 
platelets still adhered to the glass slides. Histones that are 
the most abundant proteins in NETs or NE are sufficient 
to induce platelet aggregation [104]. Co-culture plate-
lets with histones H3 and H4 promote its aggregation, 
whereas histones 1H, H2A, and H2B had no such effect 
[102]. More specifically, histone-enhanced platelet aggre-
gation by recruiting fibrinogen and histone-dependent 
platelet activation seems to be mediated by the signaling 
pathway of TLR2 and TLR4 receptors, via the transcrip-
tion factor NF-κB [105].

Holistically, activated platelets simultaneously inter-
play with neutrophils, promoting NETs formation. NETs 

provide a scaffold for platelets and induce activation and 
aggregation of platelet via their complex components, 
thus generating a positive feedback cycle to each other.

NETs as a valuable marker in cancer from the clinical 
perspective
Several techniques for the detection of NETs showed 
promising clinical applications for diagnosis, therapeu-
tic response, and prognosis. ELISA technique was the 
most commonly acknowledged to detect the circulating 
NETs-associated complexes, allowing the quantitative 
assessment of NETs. In certain studies, the circulating 
level of NET-derived DNA was measured as MPO-DNA, 
NE-DNA, or circulating DNA [11, 106–108]. Apart from 
NET-related DNA complex, the circulating H3Cit level 
was also identified as the number of NETs [109, 110]. 
Meanwhile, circulating MPO-DNA, NE-DNA, and H3Cit 
were more specific for NETs quantification than circulat-
ing DNA alone [107]. Based on the evidence of a cohort 
of 283 gastric adenocarcinoma (GAC) patients, it seemed 
that both the serum and plasma of blood samples could 
all be employed for NETs detection [108]. The immuno-
histochemical (IHC) technique was also used to measure 
NET formation in the primary tumor lesion or metastatic 
site of the tumor tissue sample [79, 111]. The NET for-
mation was identified as the neutrophils positive for the 
H3Cit signal [112, 113]. In some cases, the NETs level, 
measured as other NETs-specific proteins like MPO, NE, 
and so on, has been applied as a surrogated marker of 
NETs [10, 13, 103].

The increment of circulating DNA in plasma, con-
sidered a specific marker of NETs in this research, was 
founded in cancer-related stroke patients [114]. Never-
theless, this data should be cautiously interpreted due 
to the circulating DNA also involving in the apoptotic, 
necrotic, and so on [115]. NET-derived proteins like 
MPO or NE could bind to DNA in the circulating system. 
For both esophagogastric and lung adenocarcinoma, the 
level of circulating MPO-DNA was elevated compared 
to healthy people [106]. According to the analysis of pan-
creatic adenocarcinoma patients, the level of circulating 
MPO-DNA before treatment was correlated positively 
with the clinical stage [19]. The expression of serum 
MPO-DNA was validated as a predictor of liver metas-
tasis for early-stage breast cancer patients [11]. Tohme S 
et  al. revealed that metastatic colorectal cancer patients 
with elevated levels of serum MPO-DNA after liver 
resection surgery were more likely to have a reduction in 
disease-free survival (DFS) [42]. Yazdani HO et  al. also 
investigated that the pre-operatively serum MPO-DNA 
complexes levels increased in proportion to the clini-
cal outcome, observing the added NETs level in patients 
with shorter DFS and overall survival [41]. In addition, 



Page 7 of 15Shang et al. Biomarker Research           (2023) 11:24 	

the serum MPO-DNA complex level was confirmed to 
monitor the HER2 inhibitor-associated vasculitis activity 
from a prospective cohort of breast cancer [116]. Com-
pared with localized breast cancer, the levels of plasma 
NE-DNA complexes were higher in regional and distant 
stages [117]. As a specific NETs biomarker, serum NE-
DNA showed better diagnostic efficiency compared with 
other common clinical biomarkers in gastric Adenocar-
cinoma, like carbohydrate antigen 19–9 (CA19-9) and 
carcinoembryonic antigen (CEA). It was identified that 
serum NE-DNA increased along with the existence of 
lymph node metastasis. The baseline serum level of NETs 
was inversely correlated with PFS for GC patients with 
negative HER2 status. Prompted by the above evidence, 
NETs quantified by NE-DNA complexes could be identi-
fied as an effective diagnostic and prognostic risk factor 
value in GC [108].

Citrullinated histone H3 (H3Cit) is a representa-
tive marker of chromatin decondensation during the 
NET formation process. It was reported that a signifi-
cant increment in circulating H3Cit was directly asso-
ciated with poor clinical outcomes in a panel of tumors 
[109]. Grilz E et  al. collected the venous blood samples 
of 957 patients with cancer and performed a median of 
666  days follow-up, revealing that the increased plasma 
H3Cit level was in an independent correlation with 
higher cancer mortality (HR = 1.1, P < 0.001) [110]. In a 
cohort enrolling 317 pancreatic ductal adenocarcinoma 
patients, the amounts of tumor-infiltrating NETs which 
were quantified by the IHC staining for H3Cit was cor-
related with RFS and OS, regardless of the state of neu-
trophil infiltration in the tumor. What’s more, combined 

with NETs, the diagnostic accuracy was improved by the 
TNM staging system in pancreatic cancer [113].

In our previous analysis, we first constructed a panel of 
genes signature as NET-score using the RNA-sequencing 
data of The Cancer Genome Atlas (TCGA) pan-cancer 
cohort and measured the NETs density in tumor tissue 
through IHC validation. NET was correlated with unfa-
vorable prognosis in most types of cancer, like Kidney 
renal clear cell carcinoma (KIRC), Lung adenocarcinoma 
(LUAD), and Colon adenocarcinoma (COAD) [13]. In 
summary, NETs exert a fundamental role as a marker 
from the clinical perspective (shown in Table  2). The 
above studies provide the value of NETs as a biomarker 
in cancer with several NET-associated metrics. From a 
technical point of view, the main difficulty in the clini-
cal application of NETs was the lack of unified detection 
metrics and standard quantification threshold.

The synergistic effect of NETs inhibition combined 
with immunotherapy
There is a growing study focusing on the mechanism of 
the immunosuppressive environment in cancer, espe-
cially after the clinical application of immune checkpoint 
inhibitors (ICIs) with promising therapeutic effects. The 
goal of ICIs is to reactivate the immunity response and 
rescue the anti-tumor effects in cancer. Although a cer-
tain percentage of patients showed a favorable benefit 
from the ICIs treatment, how to improve the response 
rate and relieve the adverse effects of treatment is always 
a challenge for clinicians. It was founded that the inhi-
bition of NETs maybe has a synergistic effect with 
ICIs for cancer treatment [118]. Zhang Y et  al. further 

Table 2  NETs as a valuable marker in Cancer from the clinical perspective

Year Method Samples 
number

Chosen markers of NETs Type of Cancer Function Reference

2016 ELISA 35 MPO-DNA complex Colorectal cancer correlated with the reduction in DFS [42]

2018 ELISA 161 Citrullinated histone H3 Pan-cancer prognostic blood marker [109]

2019 ELISA 45 NE-DNA complex Breast cancer associated with clinical stages [117]

2019 ELISA 27 MPO-DNA complex Colorectal cancer correlated with shorter survival [41]

2019 ELISA 104 MPO-DNA complex Pancreatic ductal adenocarcinoma related to the clinical stage [19]

2019 ELISA 957 Citrullinated histone H3 Pan-cancer associated with higher mortality [110]

2019 IHC 317 Citrullinated histone H3 Pancreatic ductal adenocarcinoma prognostic factor [113]

2019 ELISA 138 circulating DNA Pan-cancer related to cancer-related stroke [114]

2019 ELISA 75 MPO-DNA complex Esophagogastric and lung adenocar-
cinoma

correlated with advanced stage [106]

2020 ELISA 356 NE-DNA complex Gastric Adenocarcinoma diagnostic, therapeutic predictive, and 
prognostic value

[108]

2020 ELISA 461 MPO-DNA complex Breast cancer metastases predictor [11]

2022 IHC 321 MPO Pan-cancer prognostic factor [13]

2022 ELISA 25 MPO-DNA complex Breast cancer monitoring HER2 antibody–drug-asso-
ciated vasculitis activity

[116]
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investigated that increased CD8+ T cells were recruited 
in the mouse deficient of PAD4. And the pancreatic 
implantation tumor showed a significant reduction with 
the additional employment of PD-1 blockade in the 
mouse deficient in PAD4 (PAD4-KO) [119]. The PAD4 
inhibition of NETosis has also been described with the 
potential synergistic effect with ICIs through the modu-
latory role for lymphocyte function, like T and NK cells 
[28]. The implantation of melanoma cells in mice resulted 
in tumor regression with anti-PD1 or anti-CTLA4 immu-
notherapy, and the increment of NETs during treatment 
was speculated in association with adverse reactions 
[118]. In addition, the current research on the impact of 
NETs on immunotherapy is mainly carried out in vitro or 
in vivo. There is a lack of relevant evidence for the role of 
NETs on immunotherapy in humans. We also intend to 
explore the relationship between NET and immunother-
apy efficacy and adverse effects in the patient cohort of 
tumor immunotherapy. Whether the use of NETs inhibi-
tors can improve the response rate of immunotherapy 
and relief adverse reactions deserves further exploration. 
Therapeutic strategies targeting NETs combined with 

immunotherapy treatment may be a promising regimen 
with improved treatment benefits in the future.

Potential treatment strategies for inhibiting NETs
Since plenty of shreds of evidence have indicated that 
NETs might play vital roles in different diseases, includ-
ing inflammation injury, sepsis, auto-immune disease, 
and cancer, targeting NETs is now expected to be a 
potential treatment strategy. Several works which are 
under experimental research or preclinically used include 
degrading already formed NETs and blocking the aber-
rant formation of NETs (shown in Table 3).

DNase I is one of the endonucleases that cleave DNA, 
resulting in the collapse of the web-like structure, and 
is commonly used as a NETs inhibitor [140]. Previous 
studies reported that Dnase I could improve diabetic 
wound healing through the clearance of NETs [141] and 
mechanistically research revealed that Dnase I exerted 
its function mainly by improving inflammation resolu-
tion, reactivating epithelial regeneration-related signaling 
pathways, and attenuating the cumulation of reactive oxy-
gen species (ROS) [142]. Timely elimination of excessive 

Table 3  Potential targets for NETs inhibition in different disease

Agent/Inhibitor Target/Function Disease/Pathology Subject of research Reference

DNase I Degrading formed NETs Diabetic wound healing Diabetic mouse [120]

Liver IRI Liver IRI mouse [121]

lung injury/ARDS MRSA-infected mouse [122]

SLE Serum of SLE patients [123, 124]

Scar formation Mouse model of laminectomy [67]

Cystic fibrosis Cystic fibrosis patients [125, 126]

Colorectal cancer MC38-bearing mouse [127]

Hepatocellular carcinoma Hepa1-6 or HuH7 bearing mouse [43, 128]

Breast cancer SCP28-bearing mouse [129]

Pancreatic cancer Panc02-bearing mouse [19]

rhDNase I Degrading formed NETs COVID-19 Infection Patients in Phase I clinical trial NCT04409925

GSK484 Inhibitor of PAD4 Renal IRI Renal IRI mouse [130]

Lung injury SAH mouse [131]

Hepatocellular carcinoma Hepa1-6 bearing mouse [132]

Breast cancer 4T1-bearing mice [28, 129]

Cl-amidine Inhibitor of PAD4 Mastitis LPS-induced mouse mastitis [133]

Endometritis LPS-induced rat endometritis [134]

BMS-P5 Inhibitor of PAD4 Multiple myeloma DP42-bearing mouse [135]

Sivelestat Inhibitor of NE Ovarian cancer Human neutrophils [136]

Breast cancer SCP28-bearing mouse [129]

GW311616 Inhibitor of NE Diffuse large B-cell lymphoma A20-bearing mouse [21]

Inflammatory responses Human neutrophils [137]

AZD5904 Inhibitor of MPO Multiple organ dysfunction in sepsis Human neutrophils [138]

Reparixin CXCR1/2 inhibitor solid malignancies Tumor-bearing mice [28]

Danirixin CXCR2 antagonist COPD Patients in Phase II clinical trial NCT03250689

Metformin Inhibiting NADPH oxidase activity SLE Proof-of-Concept Trial [139]
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NETs is crucial for tissue homeostasis and avoiding the 
presentation of self-antigens [123]. Evidence showed that 
inhibiting NET formation by the treatment of Dnase I 
significantly protected hepatocytes and reduced inflam-
mation after liver ischemia/reperfusion (I/R) injury 
[121], lessened lung injury, and improved survival both 
in mouse models and in humans with ARDS from pneu-
monia or sepsis [122]. Impairing the function of Dnase I 
failed to remove NETs in time might result in the patho-
genesis of lupus nephritis in systemic lupus erythemato-
sus (SLE) patients [124]. Treatment with DNase I might 
be a therapeutic target in SLE, which still demanded 
further research [123, 124]. In a mouse spine operation 
model, the authors proved that NETs promoted scar 
formation in post-epidural fibrosis, which was remark-
ably decreased with the administration of DNase I [67]. 
Moreover, recombinant Dnase I is used for the treatment 
of cystic fibrosis currently due to its inhibitory func-
tion in NETs [125, 126]. Emerging evidence revealed that 
NET formation favors tumor cell proliferation, metasta-
sis, as well as immunosuppression [115, 143]. Degrading 
NETs by Dnase I not only reduced circulating NET lev-
els, but also suppressed tumor cell growth and metasta-
sis in colorectal cancer, hepatocellular carcinoma, breast 
cancer, and pancreatic cancer [19, 127]. PAD4 catalyzes 
the citrullination of histones and promotes chromatin 
decondensation during the formation of NETs [144, 145]. 
Inhibition of PAD4 is an effective method for NETs sup-
pression and is under research in different diseases [144]. 
Inhibiting PAD4 by GSK484 reduced NETs formation, 
and was proved to improve renal function via apoptosis 
limitation in a mouse IRI model [130], and could attenu-
ate the swelling of the alveolar interstitium caused by a 
subarachnoid hemorrhage in mouse [131]. Moreover, 
GSK484 decreased tumor lung metastasis in hepatocel-
lular carcinoma and breast cancer mouse models due 
to NETs inhibition [28, 129, 132]. Besides GSK484, Cl-
amidine and BMS-P5 are also PAD4 inhibitors that are 
under investigation [135, 146]. In an LPS-induced mouse 
mastitis model, Cl-amidine reduced NETs release and 
pathological injury, which might be relevant to inhibit-
ing NF-κB, MAPK, and NLRP3 signaling pathways [133]. 
It was reported that Cl-amidine could also weaken the 
inflammatory response of LPS-induced endometritis in 
rats by decreasing the formation of NETs [134]. BMS-P5 
is a novel PAD4-specific inhibitor. A recent study reported 
that BMS-P5 blocked citrullination of histone H3 and 
NETs formation in human multiple myeloma (MM) cells, 
and treatment with BMS-P5 to MM-bearing mice attenu-
ated symptoms and disease progression [135].

The protease NE and MPO are vital components of 
NETs, and they work synergistically to decondense 
chromatin in NETs [147]. Some studies reported that 

NE or MPO deficiency fails to produce NETs both 
in  vitro and in  vivo [148, 149]. Inhibition of these two 
enzymes would likely serve as therapeutic targets in 
NET-associated diseases [149]. Sivelestat is a NE inhibi-
tor that has been approved to treat ARDS in Japan and 
South Korea [115]. The generation of NETs proves to be 
beneficial for pro-migratory tumor behavior. In a three-
dimensional (3D) model that mimics a tumor-immune 
microenvironment, the authors demonstrated that 
inhibiting NETs formation by sivelestat prevents ovarian 
tumor cells from acquiring an invasive phenotype [136]. 
A recent study reported that CXCR2 favored NETs for-
mation by enhancing the recruitment of TANs towards 
brain metastasis in breast cancer cells, and it could be 
impeded through sivelestat administration [150]. Repar-
ixin as a CXCR1/2 inhibitor could impede NETosis [28]. 
GW311616 is another NE inhibitor that could attenuate 
the proliferation and migration of diffuse large B-cell 
lymphoma cells induced by NETs [21]. Minerals-organic 
particles in the human body were shown to promote 
pro-inflammatory responses via NETs which could also 
be blocked by GW311616 [137]. Strategies to impede 
NETs by the inhibitors of MPO are also effective. Exces-
sive release of NETs in septic patients and high levels 
of NETs-MPO in septic patients were relevant to the 
severity of organ dysfunction. AZD5904, an inhibitor of 
MPO could reduce the formation of NETs and therefore 
may be a new therapeutic option for multiple organ dys-
function in sepsis [138].

Fortunately, phase I (NCT04409925) and phase II 
(NCT03250689) clinical trials inhibiting NETs are being 
carried out in non-neoplastic diseases. Once successful, 
it will lay the foundation for clinical trials in cancer.

Conclusion and the future perspective
Given that neutrophils are core innate immune sign-
aling hubs that could transmit or activate most of the 
pathways indispensable for adaptive immune activities, 
there is a growing interest in the research of neutro-
phils, especially for NETs. The prior reviews mainly 
discussed the crucial role of NETs in contributing to 
the development and progression of cancer [115, 143, 
151–153]. Our review illustrated the altered immune 
networks mediated by NETs in cancer. Based on the 
available data, we focused on the intercellular com-
munication between NETs, cancer cells, and immune 
cells (Fig. 1). This information is the key issue to figur-
ing out the specific molecular mechanism of NET-cell 
contact for targeted therapy and therapeutic interven-
tion. Meanwhile, it remains much left to delineate the 
NETs-primed molecular networks in cancer. Previ-
ously, the focus in the field of tumor immunology was 
mostly on lymphocytes, but now there is increasing 
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evidence that the role of neutrophils is indispensa-
ble. For example, the neutrophil-to-lymphocyte ratio 
(NLR) can serve as an independent prognostic factor 
and predict the efficacy of immunotherapy. Therefore, 
it is necessary to further understand neutrophils. One 
of the key limitations is that primary human neutro-
phils have a short survival time with only several days 
in vitro. Neutrophils could not be transfected to inhibit 
the specific signaling pathway in association with 
NETs formation and function. Most advanced technol-
ogies, like sc-RNA sequencing or labeling system, have 
been highly adaptable to ligand/receptor interactions. 
Nevertheless, whether these technologies could be a 
technology in the application for deeply resolving cel-
lular interaction of NETs deserves further validation. 

We highlighted the recent research in our review that 
the inhibition of NETs exerted a synergistic part com-
bined with ICIs immunotherapy in preclinical studies. 
Due to their connection between innate and adaptive 
immune response, we aspired to supply a novel frame-
work regarding NETs targeted inhibitors combined 
with other immunotherapy strategies to improve clini-
cal treatment benefits for cancer.

Abbreviations
NETs	� Neutrophil extracellular traps
TANs	� Tumor-associated neutrophils
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PKC	� Protein kinase C
NE	� Neutrophil elastase

Fig. 1  Intercellular communication between NETs and tumor cells or immune cells. a NET-DNA served as a chemotactic factor, which was sensor 
by cell-surface receptor CCDC25 on the metastatic tumor cell, and subsequently activated the downstream ILK–β-Parvin signaling to accelerate the 
metastasis. b NETs functioning as a substrate for the integrins expressed on the tumor cell, could enhance the cell adhesion ability and sequester 
the CTC. c NET-remodeled laminin-111 contributed to tumor proliferation by activating the integrin a3β1 signaling of the dormant cancer cell. d 
NET clearance refers to the process by which macrophage phagocytoses the NET. NET clearance is often impaired in cases of abnormal immunity. 
Specific molecules could enhance the ability of NET clearance through the cAMP/PKA/AMPK axis. e The impact of NETs on the immunomodulatory 
function may be due in part to the phenomenon of NETs-shielding tumor cells, reducing the direct contact between effector cytotoxic 
lymphocytes and tumor cells. f NET-primed naïve CD4+ T cell was more inclined to the differential of Treg cell through increasing the mitochondrial 
OCR and OXPHOS. Genes essential for Treg differentiation and activity were up-regulated. Meanwhile, Teff programming genes were significantly 
down-regulated. g Activated platelets bind to the receptor P-selective (P-sel) glycoprotein ligand-1 (PSGL-1) on the surface of the neutrophil via 
P-selective protein and promote the production of NETs. And NETs such as the DNA backbone and adherent thrombosis-related enzymes can 
activate platelets in turn
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