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Cervical cancer heterogeneity: a constant 
battle against viruses and drugs
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Abstract 

Cervical cancer is the first identified human papillomavirus (HPV) associated cancer and the most promising malig-
nancy to be eliminated. However, the ever-changing virus subtypes and acquired multiple drug resistance continue 
to induce failure of tumor prevention and treatment. The exploration of cervical cancer heterogeneity is the crucial 
way to achieve effective prevention and precise treatment. Tumor heterogeneity exists in various aspects including 
the immune clearance of viruses, tumorigenesis, neoplasm recurrence, metastasis and drug resistance. Tumor devel-
opment and drug resistance are often driven by potential gene amplification and deletion, not only somatic genomic 
alterations, but also copy number amplifications, histone modification and DNA methylation. Genomic rearrange-
ments may occur by selection effects from chemotherapy or radiotherapy which exhibits genetic intra-tumor hetero-
geneity in advanced cervical cancers. The combined application of cervical cancer therapeutic vaccine and immune 
checkpoint inhibitors has become an effective strategy to address the heterogeneity of treatment. In this review, we 
will integrate classic and recently updated epidemiological data on vaccination rates, screening rates, incidence and 
mortality of cervical cancer patients worldwide aiming to understand the current situation of disease prevention and 
control and identify the direction of urgent efforts. Additionally, we will focus on the tumor environment to sum-
marize the conditions of immune clearance and gene integration after different HPV infections and to explore the 
genomic factors of tumor heterogeneity. Finally, we will make a thorough inquiry into completed and ongoing phase 
III clinical trials in cervical cancer and summarize molecular mechanisms of drug resistance among chemotherapy, 
radiotherapy, biotherapy, and immunotherapy.
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Introduction
Human papillomavirus (HPV) causes an overwhelm-
ing majority of cervical cancers (CCs) and an alarmingly 
increased proportion of oropharyngeal cancers (OPCs). 
As the earliest discovered HPV-associated cancer, the 
tumorigenesis and infiltration of cervical cancer are 

closely relevant to the persistent infection and genome 
integration of HPV [1, 2].

Although with clear etiology, tumor heterogeneity still 
exists and gradually becomes a new challenge in the field 
of HPV-associated cancer research. Three concepts of 
heterogeneity need to be clarified: inter-patient hetero-
geneity, inter-tumoral heterogeneity, and intra-tumoral 
heterogeneity. Differences in tumor phenotypes and 
genotypes among individuals or distinct tumor sites are 
defined as inter-patient heterogeneity and inter-tumor 
heterogeneity respectively. In contrast, intra-tumoral 
heterogeneity means genomic, transcriptomic, epige-
netic, or phenotypic differences within the same tumor 
lesion which are associated with therapeutic resistance 
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and considerably more challenging [3]. Mendelian law of 
inheritance suggests that the free combination of genes 
is an important reason for the emergence of biodiversity 
[4]. As these probabilistic events encounter Darwinian 
adaptational selection over time, tumor cells and normal 
cells will continue to compete in different quadrants of 
time and space [5]. Genetic intra-tumoral heterogeneity, 
inter-tumoral heterogeneity, and inter-patient heteroge-
neity are reflected in a dynamic process of tumorigenesis, 
invasion, metastasis, or drug resistance [6–8]. To over-
come the dilemma of precision therapy, it is necessary 
to break through each of these aspects. The rapid devel-
opment of sequencing technology provides a platform 
for revealing tumor heterogeneity. Scanty knowledge 
has been uncovered on how heterogeneity plays roles in 
tumor pathogenesis and precision therapy until applica-
tion of single-cell transcriptome analysis. The advances 
in single-cell RNA sequencing (scRNA-seq) include dis-
tinguishing neoplastic from normal tissue in individual 
patients and different disease states [9, 10].

In this review, we explore the heterogeneity of cervical 
cancers from the perspectives of HPV-induced tumori-
genesis, internal changes of human genome and molecu-
lar mechanisms of drug resistance. The molecular and 
clinical features of cervical squamous cell carcinoma are 
discussed in major. In addition, cancer stem cells, cervi-
cal adenocarcinoma, and neuroendocrine carcinoma 
are described respectively in the last chapter. Firstly, we 
emphasize the significant contribution of alterations of 
genetic material and HPV gene integration differences in 
tumorigenesis. Furthermore, we summarize the mecha-
nisms of intra-tumoral and inter-tumoral heterogene-
ity among inchoate and advanced cancers. Finally, we 
attempt to explain the huge differences in resistance to 
therapies among populations through tumor heterogene-
ity and provide feasible strategies for precise treatment.

Inferring heterogeneity with HPV
Heterogeneity of geographical distribution
In the 1980s, German pathologist Dr Hausen identi-
fied HPV as the explicit cause of cervical cancer which 
opened a new revolution in the etiology treatment of 
cancer. Moreover, HPV infection is also the cause of mul-
tiple cancers in both women and men, including anogeni-
tal cancer (anal, vaginal, vulvar, and penial) or head and 
neck cancer (oropharynx, oral and laryngeal) [11]. Recent 
studies indicate that over 90% of cervical and anal can-
cers, over 70% of oropharynx cancers, about 70% of vul-
var and vaginal cancers, together with more than 60% of 
penile cancers are related to HPV [12, 13].

Cervical cancer is the fourth most common cancer 
in women with 604,127 new cases and 341,831 deaths 
occurring worldwide in 2020 [14, 15]. The incidence and 

mortality have shown an obvious geographical imbal-
ance between low-income and middle-income coun-
tries (LMICs) with high-income countries in cervical 
cancer patients. In LMICs, CC is the second most com-
mon cancer with an incidence rate of 18.8 per 100 000 
women and a mortality rate of 12.4 per 100 000 women. 
In contrast, as a result of the availability of HPV pro-
phylactic vaccines and standardized screening strate-
gies, the incidence (11.3/100 000 women) and mortality 
(5.2/100000 women) of cervical cancer have decreased 
in high-income countries [14]. Vaccination and screen-
ing are effective in preventing cervical cancer, but they 
will impose a huge global economic burden. A systematic 
review has demonstrated that 106 million women have 
received at least one dose of HPV vaccine worldwide till 
2014, but the HPV vaccination and standardized screen-
ing coverage in LMICs are still obviously low [16, 17].The 
world health organization (WHO) made a call for global 
action toward CC elimination in 2018, through vaccinat-
ing 90% of all girls under the age of fifteen, screening 70% 
of women at the age of 25, and treating 90% of precancer-
ous lesions. The prediction simulation using the WHO 
Cervical Cancer Elimination Modelling Consortium 
(CCEMC) shows that the premature mortality rate of 
CC in 78 LMICs could be reduced by a third in the next 
10  years. The WHO triple-intervention strategy would 
result in a 96.2% reduction by 2070, and 98.6% reduc-
tion by 2120. Famously, vaccination alone could reduce 
the mortality by 62.7% till 2070 and 89.5% till 2120. It is 
believed that with concerted global efforts, the incidence 
of cervical cancer in LMICs will be steadily reduced 
(Fig.  1) [18]. In 2019, the first domestic bivalent HPV 
vaccine was released and contributed to the HPV vacci-
nation program in China [19]. This geographical distribu-
tion heterogeneity is therefore bound to become uniform 
gradually with the improvement of the global economic 
level and the implementation of prevention strategies.

Heterogeneity of HPV infection types
The infection rate besides the infection site of different 
HPV types is heterogeneous across populations. Fifteen 
high-risk HPV (HR-HPV) types have been confirmed as 
carcinogenic viruses, as follows, 16,18, 31, 33, 35, 39, 45, 
51, 52, 56, 58, 59, 68, 73, and 82. Among them, the cumu-
lative infection rate of HPV16 and 18 accounts for 79% of 
the squamous-cell carcinomas, and accounts for 95% of 
the squamous-cell carcinomas together with HPV45, 31, 
33, 52, 58, and 35 [20, 21]. A meta-analysis collated data 
from 115,789 HPV-positive patients has been performed 
to analyze the distribution of HR-HPV. The percentage 
of 13 HR-HPV infection distributions under different 
disease states are demonstrated in Fig.  2, and include 
HPV16, 18, 31,33, 35, 39, 45, 51, 52, 56, 58, 59 and 68. 
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Among them, HPV16, 18 and 45 infections dominate in 
invasive cervical cancer( ICC) (ICC: normal ratios 3.1, 1.9 
and 1.1, respectively) [22].

Another systematic meta-analysis collated data from 19 
883 HIV-positive patients has been performed and ana-
lyzed the distribution of HR-HPV in 2017. Similarly, the 
ICC: normal ratios of HPV infections are 3.7 (HPV16), 
2.5 (HPV18), and 2.6 (HPV45) respectively which is 
consistent with the conclusion in HIV-uninfected popu-
lations [23]. It is illustrated that HPV16, 18 and 45 posi-
tivity increase distinctly from normal cytology through 
squamous intraepithelial lesions to invasive cervical can-
cer which suggests that we should pay special attention to 
these types in cervical cancer screening.

On the other hand, in a large sample of healthy people 
screening, there is data to support a shift in the pre- and 
post-vaccine prevalence profile. HPV16, 18, 31, 52 and 
58 were the most five common infection types in women 

with normal cytology in the pre-vaccine era [24]. How-
ever, infection rates of HPV52, 58, and 56 are increas-
ing in the post-vaccine era [25, 26]. Whether bivalent 
and quadrivalent vaccines can provide cross-protection 
is controversial, but there is no doubt that the spectrum 
of HPV-associated squamous intraepithelial lesions and 
invasive cervical cancer will continue changing with the 
introduction of the 9-valent vaccine or even the 11-valent 
vaccine. Although cervical cancer is being treated earlier 
and earlier, it is still a constant battle against the ever-
changing virus types.

Heterogeneity of anti‑viral immunity
Upon HPV infection, the host cell immediately acti-
vates the innate and adaptive immunity to eliminate 
the virus [27]. Tumor heterogeneity of cervical cancer 
is reflected in the outcome of the battle between our 
immune system and virus invasion in the post infection 
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Fig. 1  Global map of epidemiological data for tertiary prevention of cervical cancer. A vaccination coverage rates and B cervical cancer screening 
rates by country in 2014. C incidence and D mortality age-standardized rates per 100,000 by region in 2020. The full-course coverage data among 
the total female population are illustrated. 78 low-income and lower-middle-income countries involved in the WHO cervical cancer elimination 
project are highlighted in red. Source: GLOBOCAN 2020
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microenvironment (PIM). HPV is undoubtedly one 
of the most important external factors mediating the 

heterogeneity of tumor development. HR-HPV type, 
duration of infection, virulence, human genomic insta-
bility and immune clearance will affect the tumorigen-
esis and development of carcinoma [28]. There are three 
outcomes of the battle between our immune system and 
HPV infection. Firstly, the virus is thoroughly cleared by 
our immune system. Secondly, the overwhelming major-
ity of the virus is cleared, and only minority viruses that 
lie dormant can escape immunological recognition. 
Thirdly, the virus escapes immune recognition and inte-
grates into the human genome, resulting in persistent 
infections and tumorigenesis [29, 30]. Fortunately, persis-
tent high-risk HPV (HR-HPV) infection combined with 
oncogene genomic integration might lead development 
of normal cervical cells into intraepithelial neoplasia 
(CIN) or ICC in decades (Fig. 3).

PIM has been recognized as a complex and dynamic 
position with a collection of highly heterogenous cellular 
or molecular compounds, especially induced by the inter-
action between HPV-infected keratinocytes and immune 
cells. Specific cellular immune reactions and break down 
of immunosuppressive status are essential for effective 
virus clearance. Insufficient trafficking or maturation of 
Langerhans cells may lead to antigen-presenting disorder 

Fig. 2  Histogram chart of HR-HPV infection distributions by different 
disease states. Normal: disease-free state; CIN: cervical intraepithelial 
neoplasia; ICC: invasive cervical cancer

Fig. 3  Clinical outcomes of different anti-viral immune states after HPV infection. A HPVs are completely eliminated by the body’s immunity; B A 
majority of HPVs is eliminated, a small percentage of latent basal layer stem cells still exist; C HPVs induce immunosuppression, gene integration, 
CIN and carcinogenesis
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and CD8+ cytotoxic T lymphocyte (CTL) response 
impairment [31, 32]. Otherwise, the expression of MHC-I 
on the surface of keratinocytes have been down-regu-
lated after HPV infection and recognition of CTLs will be 
avoided [33]. Except for CTLs, CD4+ T cells are essential 
in HPV clearance. An imbalance in T-helper 1(Th1) and 
Th2-type CD4+ T cells might be associated with immune 
dysregulation. Furthermore, the malfunction of NK cells 
is associated with immunosuppression [34].

Heterogeneity of genomic instability and HPV integration
Key characteristics of PIM include immunosuppres-
sive state, oxidative stress response, extracellular matrix 
(ECM) remodeling, and metabolic reprogramming [35]. 
Oxidative stress could amplify inflammatory responses 
and result in accumulation of DNA damage, mutations or 
genome instability [36]. Expression of matrix metallopro-
teases is also increased and associated with ECM remod-
eling and precancerous lesion occurrence [37]. Once the 
immune microenvironment remodeling that promotes 
the persistence of HPV infection is established, genomic 
integration and cytopathic changes occur continuously.

As the overexpression of oncoproteins E6 and E7 in the 
HPV-infected keratinocytes, E6 disrupts p53 degrada-
tion and alteration of cell regulation, on the other hand, 
E7 induces retinoblastoma (pRb) degradation and pro-
motes cell proliferation [38]. E6 and E7 may also induce 
genomic instability and lead to carcinogenesis by abro-
gating cell-cycle checkpoints [39]. Growing evidence sug-
gests that chromosomal instability is also a driving force 
for the oncogenic transformation of cervical cancer. High 
chromosomal instability Hela cells exhibit a higher kar-
yotype heterogeneity and are related to KRAS signaling 
regulation [40].

HPV is a small double-stranded DNA virus whose 
DNA fragments have the ability to integrate into the 
human genome. Associations between HPV integration 
and adjacent host genomic structural variation have been 
confirmed in HPV-positive cervical cancer cell lines. 
HPV16 integration has been detected firstly on chro-
mosome 13q22 in SiHa cell lines in 1987 [41]. HPV 16, 
18, and 33 viral integration has been detected in cervi-
cal squamous cell carcinomas by scientists as early as 
1991 [42]. All integration events of the 13 HR-HPV sub-
types have already been observed, and an unbalanced 
distribution of HR-HPV genotypes in cervical cancer 
has been detected. We have summarized six high-qual-
ity studies with HPV integration data of cervical cancer 
patients through next-generation sequencing (NGS) or 
whole-genome sequencing (WGS), and the proportion 
of integration events among different subtypes is ana-
lyzed. We can see that the integration of type 16 and 18 

accounts for more than 80% of all samples. Other HR-
HPVs are HPV45, 31, 33, 52, 58, 59, 39, 56, 68, 35 and 51 
in a descending order of integration ratio (Fig. 4) [43–48]. 
We have summarized the high-frequency (more than 4 
reported) disrupted genes by HPV integration and listed 
the hotspots, such as 3q28, 8q24, and 13q22. The top five 
reported genes are MACROD2, FHIT, POU5F1B, LRP1B 
and RAD51B (Table 1).

HPV integration normally breaks up the open read-
ing frames of viral E1 and E2 genes which leads to the 
upregulation of E6 and E7 oncogenes [49]. Genomic 
instability, HPV integration and gain of telomerase 
at chromosome 3q26 appear to be strongly associ-
ated with genetic events in malignant transformation 
from CIN to invasive cervical carcinoma. In particular, 
chromosomal instability may precede genomic inte-
gration of oncogenic HPV, while increasing the human 
telomerase gene copy number occurs after integra-
tion as a termination product [50–52]. The integration 
hotspots are non-random and numerous microRNAs 
are located in the vicinity of integration hotspots and 
are influenced by the integrated HPV DNA. Highly 
homologous stretches of HPV16 viral gene E5 and 
L2 have been detected at the integration hotspots 
in independent patients which support themselves 
as quite important events in the integration process 
[53]. HPV E6E7 alternative transcripts have shown 
frequent isoforms in HPV16 or HPV18 positive cer-
vical cancer [54]. Multiple frequent integration sites 
in human genome have been reported and verified 
through whole genome sequencing, high-throughput 
RNA, or chromosome conformation capture (Hi-C) 
sequencing, whereas the patterns of HPV integra-
tion in DNA and RNA samples differ significantly. For 

Fig. 4  Pie chart of proportional distribution of reported HPV 
integration events by HR-HPV types. Only integration events detected 
through NGS or WGS data from human cervical cancer specimens are 
included (references: [39–43] and [44])
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Table 1  Summary of high-frequency disrupted genes by HPV integration in cervical cancer

Gene Integrations 
reported

Official full name Gene ID Location Reference

MACROD2 13 Mono-ADP ribosylhydrolase 2 140733 20p12.1  [39–44]

FHIT 11 Fragile histidine triad diadenosine triphosphatase 2272 3p14.2  [39, 41, 42]

POU5F1B 11 POU class 5 homeobox 1B 5462 8q24.21  [41–43]

LRP1B 10 LDL receptor related protein 1B 53353 2q22.1  [39, 42]

RAD51B 10 RAD51 paralog B 5890 14q24.1  [39, 40, 44]

KLF12 9 Kruppel like factor 12 11278 13q22.1  [41, 42]

KLF5 9 Kruppel like factor 5 688 13q22.1  [39, 41, 42]

HMGA2 7 High mobility group AT-hook 2 8091 12q14.3  [42]

ERBB2 7 Erb-b2 receptor tyrosine kinase 2 2064 17q21.31  [40, 41, 44]

DMD 7 Dystrophin 1756 Xp21.2-p21.1  [39, 42, 44]

MAPK10 6 Mitogen-activated protein kinase 10 5602 4q21.3  [39, 42, 43]

MYC 6 MYC proto-oncogene, bHLH transcription factor 4609 8q24.21  [39, 40, 42, 44]

DLG2 6 Discs large MAGUK scaffold protein 2 1740 11q14.1  [39, 42]

LEPREL1 6 Prolyl 3-hydroxylase 2 55214 3q28  [42, 44]

CASC8a 9 Cancer susceptibility 8 727677 8q24.21  [39, 40, 44]

TP63 6 Tumor protein p63 8626 3q28  [39, 40, 42, 44]

ENTPD5 5 Ectonucleoside triphosphate diphosphohydrolase 5 957 14q24.3  [39]

PARD3B 5 Par-3 family cell polarity regulator beta 117583 2q33.3  [41, 42]

PVT1a 5 Pvt1 oncogene 5820 8q24.21  [44]

SEMA3D 5 Semaphorin 3D 223117 7q21.11  [42]

ZFAND3 5 Zinc finger AN1-type containing 3 60685 6p21.2  [39, 42]

FOXP2 5 Forkhead box P2 93986 7q31.1  [42, 44]

PAKN 5 Parkin RBR E3 ubiquitin protein ligase 5071 6q26  [42, 44]

TAFA5 5 TAFA chemokine like family member 5 25817 22q13.32  [39, 42, 44]

TPRG1 5 Tumor protein p63 regulated 1 285386 3q28  [39, 42, 43]

ARAP2 4 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2 116984 4p14  [39, 42]

BBS9 4 Bardet-Biedl syndrome 9 27242 7p14.3  [39, 42]

CHL1 4 Cell adhesion molecule L1 like 10752 3p26.3  [39, 42]

CNTNAP2 4 Contactin associated protein 2 26047 7q35-q36.1  [39, 42]

AGTR2, 4 Angiotensin II receptor type 2 186 Xq23  [42]

CADM2 4 Cell adhesion molecule 2 253559 3p12.1  [42]

CDH7 4 Cadherin 7 1005 18q22.1  [42]

CPNE8 4 Copine 8 144402 12q12  [42]

DCC 4 DCC netrin 1 receptor 1630 18q21.2  [42]

DUSP6 4 Dual specificity phosphatase 6 1848 12q21.33  [42]

EPHA6 4 EPH receptor A6 285220 3q11.2  [42]

HS3ST4 4 Heparan sulfate-glucosamine 3-sulfotransferase 4 9951 16p12.1  [42]

TEKT4P2a 4 Tektin 4 pseudogene 2 100132288 21p11.2  [42]

MSX2 4 Msh homeobox 2 4488 5q35.2  [42]

NEK11 4 NIMA related kinase 11 79,859 3q22.1  [42]

PCDH15 4 Protocadherin related 15 65217 10q21.1  [42]

PLS3 4 Plastin 3 5358 Xq23  [42]

PRDM9 4 PR/SET domain 9 56979 5p14.2  [42]

ZNF33B 4 Zinc finger protein 33B 7582 10q11.21  [42]

IGF1 4 Insulin like growth factor 1 3479 12q23.2  [42, 44]

CNTNAP5 4 Contactin associated protein family member 5 129684 2q14.3  [39, 42]

ERC2 4 ELKS/RAB6-interacting/CAST family member 2 26059 3p14.3  [39, 42]

FGF13 4 Fibroblast growth factor 13 2258 Xq26.3-q27.1  [39, 42]

LINGO2 4 Leucine rich repeat and Ig domain containing 2 158038 9p21.2-p21.1  [39, 42]
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instance, DLG2, FHIT, HMGA2, KLF12, KLF5, LRP1B, 
LEPREL1, LINC00392, POU5F1B, and SEMA3D are 
DNA hotspots [41, 46]. In addition, CASC8, CASC21, 
ERBB2, RAD51B, RAP2B, TEX41, TP63, TTC6, MAC-
ROD2, MIPOL1, and MYC are hotspot genes in RNA 
samples [55]. DNA breakpoints are prone to an intron, 
in contrast, RNA breakpoints are prone to the region 
of EXON [56]. CCDC106 integration on chromosome 
19 has been exhibited in altering local chromosome 
architecture and structure remodeling [57]. Atten-
tionally, the changes in protein expression levels after 
HPV integration are inconsistent. FHIT and LRP1B 
are downregulated, while MYC and HMGA2 are ele-
vated. Moreover, the fusion between HPV and human 
genome may have occurred by microhomology-medi-
ated DNA repair pathways [46].

In terms of prognostic analysis, HPV16 positive sta-
tus of the pelvic lymph nodes is a significant predictor 
of recurrent cervical cancer, while HPV16 integrated 
form is an unfavorable predictor of overall survival 
[58, 59]. HPV-DNA integration has been detected with 
association in carcinogenesis and recurrence free sur-
vival [60].HPV integration into the common fragile 
sites may be associated with distant metastasis [61]. 
Accurate detection of integration sites will continue 
with the improvement and combination of multidi-
mensional technologies, such as nanopore sequencing 
and fluorescent in  situ hybridization [62, 63]. Detec-
tion methods for viral integration sites are changing 

rapidly, and we believe that the blueprint for HPV 
integration will become clearer in the next decades.

Inferring heterogeneity with human genomics
Genetic intra-tumor heterogeneity acts as a key chal-
lenge in tumor evolution and management which affects 
patients’ outcomes [6, 64, 65]. The fundamental biologi-
cal mechanisms underlying intra-tumor heterogeneity 
include genetic drift, selection, heritable variation, and 
environmental changes [66, 67]. Somatic mutation of 
FGFR3 has been identified in a large proportion of cervi-
cal cancer by Cappellen et al. as early as 1999 [68]. Never-
theless, at least three driver gene alterations are necessary 
to convert normal cells to malignant cells [69]. Over the 
past decades, multiple gene expression profiles and novel 
through-out sequencing studies have focused on captur-
ing intra-tumor heterogeneity over time and space [70, 
71]. Whole genome sequencing data among pan-cancer 
patients (including cervical cancer) has identified 95.1% 
subclonal expansions of 1705 tumors which verified the 
importance of intra-tumor heterogeneity [72]. Several 
scRNA-seq analyses have also been performed to study 
intra-tumor heterogeneity at the level of individual cells 
in cervical cancer. We summarize the intra-tumor heter-
ogeneity of cervical cancer from genomic, transcriptomic 
and epigenetic alterations under different approaches.

a Represent the gene type is ncRNA or pseudo, others are protein coding genes

Table 1  (continued)

Gene Integrations 
reported

Official full name Gene ID Location Reference

RPRD2 4 Regulation of nuclear pre-mrna domain containing 2 23248 1q21.2  [39]

MYO16 4 Myosin XVI 23026 13q33.3  [39, 42]

PTPRN2 4 Protein tyrosine phosphatase receptor type N2 5799 7q36.3  [39, 42]

RELN 4 Reelin 5649 7q22.1  [39, 42]

RGS6 4 Regulator of G protein signaling 6 9628 14q24.2  [39, 42]

SPOCK3 4 SPARC (osteonectin), cwcv and kazal like domains proteoglycan 3 50859 4q32.3  [39, 42]

ZFAT 4 Zinc finger and AT-hook domain containing 57623 8q24.22  [39, 42]

CSMD3 4 CUB and Sushi multiple domains 3 114788 8q23.3  [39, 41, 42]

ERBB4 4 Erb-b2 receptor tyrosine kinase 4 2066 2q34  [39, 41, 42]

CA10 4 Carbonic anhydrase 10 56934 17q21.33-q22  [39, 42]

PDE4D 4 Phosphodiesterase 4D 5144 5q11.2-q12.1  [39, 42]

NLGN1 4 Neuroligin 1 22871 3q26.31  [39, 42]

PROX1 4 Prospero homeobox 1 5629 1q32.3  [40, 42]

ZMAT4 4 Zinc finger matrin-type 4 79698 8p11.21  [39, 42]

TNIK 4 TRAF2 and NCK interacting kinase 23043 3q26.2-q26.31  [39, 40]
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Somatic genomic alterations in cervical cancer
The Catalogue Of Somatic Mutations In Cancer (COS-
MIC) is the world’s most comprehensive repository 
of human cancer somatic mutations [73]. Driver hot-
spots from COSMIC single-base substitution (SBS) 
mutational signatures are classified into four catego-
ries: Deamination, APOBEC, somatic hypermutation, 
and signature SBS39 [74]. The apolipoprotein B mRNA 
editing enzyme, catalytic polypeptide-like (APOBEC) 
which converts cytosine to uracil during RNA editing 
and retrovirus restriction, has been confirmed in medi-
ating pervasive mutagenesis in human cancers [75]. 
APOBEC-associated hotspots consist of one to two 
specific point mutations. In contrast, hotspots associ-
ated with somatic hypermutation are characterized by 
somatic single nucleotide variant (sSNV) clusters in 
promoter regions, which are clusters of variations in a 
single nucleotide without any limitations of frequency 
arisen in somatic cells. APOBEC mutagenesis pattern 
is associated with 34 common mutational hotspots 
across multiple cancers and has been identified as the 
predominant source of mutations in cervical cancers 
[74, 76]. The high-throughput genotyping platform has 
been used to interrogate cervical tumors and the con-
sistently high mutation rates of PIK3CA have been con-
firmed. The APOBEC mutagenesis pattern is associated 
with nucleotide substitution in the E542K or E545K of 
PIK3CA, while the non-APOBEC mutagenesis pattern 
coexists at the same time [44].

The recognized mutated genes are ARID1A, CASP8, 
EP300, ERBB3, FBXW7, HLA-A, HLA-B, KRAS, 
MAPK1, NFE2L2, PIK3CA, PTEN, SHKBP1 and 
TGFBR2 in cervical cancer. It’s worth noting that over 
70% of CCs exhibit genomic alterations in PI3K-MAPK 
and TGFβ signaling pathways [44, 77]. Novel significantly 
mutated genes have been discovered through deep RNA 
sequencing approaches and clustering of their mutant 
allele fraction variants. At least 20% of cervical cancers 
harbor somatic LKB1 mutations. Approximately 100% of 
tumors with these mutations harbored single nucleotide 
substitutions, identifiable monoallelic or biallelic dele-
tions or multiplex ligation probe amplification (MLPA) 
[78]. Mutational sequencing has identified that 40% of 23 
cervical cancer specimens harbored somatic mutations of 
NOL7, a tumor suppressor gene located on 6p23. Multi-
ple CpG dinucleotides have been detected spanning the 
first exon or the 5’ untranslated region of NOL7, result-
ing in its inactivation [79].

There is heterogeneity in gene mutations among dif-
ferent pathological types. PIK3CA mutation rates keep 
consistent between adenocarcinomas and squamous cell 
carcinomas. The major mutations in squamous cell car-
cinomas include EP300, FBXW7, MAPK1, NFE2L2 and 

EGFR, while KRAS, ELF3, and CBFB in adenocarcinoma 
[80, 81]. The Cancer Genome Atlas (TCGA) Research 
Network has identified high frequencies of ARID1A, 
KRAS, and PTEN mutations in endometrial-like cervi-
cal cancers [48]. Mutations in PIK3CA, KRAS, and TP53 
have also been detected most commonly in small cell cer-
vical cancer using next generation sequencing [82].

Differential gene expressions in cervical cancer
To discover transcriptomic intra-tumor heterogeneity, 
previous studies have investigated differential transcript 
gene expressions between normal and cervical cancer 
tissues through microarray technologies [83–88]. At the 
RNA level, gene expressions determined by the expres-
sion profiling microarray are detected by reverse tran-
scription-polymerase chain reaction (RT-PCR). While at 
the protein level, the expressions of specific proteins are 
often described in immunohistochemical (IHC) stain-
ing. Multiple-gene transcript signature with differen-
tial expressions by cDNA microarray could be used for 
molecular classification between stage IB and IIB and pre-
diction of response to radiotherapy for advanced cervical 
cancer [85, 86, 89]. Differential expressions of CDKN2A 
and PTGES have been identified in invasive cervical can-
cer versus normal keratinocytes through oligonucleotide 
microarrays and confirmed through immunohistochemi-
cal staining [90]. Apoptotic genes BCL2, BCL2l1, and 
BIRC2 have been identified as upregulated in late-stage 
cervical cancer compared to early-stage cases [91]. DPP4, 
EDN3, FGF14, TAC1 and WNT16 have been indicated 
simultaneously downregulated and hypermethylated in 
cervical cancer [92]. Message RNA expression levels of 
RhoB and STMN1 have been validated associated with 
overall survival in cervical cancer [93]. A positive correla-
tion has been observed between gene expression of HPV 
E6/E7 oncogenes and UHMK1 [94].

Expression profiling has been replaced gradually by 
more accurate sequencing techniques and the search 
for differential expressed genes (DEGs) in tumors con-
tinues. Three DEGs, including RDH12, UBD, and SAA1 
have been screened with correlation to tumor size, lym-
phatic metastasis, and depth of cervical invasion in cer-
vical squamous cell carcinoma through RNA sequencing 
[95]. Upregulated expression of AKT3 in cervical cancer 
has been related to resistance to cisplatin [96]. Transcrip-
tome sequencing in HPV16 positive cervical cancer tis-
sues has identified 140 DEGs enriched in cell cycle and 
DNA repair [97].

Heterogeneity analyzed by single‑cell RNA sequencing 
approaches
Single-cell sequencing is a promising systematic and 
comprehensive approach to delineating subclone 
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associations and intratumor heterogeneity. Conclusions 
of single-cell sequencing researches have provided a 
deeper understanding of specific mechanisms leading to 
heterogeneity in recent years. The landscape of hetero-
geneity within 22 cancer cell lines has identified twelve 
recurrent heterogeneous programs (RHPs) even without 
the native tumor microenvironment. These RHPs are 
associated with cell cycle, stress responses, epithelial-
mesenchymal transition, and protein metabolism [98]. 
Focusing on cervical cancer, single-cell RNA sequenc-
ing data of 20,938 cells have divided tumor cells into four 
subpopulations with distinct signature genes and prog-
noses. Specifically, the cells in the first subpopulation are 
enriched in immune regulation signaling pathways, such 
as the ErbB signaling pathway; the cells in the third sub-
population are suggested with high proliferative activity 
because of their high expression of MKI67, CCNB1 and 
TOP2A genes. The last two subpopulations are regarded 
as the original cancer cells and the terminal cancer cells 
respectively, one with over-expressed stem-related genes 
SOX2 and ALDHA1 and the other with high expres-
sions of genes enriched in steroid biosynthesis, mismatch 
repair and peroxisome pathways [99]. Another single-cell 
RNA sequencing data of 24,371 cells aiming to compre-
hensively analyze chemotherapy resistant cervical cancer 
cells have clustered cells into nine subpopulations. Differ-
entially expressed genes enriched in the PI3K/AKT path-
way are involved in chemotherapy resistance [100]. The 
main limitations of microarray and sequencing technol-
ogies are detecting variations at the DNA or RNA level 
rather than the protein level. Validation studies in con-
junction with proteomics are essential. Cellular hetero-
geneity is being characterized in cervical cancer with the 
advent of single-cell genomics which may provide more 
accurate information on cancer characteristics, prognos-
tic prediction, and treatment decision selection.

Epigenetic landscape in cervical cancer
Tumor development and drug resistance are sometimes 
driven by potential gene amplification and deletion, not 
only somatic genomic alterations but also copy number 
amplifications, histone modification, and DNA meth-
ylation. A large-scale genomic study, including genomic, 
transcriptomic, and epigenomic landscapes of 118 Ugan-
dan cervical cancer patients has been performed. DNA 
methylation, histone marks, and gene expression dysreg-
ulation differ between A9 and A7 HPV clades. Clade A7 
corresponded to a less differentiated phenotype of cer-
vical cancer and lead to a poorer prognosis. Changes in 
histone modification are associated with HPV integration 
[101]. Another comprehensive genomic analysis includ-
ing whole exome sequencing, copy number and methyla-
tion analysis of 228 primary cervical cancers has revealed 

amplifications in immune checkpoint genes PD-L1 and 
PD-L2, together with lapatinib associated gene BCAR4 
[102]. A C-score model according to the chromosomal-
arm-level copy number alterations (CNAs) changes of 1q, 
2q, 3p, and 7q has been validated to distinguish ICC from 
normal tissues with 100% sensitivity and specificity [103].

Deregulation of micro-RNA (miRNA), long non-cod-
ing RNA (lncRNA) and circular RNA (circRNA) have 
also been revealed in cervical cancer patients in recent 
researches. Specifically, miRNAs are small non-coding 
RNAs which can regulate gene expression through bind-
ing to DNA or mRNA [104]. While lncRNAs are long 
non-coding RNAs which can regulate gene transcrip-
tion mediated by interacting with chromatin-modifying 
complexes and miRNAs [105]. CircRNAs are also small 
non-coding RNAs playing big parts in post-transcription 
and participate in genetic expression [106]. A type of 
endogenous RNA, specifically, competing endogenous 
RNAs (ceRNAs) have been identified to influent the tar-
get genes by miRNA and participate in cancer regulation 
process ultimately [107]. The ceRNA-miRNA-mRNA 
regulatory axis is gradually explored in cervical cancer 
research. Both lncRNAs and circRNAs may function 
as sponges or ceRNAs of miRNAs to regulate mRNA 
expression [108]. A recent review summarized the recip-
rocal regulation role of miRNAs, lncRNAs and circRNAs 
in CC patients. The miRNAs are divided into “onco-
genic” miRNAs (miR-10a, miR-19, miR-21, and miR-
146a et al.) and “tumor suppressive” miRNAs (miR-29a, 
miR-214, miR-218, and miR-372 et al.) [109]. Around 14 
lncRNAs have shown to be altered and affected impor-
tant metabolic pathways such as STAT3, wnt/β-catenin, 
PI3K/AKT, and Notch signaling in cervical cancer [110]. 
LncRNA XLOC_006390 can serve as a ceRNA and has 
been verified reversely regulating the expression of miR-
331-3p and miR-338-3p, and facilitating tumorigenesis 
or metastasis in cervical cancer [111]. CircRNA_VPRBP 
regulates miR-93-5p/FRMD6 axis which lead to inhibited 
proliferation, migration and invasion of cervical cancer 
cells [112]. Furthermore, circRNA hsa_circ_0000515 acts 
as a miR-326 sponge, has been demonstrated to promote 
cervical cancer progression through upregulated ELK1 
expression [113]. These findings might enumerate the 
regulatory mechanisms of epigenetics in the develop-
ment of cervical cancer. However, the complexity inter-
action among diverse non-coding RNAs shows great 
heterogeneity, which still needs to be further verified.

Inferring heterogeneity with therapeutic diversity
HPV screening and classic three-step diagnostic criteria 
have been quite normalized and widely used worldwide 
in the detection of early-stage cervical cancer. According 
to clinical guidelines, standard surgical treatment is the 
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first-line recommended with satisfactory effect. Results 
of a completed randomized controlled phase III trial 
(NCT00002536) have shown no significant differences in 
stage IB cervical cancer patients with or without neoad-
juvant chemotherapy [114]. For locally advanced cervical 
cancer patients, adjuvant chemotherapy and radiother-
apy can improve patients’ outcomes but with increasing 
controllable toxicity [115]. Nevertheless, a minority of 
patients have to face distant metastasis, recurrent or per-
sistent cancer and drug resistance. Combination of mul-
tiple-agent chemotherapy and biotherapy (Bevacizumab) 
may be associated with death reduction and prolonged 
PFS in recurrent/persistent cervical cancer patients 
(Table  2) [116]. Tumor heterogeneity is undoubtedly 
an important factor leading to the reverse therapeutic 
effects among individuals. Diverse treatment is a double-
edged sword because it serves as an external factor to 
promote persistent adaption and selection in the tumor 
microenvironment. We suggest that cell subclones are 
derived in response to different therapeutic stimuli and 
determine patient outcomes (Fig. 5).

Heterogeneity in terms of chemotherapy resistance
Cervical cancer chemotherapy can be divided into neo-
adjuvant chemotherapy (NACT) aiming to shrink the 
mass to facilitate operation, adjuvant chemotherapy 
or concurrent chemoradiotherapy (CCRT) as mainte-
nance after surgical treatment or standard treatment 

for locally advanced patients, and palliative chemother-
apy for relieving symptoms, pain or prolonging survival 
in recurrent or metastatic patients [117]. The majority 
of these patients will receive more than two combina-
tion treatments. Most studies on drug resistance have 
been limited to in  vitro experiments, and few stud-
ies have been validated in drug-resistant populations. 
The molecular mechanism of chemotherapeutic resist-
ance has not been fully understood but could be specu-
lated via blocking DNA damage repair, oxidative stress, 
autophagy, and apoptosis signaling pathways. Both cod-
ing and non-coding RNAs participate in chemo-resist-
ance. Non-coding RNAs, including miRNA, lncRNA, 
and circRNA, are potential therapeutic targets in cancer 
treatment development. However, its role in the field 
of drug resistance of cervical cancer remains to be fur-
ther explored. Genomic rearrangements may occur by 
selecting effects from chemoradiotherapy which exhibits 
genetic intra-tumor heterogeneity in advanced cervical 
cancers. Platinum-paclitaxel combination chemotherapy 
is recommended as the first-line chemotherapy drugs in 
multiple solid cancers and we explain their mechanisms 
of chemotherapy resistance individually [118].

Cisplatin has been used in most studies of platinum 
resistance. The mechanisms underlying cisplatin resist-
ance in CC are respectively DNA damage repair increase, 
apoptosis inactivation, epithelial-mesenchymal transi-
tion activation, or DNA methylation alteration [119]. For 

Table 2  Completed randomized controlled Phase III trials in cervical cancer

RHPPL Radical hysterectomy and pelvic and para-aortic lymphadenectomy, NACT​ Neoadjuvant chemotherapy, PFS Progression free survival, HR Hazard ratio, CI 
Confidence interval, OS Overall survival

Trial identifier Brief title Actual 
Enrollment

Stage Arm Outcomes

NCT00002536 Surgery with or without chemo-
therapy in treating patients with 
stage IB cervical cancer

288 IB Arm I: RHPPL
Arm II: NACT + RHPPL

Not statistically significant

NCT00191100 Comparative study of gemcit-
abine, cisplatin and radiation 
versus cisplatin and radiation in 
cancer of the cervix

515 IIB
to
IVA

Arm I: Gemcitabine + Cispl-
atin + Brachytherapy
Arm II: Cisplatin + Brachytherapy

PFS (HR = 0.68; 95%
CI = 0.49–0.95, p = 0.0227) and OS
(HR = 0.68; 95% CI = 0.49–0.95,
p = 0.0224) were improved in arm
I vs arm II

NCT00803062 Paclitaxel and cisplatin or 
topotecan with or without 
bevacizumab in treating patients 
with stage IVB, recurrent, or 
persistent cervical cancer

452 IVB,
recurrent, or
persistent

Arm I: Bevacizumab + Chemo-
therapy
Arm II: Chemotherapy

Median OS was improved in arm
I vs arm II (17.0 vs. 13.3 months,
HR = 0.71; 98% CI = 0.54–0.95,
p = 0.004)

NCT00003945 Comparison of three chemo-
therapy regimens in treating 
patients with stage IVB, recur-
rent, or persistent cervical cancer

294 IVB,
recurrent, or
persistent

Arm I: Cisplatin + Topotecan
Arm II: Cisplatin

Median OS (9.4 vs. 6.5 months,
P = 0.017) and PFS (4.6 vs. 2.9
months, P = 0.014) were improved
in arm I vs arm II

NCT00064077 Comparison of four combination 
chemotherapy regimens using 
cisplatin in treating patients with 
stage IVB, recurrent, or persistent 
cancer of the cervix

513 IVB,
recurrent, or
persistent

Arm I: Paclitaxel + Cisplatin
Arm II: Vinorelbine + Cisplatin
Arm III: Gemcitabine + Cisplatin
Arm IV: Topotecan + Cisplatin

Best OS (12.87 months) and PFS
(5.82 months) in arm I
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instance, the upregulated expression of COX-2 has been 
assessed with neoadjuvant cisplatin-based resistance 
and unfavorable overall survival in locally advanced CC 
patients [120]. Cisplatin induces chemotherapy resistance 
of well-differentiated cell line Caski cells by upregulating 
Src family kinase and interaction with EphA4 through 
the reactive oxygen species pathway [121]. Inhibiting 
endogenous EZH2 expression has shown decreased cell 
metastasis, reversed cisplatin resistance in HeLa cells, 
and increased antitumor effects in nude mice. Interfer-
ing EZH2 expression has been identified correlated with 
Dicer overexpressed or regulated H3K27 methylation 
level, which exhibit antitumor activities by interfering the 
progression of miRNA transcription, and cell cycle and 
promote cell apoptosis [122]. MALAT1 and PSAT1 could 
induce resistance in SiHa cells through PI3K/Akt path-
way [123, 124].GAS5 could be regulated by P-STAT3 and 
affect resistance via miR-21/PDCD4 axis [125]. EDC4 
could interact with RPA by alleviating DNA damage 
in cisplatin-resistant HeLa and SiHa cells [126]. IPO4-
CEBPD-PRKDC axis is associated with chemoresistance 

by inhibiting PRKDC-driven DNA damage repair [127]. 
In addition, an increasing amount of noncoding RNAs 
have been confirmed and summarized with association 
to cisplatin resistance [128, 129]. For example, LncRNA 
HNF1A-AS1 could affect resistance by regulating miR-
34b and promoting TUFT1 expression [130]. LncRNA 
OTUD6B-AS1 could mediate decreased regulation of 
miR-206 and increased expression of CCND2 [131]. 
LncRNA NNT-AS1 could improve chemoresistance via 
the miR-186/HMGB1 axis [132].

Combination chemotherapy with cisplatin and pacli-
taxel is a standard treatment in recurrent or advanced 
cervical cancer with an overall response rate of 29%–67% 
[133, 134]. Meanwhile, confirmed gain of 3q and loss of 
11q chromosomes are early events in cancer progression. 
Subpopulations with differential responses to chemo-
radiotherapy may be selected into a single intrinsically 
resistant subpopulation after five weeks of the therapy 
[135]. Knockdown of Linc00511 could reduce paclitaxel 
resistance by regulating Bcl-2, MMP-2, MMP-9, MRP1, 
and P-GP expressions in HeLa cells [136]. Overexpressed 

Fig. 5  Model of clonal progression of cervical cancer. Normal cervical cells may harbor genomic alterations and HPV integration after HPV infection. 
Some cells regress to normal spontaneously, while others round into clonally invasive carcinoma cells. Overwhelming majority cancer cells are 
removed or killed during conventional surgery and chemoradiotherapy. A few dormant or new subclones develop into recurrent, persist or 
metastatic cancer lesions. Systemic therapies (chemotherapy, radiotherapy, biotherapy and immunological therapy) can induce intrinsic or adapted 
resistant subclones. Resistant subclones contribute to uncontrolled disease and treatment failure
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miR-214 under paclitaxel treatment could cause an 
increase in PARP and a decline in PI-3 kinase/Akt lev-
els [137]. Circular RNA CircMYBL2 could enhance 
paclitaxel resistance by upregulating EGFR mediated by 
microRNA-665 in  vitro and promoting tumor growth 
in vivo [138].

Heterogeneity in terms of radiotherapy resistance
Radiotherapy for cervical cancer is suitable for locally 
advanced and recurrent patients or other patients who 
can’t tolerate surgery. The majority of these patients 
own a worse prognosis due to advanced FIGO stage. 
The CCRT is the recommended treatment for advanced 
cervical cancer compared with radiotherapy alone, 
because CCRT increases patients’ local control rates 
and improves prognosis [139]. Integrated bioinformatics 
analysis on RNA sequencing has identified ten potential 
biomarkers related to radiotherapy resistance in cervi-
cal cancer. The results have indicated overexpression 
in tumor immune process pathways, including cellular 
defense response, negative regulation of the immunity, 
T cell and neutrophil activation, regulation of antigen 
presentation, and peptidyl-tyrosine autophosphorylation 
[140]. Other biomarkers, such as HIF-1 could enhance 
hypoxia-induced radio-resistance via targeting NDRG2 
[141]. Overexpressed HOTAIR could promote HIF-1a 
and lead to radio-resistance in mice [142]. CD147 could 
induce resistance by regulating the percentage of G2/M 
phase cells and DNA double-strand breaks repair [143]. 
RhoC-ROCK2 involved DNA repair pathway is necessary 
for the radio-resistance phenotype in tumor cells [144]. 
SEPT9 could affect resistance by interacting with the 
HMGB1-RB axis and mediating miR-375 [145]. Increased 
expression of HMGB3 correlated with hTERT could pre-
dict poor response to radiotherapy, advanced stage and 
worse outcome [146]. USP21 is overexpressed in radio-
resistant patients and could activate the FOXM1/Hippo 
signaling pathway [147]. Four specific miRNAs (miR-
630, miR-1246, miR-1290, and miR-3138) could promote 
radio-resistance in vitro [148]. MiR-125 could modulate 
resistance through the downregulation of CDKN1A 
[149]. LncRNA UCA1 could promote radio-resistance 
associated glycolysis in SiHa and HeLa cells via HK2/gly-
colytic pathway [150]. LncRNA SNHG6 could enhance 
radio-resistant and promote cell growth via STYX/miR-
485-3p axis [151]. Tumor radiotherapy has a certain 
impact on the TME, for instance, the generation of can-
cer-associated fibroblasts or macrophages [152, 153].

Heterogeneity in terms of immunotherapy resistance
After failing platinum-based chemotherapy, only about 
10% of patients are responsive to additional cytotoxic 

agents. Immunotherapy of solid tumors is the research 
hotspot at present aiming to overcome immune suppres-
sion in TME and enhance tumor targeted immune attack. 
The main directions of immunotherapy include immune 
checkpoint inhibitors, therapeutic antibodies, therapeu-
tic vaccines, cell therapy and small molecule inhibitors. 
Here we focus on the use of immune checkpoint inhibi-
tors and therapeutic vaccines about the heterogeneity of 
cervical cancer.

Professors James P Allison and Tasuku Honjo won the 
2018 Nobel Prize in Physiology or Medicine for discover-
ing CTLA-4 and PD-1 as immune checkpoints and lay-
ing the foundation for tumor immunotherapy. The US 
Food and Drug Administration has already approved 
pembrolizumab for advanced cervical cancer patients 
with positive PD-L1. Clinical trials about the efficacy and 
safety of Pembrolizumab in advanced cervical cancer 
have been verified. Objective response rate (ORR) refers 
to the proportion of patients required for the reduction 
of the tumor to reach the expected value and to continue 
to the minimum expected time. ORR is commonly to be 
seen in evaluating the drug response in cancer patients 
undergoing clinical trials. The ORR of pembrolizumab 
in these patients has been increased to 14.6% [154]. 
Results of the phase III clinical trial of KEYNOTE-826 
have expanded the indication for combined immuno-
therapy for persistent, recurrent or metastatic cervi-
cal cancer [155]. Results of the phase I/II clinical trial 
of CheckMate 358 (nivolumab) have shown an ORR of 
26.3% with regardless of PD-L1 expression [156]. Three 
current trials of combining immunotherapy with chemo-
therapy for cervical cancer involved angiogenesis inhibi-
tors and ICI combination therapy without conclusions 
(NCT03912415, NCT03635567, and NCT03556839) 
[157]. We summarized ongoing phase III clinical trials in 
cervical cancer and illustrated the effect targets for these 
therapies (Table  3 and Fig.  6). It can be seen from the 
current ongoing phase III clinical trials in cervical can-
cer that PD-1 inhibitors include Pembrolizumab, Cam-
relizumab, Cemiplimab, Prolgolimab (BCD-100), and 
QL-1604, while PD-L1 inhibitors include Durvalumab 
and Atezoliznmab. Newly developed dual targeted drugs 
AK104 (PD-1 and CTLA-4 inhibitors) and SHR-1701 
(PD-L1 and TGFβ inhibitors) have already been used in 
phase III clinical trials. The sensitivity of immunother-
apy mainly depends on the heterogeneity of responses 
between tumor cells, immune-infiltrating cells, and other 
stroma cells in the TME. With the further development 
of scientific research, the refinement of immunother-
apy indications marks the arrival of the era of precision 
therapy.

Novel immune checkpoints, for instance, TIGIT (T cell 
immune receptor with Ig and ITIM domains) have been 
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Table 3  Ongoing Phase III clinical trials in cervical cancer

Trial identifier Brief title Estimated 
Enrollment

Criteria Arms and 
Interventions

Primary outcome 
measures [Time 
Frame]

Estimated Study 
Completion Date

NCT02422563 Neoadjuvant chemo-
therapy followed by 
radical
hysterectomy (op) 
versus primary
chemo-radiation in 
cervical cancer FIGO 
stage
IB2 and IIB

534 IB2, IIB Arm I: NACT + Radical 
hysterectomy
Arm II: CCRT​

DFS
[5 years]

October 2025

NCT02629718 Neoadjuvant chemo-
therapy + surgery 
versus
surgery in FIGO IB2 and 
IIA2 cervical cancer

700 IB2, IIA2 Arm I: NACT + Radical 
hysterectomy
Arm II: Radical hyster-
ectomy

DFS
[2 years]

December 2022

NCT01101451 Radiation therapy with 
or without chemo-
therapy
in patients with stage 
I-IIA cervical cancer 
who
previously underwent 
surgery

360 I-IIA Arm I: EBRT/IMRT
Arm II: Cisplatin + EBRT/
IMRT

RFS
[11 years]

December 2021

NCT04723875 Postoperative adjuvant 
chemotherapy in
early-stage cervical 
cancer that not meet 
criteria
of adjuvant therapeutic 
according to NCCN
guideline

306 IB1, IB2, IIA1 Arm I: Chemotherapy
Arm II: No intervention

DFS
[3 years]

January 2026

NCT05277688 Adjuvant concurrent 
chemoradiotherapy 
versus
radiotherapy in early-
stage cervical cancer
patients

340 IA2-IIB Arm I: Cisplatin + IMRT
Arm II: IMRT

RFS
[5 years]

December 2027

NCT00980954 Chemotherapy and 
pelvic radiation therapy 
with
or without additional 
chemotherapy in 
treating
patients with high-risk 
early-stage cervical 
cancer
after radical hysterec-
tomy

238 IA2-IIA Arm I: CCRT​
Arm II: CCRT + Chemo-
therapy

DFS
[4 years]

August 2026

NCT04989647 Intermediate risk 
cervical cancer: radical 
surgery
 ± adjuvant radio-
therapy

514 IB1-IIA Arm I: Surgery only
Arm II: Surgery + Radia-
tion
Therapy

DFS
[3 years]

December 2032

NCT03830866 Study of durvalumab 
with chemoradiother-
apy for
women with locally 
advanced cervical 
cancer

770 IB2 with positive nodes
to IVA (FIGO2009)

Arm I: Dur-
valumab + CCRT​
Arm II: Placebo + CCRT​

PFS
[4.5 years]

June 2023
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Table 3  (continued)

Trial identifier Brief title Estimated 
Enrollment

Criteria Arms and 
Interventions

Primary outcome 
measures [Time 
Frame]

Estimated Study 
Completion Date

NCT04138992 A study on the efficacy 
and safety of
bevacizumab in 
untreated patients with 
locally
advanced cervical 
cancer

150 I-IIIC Arm I: Bevaci-
zumab + NACT + CCRT​
Arm II: Bevaci-
zumab + CCRT​
Arm III: CCRT​

DFS
[3 years]

May 2022

NCT02853604 Study of ADXS11-001 in 
subjects with high risk
locally advanced cervi-
cal cancer

450 Locally advanced Arm I: Placebo
Arm II: ADXS11-001

DFS
[5 years]

October 2024

NCT01566240 Induction chemother-
apy plus chemoradia-
tion as
first line treatment 
for locally advanced 
cervical
cancer

500 IB1- IVA with positive
lymph nodes

Arm I: CCRT​
Arm II: Chemother-
apy + CCRT​

OS
[5 years]

May 2026

NCT03534713 Induction chemo-
therapy followed by 
standard
therapy in cervical can-
cer with aortic lymph 
node
spread

310 IB1-IVA with positive
para-aortic lymph 
nodes

Arm I: NACT + CCRT​
Arm II: CCRT​

OS
[3 years]

December2024

NCT03468010 A trial comparing adju-
vant chemotherapy 
with
observation after 
concurrent chemora-
diotherapy
of cervical cancer (with 
pelvic or para-aortic
node involvement)

432 IB1-IVA with positive
lymph nodes

Arm I: CCRT​
Arm II: Chemother-
apy + CCRT​

PFS
[3 years]

March 2025

NCT05173272 Induction chemo-
therapy followed by 
concurrent
chemoradiation in 
advanced cervical 
cancer

286 IB3-IIIB Arm I; NACT + CCRT​
Arm II: CCRT​

PFS
[3 years]

February 2028

NCT04974346 Para-aortic prophylactic 
irradiation for locally
advanced cervical 
cancer

450 IB2-IV with positive
pelvic lymph nodes 
and
negative common iliac
and paraaortic lymph
nodes (FIGO 2009)

Arm I: Para-aortic 
Prophylactic Irradia-
tion + CCRT​
Arm II: CCRT​

PFS
[3 years]

August 2030

NCT05235516 A study of AK104/pla-
cebo combined with
chemoradiotherapy for 
the treatment of locally
advanced cervical 
cancer

636 IIIA-IVA Arm I: AK104 + CCRT​
Arm II: Placebo + CCRT​

PFS
[4.5 years]

May 2029

NCT01414608 Cisplatin and radiation 
therapy with or without
carboplatin and pacli-
taxel in patients with 
locally
advanced cervical 
cancer

900 IB1 with node positive,
IB2, IIA, IIB, IIIB, or
IVA (FIGO 2008)

Arm I: CCRT​
Arm II: CCRT + Chemo-
therapy

OS
[5 years]

July 2022
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Table 3  (continued)

Trial identifier Brief title Estimated 
Enrollment

Criteria Arms and 
Interventions

Primary outcome 
measures [Time 
Frame]

Estimated Study 
Completion Date

NCT05189028 Study of neoadjuvant 
chemotherapy versus
definite concurrent 
chemoradiotherapy for 
locally
advanced bulk cervical 
cancer

290 IB3, IIA2, IIB-IVA Arm I: NACT​
Arm II: CCRT​

OS
[2 years]

June 2025

NCT04221945 Study of chemoradio-
therapy with or without
pembrolizumab (MK-
3475) for the treatment 
of
locally advanced cervi-
cal cancer

980 IB2-IVA with positive
nodes (FIGO 2014)

Arm I: CCRT + Pembroli-
zumab
Arm II: CCRT + Placebo

PFS
[38 months]
OS
[46 months]

December 2024

NCT03635567 Efficacy and safety 
study of first-line treat-
ment
with pembrolizumab 
(MK-3475) plus
chemotherapy versus 
placebo plus chemo-
therapy
in women with per-
sistent, recurrent, or 
metastatic
cervical cancer

600 Persistent, recurrent,
metastatic

Arm I: Pembroli-
zumab + Chemother-
apy ± Bevacizumab
Arm II: Pla-
cebo + Chemother-
apy ± Bevacizumab

PFS
[2 years]
OS
[2 years]

November 2022

NCT04906993 Camrelizumab com-
bined with famitinib 
malate
for treatment of recur-
rent/metastatic cervical
cancer

440 Recurrent,
metastatic

Arm I: Camreli-
zumab + Famitinib 
malate + Chemo-
therapy
Arm II: Chemotherapy

PFS
[2 years]
OS
[2 years]

May 2023

NCT04733820 Clinical efficacy of adju-
vant chemotherapy in
patients with locally 
advanced cervical 
cancer
who did not meet the 
NCCN guidelines for
adjuvant treatment 
after NACT combined 
with
surgery

340 IB3-IIB Arm I: Chemotherapy
Arm II: No intervention

DFS
[5 years]

February 2028

NCT05367206 Neoadjuvant chemo-
therapy followed by
chemoradiation versus 
chemoradiation for 
stage
IIIC cervical cancer 
patients: a randomized 
phase
III trial

280 IIIC Arm I: albumin-bound 
paclitaxel and carbopl-
atin + CCRT​
Arm II: CCRT​

PFS
[3 years]

March 2027

NCT03556839 Platinum chemother-
apy plus paclitaxel with
bevacizumab and 
atezolizumab in meta-
static
carcinoma of the cervix

404 IVB, persistent,
recurrent

Arm I: Chemother-
apy + Bevacizumab
Arm II: Atezoli-
zumab + Chemother-
apy + Bevacizumab

PFS
[48 months]
OS
[48 months]

December 2023
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utilized combined with anti-PD-1 antibody in recurrent 
or metastatic cervical cancer (NCT04693234). The appli-
cation of immune checkpoint inhibitors is limited by the 
heterogeneity of checkpoint expression on tumor cell 

surface and immune-activated state in TME. Decreased 
tumor associated lymphocytes and retained HPV E6/
E7 gene expressions may promote treatment resist-
ance during chemoradiation therapy in locally advanced 

Table 3  (continued)

Trial identifier Brief title Estimated 
Enrollment

Criteria Arms and 
Interventions

Primary outcome 
measures [Time 
Frame]

Estimated Study 
Completion Date

NCT05179239 A study of SHR-1701 
plus platinum-con-
taining
chemotherapy with or 
without BP102
(bevacizumab) as 
first-line treatment in 
cervical
cancer

572 Persistent, recurrent,
metastatic

Arm I: SHR-
1701 + Chemother-
apy + Bevacizumab
Arm II: SHR-
1701 + Chemother-
apy ± Bevacizumab
Arm III: Pla-
cebo + Chemother-
apy ± Bevacizumab

AEs
[21 days]
PFS
[10 months]
OS
[26 months]

May 2025

NCT04982237 A study of AK104 plus 
platinum-containing
chemotherapy ± beva-
cizumab as first-line
treatment for per-
sistent, recurrent, or 
metastatic
cervical cancer

440 Persistent, recurrent,
metastatic

Arm I: AK104 + Chemo-
therapy ± Bevacizumab
Arm II: Pla-
cebo + Chemother-
apy ± Bevacizumab

PFS
[2 years]
OS
[2 years]

December 2025

NCT03912415 Efficacy and safety of 
BCD-100 (anti-PD-1) in
combination with 
platinum-based 
chemotherapy
with and without beva-
cizumab as first-line
treatment of subjects 
with advanced cervical
cancer

316 Recurrent or IVB Arm I: BCD-
100 + Chemother-
apy ± Bevacizumab
Arm II: Pla-
cebo + Chemother-
apy ± Bevacizumab

OS
[3 years]

December 2024

NCT03257267 Study of cemiplimab in 
adults with cervical
cancer

608 Persistent, recurrent,
metastatic

Arm I: Cemiplimab
Arm II: Investigator’s 
choice Chemotherapy

OS
[40 months]

July 2023

NCT04300647 A study of tiragolumab 
plus atezolizumab and
atezolizumab mono-
therapy in participants 
with
metastatic and/or 
recurrent PD-L1-pos-
itive
cervical cancer

172 Metastatic, recurrent Arm I: 
Tiragolumab + Atezoli-
zumab
Arm II: Atezolizumab

ORR
[3 years]

July 2023

NCT04697628 Tisotumab vedotin 
vs chemotherapy in 
recurrent
or metastatic cervical 
cancer

482 Recurrent,
metastatic

Arm I: Tisotumab 
vedotin
Arm II: Investigator’s 
choice Chemotherapy

OS
[2 years]

May 2024

NCT04864782 QL1604 plus chemo-
therapy versus chemo-
therapy
in subjects with stage 
IVb, recurrent, or
metastatic cervical 
cancer

458 Recurrent or IVB Arm I: QL 1604 + Inves-
tigator’s choice Chemo-
therapy
Arm II: Placebo + Inves-
tigator’s choice Chemo-
therapy

AEs
[90 days]
ORR
[6 months]
PFS
[2 years]

July 2022

DFS Disease free survival, OS Overall survival, LACC​ Locally advanced cervical cancer, CCRT​ Concurrent chemoradiation therapy, RFS Recurrence-free survival, 
Chemotherapy Cisplatin or carboplatin + paclitaxel or docetaxel, EBRT Pelvic external-beam radiation therapy, IMRT Intensity-modulated radiation therapy, NACT​ 
Neoadjuvant chem
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cervical cancer patients [158]. Oncogenic E5, E6, and 
E7 proteins encoded by HR-HPV, especially HPV16 and 
18, are implicated in the PD1/PD-L1 pathway leading to 
increased PD-L1 expression [159–161]. B cells are acti-
vated by radiation combined with PD-1 blockade and 
could improve overall survival in HPV-associated squa-
mous cell carcinomas patients [162]. LSD1 inhibitor 
combined with anti-CD47/PD-L1 monoclonal antibodies 
could more effectively inhibit tumor growth in a subcuta-
neous xenograft model because of increasing the expres-
sions of CD47 and PD-L1 [163]. Other driver genes 
(PI3KCA, PI3KCB, DVL3, WWTR1 and ERBB2) in regu-
lating immune response or immune cell infiltration are 
with application prospect [164]. Three single-nucleotide 
polymorphisms (SNPs), specifically PAX8, CLPTM1L, 
and HLA genes, are replicated in cervical cancer patients 
and are associated with cervical carcinogenesis through 
disruption in apoptotic and immune response pathways 
[165, 166].

Therapeutic vaccines have also shown some success in 
patients with advanced cervical cancer. An alphavirus-
based treatment vaccine combined with sunitinib and 
irradiation could elicit superior antitumor effects [167]. 

HPV recombinant vaccine prime-boost could enhance 
CD8+ T cell mediated tumor cytotoxicity [168]. PD-1 
blockade combined with intra-tumoral therapeutic vacci-
nation could elicit HPV16-associated tumor regression in 
a murine model [169]. The combined application of cer-
vical cancer therapeutic vaccine and immunotherapy has 
become the general trend at present [170].

Inferring heterogeneity with histological diversity
The histological diversity of cervical cancer is also a man-
ifestation of tumor heterogeneity. There were significant 
differences in treatment sensitivity and prognosis among 
different histological types. In the previous paragraphs, 
we have mainly discussed the characteristics of cervical 
squamous cell carcinoma, while in this section we will 
focus on the molecular and clinical characteristics of cer-
vical cancer stem cells, cervical adenocarcinoma cells, 
and cervical neuroendocrine cell subtypes.

Heterogeneity of cervical cancer stem cell
The clonal evolution model and the cancer stem cell 
(CSC) model have been used to illustrate intra-tumor 

Fig. 6  The potential resistance mechanisms and currently on-going phase III clinical trials’ agents in cervical cancer. The drug resistance in 
tumor cells showed as up-regulation of immunosuppression, cell proliferation, angiogenesis, cell cycle arrest, DNA repair and down-regulation 
of apoptosis. T cell anti-tumor immunity may be suppressed through down-regulation of cell cycle progression, IL-2 production, T-cell activation, 
effector-cell development and up-regulation of apoptosis. Agents of clinical trials have focused on novel immune checkpoint inhibitors including 
PD-1, CTLA4, PD-L1 and TGFβ
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heterogeneity. In the first model, stochastic mutations in 
individual tumor cells form in the tumor microenviron-
ment, the superior sub-clonal cells dominate and pro-
liferate under adaptation and selection [171]. Another 
model highlights the cellular plasticity and mutational 
differentiation hierarchy formation generated by CSC 
clones [172, 173]. We attempt to interpret cervical cancer 
heterogeneity by describing the cell surface biomarkers, 
molecular mechanism of stem cell regulation and differ-
ences in cytological behavior as follows.

Cervical cancer stem-like cells (CCSC) with an expres-
sion pattern of CD44 ( +)CD24(-) surface biomarkers 
have been isolated from HeLa and SiHa cell lines which 
present higher capabilities in cell growth, self-renew, 
chemotherapeutic drug and radiation therapy resistance 
[174, 175]. Another prolonged Trichostatin A-selected 
HeLa cell expressing Sox2( +)Oct4( +)Nanog( +) mark-
ers display enhanced migration, invasion, and malig-
nancy abilities both in vitro and in vivo, which can also 
be regulated by STAT3 [176–178]. Ubiquitin B has been 
confirmed as a key gene in the maintenance of Sox2( +)
Oct4( +)Nanog( +) CCSC [177]. Hiwi and Gremlin 1 
can be regarded as cervical CSC markers because the 
increased gene expressions facilitate in  vitro tumor 
sphere formation and in  vivo tumorigenicity [179, 180]. 
The extended phenotype of CCSC has been determined 
with CK-17, p63 + , All + , CD49f + and higher Aldehyde 
dehydrogenase activity [181]. Besides, the Wnt/beta-
catenin pathway is essential to maintain tumorigenicity 
by microRNA-135a induced CD133( +) CCSC and CCSC 
related transcription factor levels promoted by LGR5. 
Wnt3a stimulation may increase tumor sphere size and 
self-renew [182, 183]. Cancer is a result of uncontrolled 
cell growth caused by mutations or epigenetic alterations, 
while cancer stem cell heterogeneity contributes to the 
whole process of tumorigenesis, recurrence, metastasis 
and treatment resistance.

Heterogeneity of cervical adenocarcinoma
Cervical adenocarcinomas comprise approximately 25% 
of cervical cancer in the USA with higher histological 
heterogeneity compared to squamous cell carcinoma 
[184]. The World Health Organization (WHO) classifi-
cation and a more innovative International Endocervical 
Criteria and Classification (IECC) are commonly recog-
nized classification criteria [185, 186]. The traditional 
WHO 2014 system divides cervical adenocarcinomas 
into serous, mucinous, endometrioid, clear cell and some 
other types based on pathological features. The IECC 
2018 system attempts to subdivide adenocarcinomas 
into HPV-associated (HPVA) and non-HPV-associated 
(NHPVA) categories [187]. NHPVAs, in particular gas-
tric type is significantly associated with age, horizontal 

extent, invasive depth or lympho-vascular invasion, 
advanced stage, worse disease-free survival (DFS) or 
disease-specific survival (DSS). Among the HPVAs, 
invasive stratified mucin producing carcinoma subtypes 
have shown worse DFS and DSS [188]. According to the 
revised WHO classification 2020, 92.7% of HPVAs can 
be recognized by the presence of luminal mitoses and 
apoptosis in addition to mucinous adenocarcinomas 
[189, 190]. Distinct molecular profiles have been demon-
strated between SCC and adenocarcinoma as mentioned 
above, which suggests that more tailored treatment strat-
egies are necessary [81]. Gastric-type cervical adeno-
carcinoma has been detected with somatic mutations in 
TP53, KRAS, CDKN2A, and STK11. Prevalent mutations 
of PIK3CA and PTEN enriched in the PI3K/Akt/mTOR 
signaling pathway has also been identified [191]. Poten-
tially driven mutations have been identified in BRAF, 
ERBB2 and ERBB3. Copy-number aberrations (CNAs) 
are deletions or expansions of chromosomes/genes in 
somatic cells. Low levels of CNAs without recurrent 
amplifications or homozygous deletions are also con-
firmed [192]. Further similarities and differences genetic 
heterogeneity between HPVA and HPV-positive squa-
mous cell carcinoma remain to be further studied.

Heterogeneity of other rare histological cervical cancer
Neuroendocrine carcinoma of the cervix (NECC) is a 
variant of CC with accounts for 1–1.5% [193]. A large 
meta-analysis with 3538 NECC cases has identified a 
mean recurrence-free survival of 16 months and overall 
survival of 40 months [194]. The small cell cervical car-
cinoma (SCCC) is the most common type of NECC with 
median overall survival ranging between 10–13  months 
in advanced SCCC [133]. Adjuvant chemotherapy or 
chemoradiation is associated with higher five-year sur-
vival in 188 SCCC patients [195]. FIGO stage is the 
unique prognostic factor impacting both overall survival 
and DFS in a multiple retrospective study with 93 SCCC 
patients [196]. SCCC is specifically associated with 
HPV18 infection and its genetic alterations are regulated 
through PI3K/AKT/mTOR, MAPK, and TP53/BRCA 
pathways [197]. Driven mutation genes KRAS, PIK3CA, 
IRS2, SOX2 and homogeneous recombination repair 
genes are potential therapeutic targets [198].

Conclusions and future perspectives
HPV-associated cervical cancer is a kind of heterogene-
ous malignant tumor from many perspectives, and its 
treatment in the advanced stage is extremely difficult. 
HPV and drug therapy are two extrinsic factors that 
are closely related to the heterogeneity of cervical can-
cer. Meanwhile, an in-depth understanding of tumor 
heterogeneity is a critical issue in developing precision 
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treatment and screening strategies. Our understanding 
of the molecular and phenotypic heterogeneity in cervi-
cal cancer has improved and benefited from the devel-
opment of deep sequencing and single cell sequencing 
technology. Nevertheless, it will take time to get break-
through results on the heterogeneity of tumor microen-
vironment and treatment responses in advanced cancer. 
The integration of genomic, transcriptomic and epige-
netic information that captures intra-tumoral heteroge-
neity will reveal the panoramic view of tumor regulatory 
mechanisms and will promote breakthroughs in preci-
sion medicine.
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