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Abstract 

Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying 
the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor 
diseases. Researchers are working to design devices and develop analytical methods that can capture and detect 
CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood 
samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and nega-
tive enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and 
designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and 
molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnos-
tic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the 
current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put 
forward our own views regarding the future development direction of CTCs.
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Introduction
Cancer metastasis is the primary cause of death world-
wide and remains one of the prevailing challenges in 
curing cancer [1]. Most patients with metastatic disease 
receive systemic drugs to prolong survival and improve 
symptoms, but there is usually no cure and patients can-
not achieve long-term survival. Metastasis is a multistep 
process involving intravasation, extravasation, migra-
tion and regeneration, in which cancer cells from a pri-
mary tumor detach and invade distant tissues using the 
bloodstream as a transport system [2, 3]. Cells that are 
separated from the primary tumor and travel through the 
bloodstream are called circulating tumor cells (CTCs) 

[4]. Understanding their part in the metastasis may con-
tribute to better therapeutic management. In addition, 
CTCs can be extracted to detect the biological character-
istics and molecular type of primary tumor cells. CTCs 
were reported for the first time as the presence of cells in 
blood that had the same size, shape, and appearance as 
those in primary tumors 150 years ago in 1869 by Ash-
worth Thomas Ramsden [5]. Since then, many studies 
have focused on exploring and developing efficient detec-
tion techniques as CTCs are noninvasive and accessible 
and could overcome the problem of tumor heterogeneity 
[5–7]. Significant leaps in the detection and characteriza-
tion of CTCs have been achieved over the past two dec-
ades with new methods and devices emerging for CTC 
analysis. However, several challenges are associated with 
the isolation, detachment and detection of CTCs. Firstly, 
CTCs are infrequent and rare. Approximately 1–100 
cells along with  106–108 red blood cells can be found per 
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milliliter of blood [8, 9]. Secondly, as cancer cells are het-
erogeneous, a variety of groups of CTCs have significant 
variations in the expression of surface biomarkers [10–
12]. Therefore, it is not easy to recognize different types 
of CTCs by the identical standard [13]. Finally, the non-
destructive release of CTCs after the cells are captured on 
the surface effectively poses a challenge [14]. Herein, we 
systematically review CTCs, briefly provide an overview 
of their biology, and mainly investigate the current and 
emerging CTC detection techniques. Moreover, the clini-
cal aspects of CTCs are described, and examples of how 
CTCs can participate in monitoring cancer development 
and drug therapy responses are discussed. Although the 
detection of CTCs is a promising technique for precision 
medicine, notably, there are still many unsolved prob-
lems. In this review, we present the existing challenges 
and offer our own insights into the future development 
of CTCs.

Biology of CTCs
CTCs are considered to detach themselves from a pri-
mary tumor and pass through the bloodstream which 
can reflect metastasis, and several studies have shown 
their diagnostic and prognostic significance [5, 15, 16]. 
Through some newly developed high-throughput tech-
nologies, we can isolate these cells from the blood and 
conduct research at the single-cell level [14]. Over the 
course of disease or treatment, CTCs can provide a pre-
cise, dynamic, and treatment-related method to treat 
cancer.

Steps of metastasis
Tumor cell dissemination may occur in the following 
outlined steps: 1) localized invasion through the base-
ment membrane during malignant progression [17]; 2) 
intravasation into hematogenous or lymphatic circula-
tion systems, which allows for transport via circulation 
and interactions with blood components [18]; 3) survival 
in circulation by competition with circulating immune 
cells, loss of cell–cell junctions and shear stress [19, 20]; 
4) arrest in the capillary bed of various organs [3]; 5) 
extravasation and migration into a foreign microenviron-
ment, followed by colonization to form micrometastases 
[21]; and 6) stimulation of angiogenesis leading to growth 
into metastatic tumors (Fig. 1). However, this process is 
highly inefficient, and less than 0.01% of CTCs metasta-
size [22].

Most CTCs introduced into circulation are quickly 
killed by processes, such as immune attacks, shear stress, 
anoikis, oxidative stress and the lack of cytokines and 
growth factors [22]. Therefore, CTCs undergo a series of 
adaptations in order to survive in such a hostile environ-
ment. The epithelial to mesenchymal transition (EMT) 

has been identified as a vital process allowing CTCs to 
behave similar to mesenchymal cells [23]. During the 
EMT, epithelial cells lose epithelial characteristics such 
as the expression of EpCAM, keratins, and E-cadherin 
and upregulate matrix metalloproteinase (MMP) activ-
ity, which enables these cells to navigate through the local 
extracellular matrix (ECM) and enter the microvascu-
lature [10, 24–26]. Thus, CTCs can be easily separated 
from a primary tissue, invade the capillaries and possess a 
significantly improved ability to survive and metastasize. 
In addition to individual CTCs, CTC clusters are also 
found in patients’ blood. CTC clusters are composed of 
2 to 50 cells, including fibroblasts, endothelial cells, leu-
kocytes and platelets, which have a prominently higher 
metastatic capacity and increased ability to survive [27].

Characterization of CTCs
The isolation of viable CTCs enables the analysis of their 
molecular and functional characterization as CTCs are 
biochemically different from blood cells. One of the most 
common surface molecules on CTCs is the epithelial cell 
adhesion molecule (EpCAM), which originates from the 
epithelium [10, 25, 28]. EpCAM is a transmembrane gly-
coprotein that is present in 80% of solid cancers (such as 
breast, colorectal, and prostate cancer), but is absent in 
peripheral blood cells [10, 29]. Alternatives such as kera-
tin 19, tumor-specific antigen 9, and progastrin-releasing 
peptides have also been reported [15]. Similarly, many 
tumor immune markers, such as prostate specific anti-
gen (PSA), human epidermal growth factor receptor 2 
(HER2) and endothelial growth factor receptor (EGFR), 
can also be used as antibodies for the specific recognition 
of CTCs [30, 31].

Nevertheless, in recent years, many studies have found 
that EpCAM is heterogeneously expressed or even not 
expressed on some cancers and cancer subtypes [32]. The 
process of the EMT has been found to be the most criti-
cal modulator of EpCAM expression [10]. The EMT is a 
strictly controlled process that allows cells to switch phe-
notypes. The EMT is believed to be essential for metas-
tasis by promoting invasion, motility and dissemination 
in epithelial cancer cells [33]. Gorges and colleagues 
observed that EpCAM-negative breast cancer cells 
express high amounts of EMT-related genes [34]. The 
interrelated molecular mechanisms underlying EpCAM 
withdrawal from the cell surface may be associated with 
the endocytosis and subsequent degradation of EpCAM 
in intracellular compartments [25, 28, 32].

In addition to biochemical differences, there are dis-
tinct physical differences between CTCs and blood cells 
[35]. It is generally agreed that cell lines originating from 
solid tumors have greater cell sizes than blood cells. The 
cross-sectional areas of five tumor cell lines (MCF-7, 
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Hep3B, HepG2, LNCaP, and HeLa) under a microscope 
were measured to be 396–796 μm2, which is significantly 
larger than that of leukocytes (average 140 μm2) meas-
ured under the same conditions [36]. Cell size extracted 
from dielectrophoresis (DEP) data clearly demonstrated 
the size difference among leukocytes (6.2–9.4 μm), leuke-
mia cells (8.9–15.3 μm) and solid tumor cell lines (11.7–
23.8 μm) [37]. Various biomechanical tools have been 
exploited to measure the mechanical properties of living 
cells, indicating that tumor cells with greater metastatic 
potential are more susceptible to deformation [24]. S. E. 
Cross and colleagues applied AFM to measure the stiff-
ness of live metastatic cancer cells obtained from pleu-
ral fluids from patients with lung, breast and pancreatic 
cancer. The cell stiffness of metastatic cancer cells is more 
than 70% softer than that of benign cells within the same 
pleural fluid samples (Young’s modulus 0.53 ± 0.10 kPa 
versus 1.97 ± 0.07 kPa) [38]. Moreover, cancer cells con-
tain a variety of polarizable particles, including peptides, 
proteins and nucleic acids. Gascoyne’s group applied 
dielectrophoretic field-flow fractionation (DEP-FFF) 

to study the dielectric properties of cancer cells and 
reported that the capacitances of cancer cells are signifi-
cantly larger than those of blood cells. All data show that 
the total cell capacitance scales with the cube of the cell 
diameter, which is consistent with the general conclusion 
that cancer cells are larger than blood cells [37].

Cells contribute to the survival of CTCs
Circulating tumor cells receive help from other nontu-
mor cells during the escape phase (Fig. 1). Morphologic 
observations of tumor cells arrested in capillaries have 
documented the close association of tumor cells with 
activated platelets [39]. Platelets can rapidly enfold CTCs, 
protecting them from fierce shear forces [20]. Platelet 
aggregation induced by tumor cells can promote extrava-
sation and adhesion [40]. Platelets also provide a defense 
against the immune system. Platelet-secreted transform-
ing growth factor-β(TGF-β) is able to inactivate natural 
killer (NK) cells [41]. Transferring the MHC I complex 
from granular platelets to CTCs shields CTCs from the 
cytotoxic attack of NK cells [42].

Fig. 1 Tumor cell dissemination. 1) localized invasion; 2) intravasation; 3) survival in circulation; 4) arrest in the capillary bed; 5) extravasation and 
migration; 6) stimulation of angiogenesis. In addition to individual CTCs, CTC clusters are also found in patient blood, which have a significantly 
higher metastatic potential and increased ability to survive. CTCs get help from the platelets as well as immune cells during the escape phase
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In addition to platelets, increasing evidence suggests 
that many other blood cells are associated with the 
metastasis of CTCs in the bloodstream, such as neu-
trophils, monocytes and Treg cells. CTCs interact with 
endothelial-bound neutrophils in the vascular network, 
promoting adhesion and migration activities through dif-
ferent molecular targets (IL-8, CAM-1) expands the met-
astatic potential [19, 43, 44].

It has also been demonstrated that monocytes may 
play an important role in metastasis. Monocytes were 
observed to be associated with five or more CTCs in 
metastatic breast cancer (MBC) [45]. Classical mono-
cytes can extravasate and differentiate into macrophages, 
promoting tumor cell extravasation, survival, and sub-
sequent growth [46]. A subpopulation of CCR2 (recep-
tor for chemokine CCL2) expressing monocytes was 
recruited by metastatic tumor cells which enhanced the 
subsequent extravasation of the tumor cells through the 
targeted delivery of molecules such as vascular endothe-
lial growth factor(VEGF) [47].

CTCs have also adapted to avoid attack by immune 
cells in the bloodstream. Tumor cells are able to achieve 
immune escape by upregulating the expression of FASL 
on their surface, reducing the threshold for apoptosis in 
cytotoxic T lymphocytes (CTLs) [48]. Moreover, CTCs 
express programmed cell death-ligand 1(PD-L1), repre-
senting a potential mechanisms responsible for immune 
escape [49, 50]. Researchers have proposed that CTCs 
positive for PD-L1 can mediate Treg cells to play a role of 
immunosuppression. Treg cells can protect CTCs against 
being attacked by the immune system, weaken CTL kill-
ing ability and trigger more myeloid-derived suppressor 
cells (MDSCs) [51]. It has also been found that CTCs of 
colorectal cancer exhibit a distinct nonimmunogenic 
phenotype by overexpressing CD47 [52].

Techniques used in CTC 
As a consequence of the low concentration of CTCs in 
peripheral blood (1-100 cells per ml), a high specific-
ity and an excellent affinity are both obligatory require-
ments for effective CTC capture as stated above. Most of 
the extant technologies consist of a two-step process of 
cell enrichment and subsequent detection. Most CTCs 
enrichment methods utilize the unique surficial anti-
gen expression of CTCs to separate them from the great 
number of leukocytes, erythrocytes and other blood 
components [4, 53]. There are also technologies captur-
ing CTCs that utilize the physical properties of CTCs 

including their size, density, and capacitive character [6, 
54, 55]. The subsequent challenge is to effectively release 
CTCs from surfaces using enrichment methods with-
out damaging the target cells14. Enzymatic digestion, 
oligonucleotide-mediated aptamer release, and stimuli-
responsive polymers hold marvelous potential for CTC 
detachment [56–58].

CTC isolation
In view of the low abundance of CTCs in whole periph-
eral blood, separating CTCs from the background con-
tamination of blood cells is a crucial step for subsequent 
analysis. However, the low frequency of CTCs along 
with the heterogeneity observed in CTCs render high-
precision detection laborious. Currently, there is no ideal 
device capable of isolating a pure population of CTCs. 
Most separation methods are based on the physical 
properties or biological properties of CTCs. Due to limi-
tations, such as low cell recovery, poor purity, and dimin-
ished viability, the widespread use of CTCs in laboratory 
and clinical environments is hindered (Fig. 2).

Devices utilizing physical properties
Enrichment methodologies via physical properties are 
based on unique CTC properties such as their size [50], 
membrane capacitance [6], and density [55]. The most 
essential advantage associated with the technologies 
above is that they are independent of the recognition of 
surface markers. Therefore, these techniques are appro-
priate for isolating CTCs with low/negative EpCAM 
expression levels as CellSearch® system fails to detect 
CTCs in approximately 36% of metastatic breast cancer 
and lung cancer patients [59, 60]. Isolation by the size of 
epithelial tumor cells (ISET®), Metacell filtration device, 
ScreenCellCyto, Parsotrix™, and dead flow fractionation 
techniques are all size-based CTC selections [50, 61–65], 
that utilize filtration to separate individual tumor cells on 
the basis of size. Coumans and colleagues compared three 
filtrations to investigate the properties of the ideal filter 
for CTC recovery, such as pore size, number of pores, 
spacing between pores, filter thickness and filter surface 
material. The authors summarized the experiment and 
arrived at the conclusion that the optimum filter for CTC 
enrichment from 10 ml of whole blood has a pore size of 
about 5 mm, a thickness of at least 10 mm, no less than 
100,000 regularly spaced pores, and a porosity of 10% or 
less [66]. Unfortunately, these technologies have certain 
limitations, since the current technology lacks specificity, 

Fig. 2 Outline of existing isolation techniques. The majority of CTC enrichment methods utilize the unique surficial antigen expression of CTCs or 
the physical or functional property of CTCs to separate CTCs from the great number of erythrocytes, leukocytes, and other blood. EpCAM: epithelial 
cell adhesion molecule; RBC: red blood cell; WBC: white blood cell; CTC: circulating tumor cell; GFP: green fluorescent protein; hTERT: human 
telomerase reverse transcriptase; SPPCNs: superparamagnetic positively charged nanoparticles

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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and due to the heterogeneity of cells, the results obtained 
are not as pure as those of functional tests. Meanwhile, 
filter pores can cause deformation and damage of CTCs 
and may lose CTCs with smaller sizes than average. On 
the other hand, larger cells that are not tumor cells, such 
as megakaryocytes, can be kept together with isolated 
cell populations. In conclusion, size-based CTC isolation 
methods provide high throughput; however, these meth-
ods have limited applicability in clinical settings due to 
the heterogeneity of CTCs in terms of their size.

Cell sorting based on deformability is particularly 
relevant to the separation of CTCs from whole blood 
because CTCs may not be simply distinguished from 
white blood cells based on size alone. This situation is 
particularly related to colorectal cancer and prostate can-
cer, as it is recognized that patients’ CTCs are small and 
have important overlap with contaminated leukocytes 
[67]. Tumor cells form an enlarged nucleus and, there-
fore, may exhibit a greater nucleocytoplasmic ratio than 
leukocytes. In fact, the nucleoplasm is two times more 
viscous and nearly three to four times more rigid than the 
cytoplasm. Thus, it seems to be a feasible option to take 
advantage of cell deformability to sort CTCs. Park and 
colleagues proved that separation based on deformability 
improves enrichment ≈100× over size-only separation, 
providing a significantly selective biophysical enrichment 
process. Their measurement involving the diameter of 
enriched CTCs and patients leukocytes before and after 
enrichment demonstrated that these cells were primarily 
discriminated on the basis of their cell deformability [67].

Centrifugation, which uses the specific density of leu-
kocytes, red blood cells, and cancer cells, is among the 
first reported techniques used for CTC separation [68]. 
In density centrifugation methods, erythrocytes, plate-
lets, and polymorphic nuclear cells are separated in the 
pellet, and mononuclear cells (MNCs), including tumor 
cells, gather in the so-called interphase [9]. A comparison 
of two density gradient centrifugation systems demon-
strated that OncoQuick improved tumor cell enrichment 
in comparison with Ficoll, which was achieved by an 
increased consumption of MNCs and a comparable 
tumor cell recovery [55]. The AccuCyte® system is differ-
entiated from existing density-based methods which sep-
arates the buffy coat from red blood cells and plasma by 
using a unique separation tube and collector device. The 
device allows virtually complete harvesting of the buffy 
coat into a small volume for application on a microscopic 
slide without cell lysis or wash steps, which is consid-
ered a potential source of CTC loss [69]. RosetteSep is an 
immune density cell separation kit designed to separate 
and enrich circulating epithelial tumor cells from normal 
hematopoietic cells. This kit contains an antibody cock-
tail for the removal of unwanted cells by changing their 

density. The excess cells settle through density gradient 
centrifugation, and purified tumor cells appear at the 
interface between the density gradient medium and the 
plasma [70].

Cancer cells have larger folding factors and radii than 
both normal cells of comparable origin and blood cells. 
The NCI-60 panel of cancer cell types has a DEP char-
acterization and all cell lines derived from solid tumors 
have crossover frequencies that should allow their effi-
cient isolation from normal blood cell types [6]. DEP is 
an electrokinetic method which allows inherent dielec-
tric properties of suspended cells for discrimination 
and separation [71]. DEP has emerged as a promising 
method for isolating CTCs from whole blood. DEP isola-
tion of CTCs is independent of cell surface markers [6]. 
The continuous flow ApoStream® device was developed 
to overcome the cell throughput limitation of the DEP 
batch mode configuration, providing an effective enrich-
ment and separation of CTCs from full blood. The linear-
ity data and recovery accuracy of the ApoStream® device 
confirmed consistent cancer cell recovery performance in 
both high- and low-EpCAM expressing cancer cell types 
over a wide range of spiking levels [72].

Bioelectricity is an essential biophysical indicator of 
cell behaviors and is directly modulated via the metabolic 
mode [73]. Successful CTC isolation based on the sur-
face charge is uniquely related to the unique character-
istics of cancer cells, i.e., a high glycolysis rate and strong 
lactate acid secretion. Studies have shown that the acidic 
cancer microenvironment associated with the “Warburg 
effect” is related to the negative charge of cancer cells, 
which is related to the following hallmark feature of can-
cer cell energy metabolism: a high aerobic glycolysis rate 
[74]. Superparamagnetic positively charged nanoparticles 
(SPPCNs) electrostatically and strongly bind malignant 
cells characterized by high rates of glycolysis, enabling 
the effective capture of CTCs and subsequent magnetic 
isolation from clinical blood samples of cancer patients 
[75].

Devices utilizing functional assays
Recent studies have reported that the EMT plays a piv-
otal role in the invasion of tumor cells [23, 76]. CTCs are 
hypothesized to contain a significant number of EMT 
tumor cells, which are reported to have a low expression 
of epithelial surface antigens, especially EpCAM [77]. 
Thus, such tumor cells that lose EpCAM expression are 
less likely to be detected by assays utilizing cell immuno-
logical characteristics. Functional assays use the viable 
CTC cellular functions to overcome certain limitations 
of tumor cell heterogeneity. However, the current cir-
cumscription of product purity is a dominant problem in 
the method of enriching CTCs based on cell functional 
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characteristics. An adaptation of enzyme-linked immu-
nospot technology, Epithelial Immunospot (ELISPOT), 
was introduced for the detection of viable CTCs in cancer 
patients. Secreted, shed or released proteins are immu-
nocaptured on the membrane during short-term cul-
tures, and the EPISPOT assay has a sensitivity to detect 
them [78]. In order to collect CTCs with aggressive phe-
notypes and explore their molecular features, research-
ers applied a functional cell separation method called the 
collagen adhesion matrix (CAM) assay, which identified 
CTC invasiveness via CAM protein uptake while recog-
nizing epithelial antigens and produces results with high 
sensitivity and specificity [79].

Chen and colleagues reported a strategy for CTC 
enrichment by exploiting the differential adhesion pref-
erence of cancer cells to nanorough surfaces. Bare glass 
surfaces treated with reactive ion etching (RIE) for differ-
ent durations could acquire different levels of roughness. 
Subsequently, RIE-generated nanorough surfaces could 
capture different types of cancer cells efficiently without 
any use of capture antibody [80]. This method is a prom-
ising strategy for achieving efficient capture at a quite 
low cost and is expected to provide a better isolation and 
enrichment strategy for viable CTCs from blood speci-
mens. However, these nanorough glass surfaces show a 
low CTC capture purity as a result of significant nonspe-
cific binding of other blood cells.

The telomere length has been frequently used as a 
means to predict the future life of cells [81]. TelomeS-
can detects viable CTCs via a telomerase-specific repli-
cation selective adenovirus in human peripheral blood. 
Viral infection increases the signal-to-background ratio 
as a tumor-specific probe and emits fluorescence. The 
transfected cells are easily recognizable, as the special 
adenovirus can be amplified only in tumor cells [82]. The 
TelomeScan may be more applicable for the detection 
of EMT tumor cells given that it is not influenced by the 
level of EpCAM expression. The assay seems promising, 
but future studies covering a large number of patients are 
still needed confirmation [83].

Tannic acid-functionalized magnetic nanoparticles 
(MNPs-TA) were recently developed for binding between 
the polyphenol structure of TA and the special glycocalyx 
on cancer cells. Furthermore, TA has a great antileuko-
cyte adhesion effect, reducing the interaction with non-
target cells [84].

Devices utilizing Immunomagnetic assays
The most common technique used for CTC isolation is 
the immune isolation, which is based on specific CTC 
cell surface markers. Immunobead methods use either 
positive selection, targeting tumor-associated antigens 
expressed by CTCs, or negative selection, removing 

blood cells with common leukocyte biomarkers. EpCAM 
is an antigen often used in positive selection, while CD45 
is used for negative selection [7, 85]. In 2004, the Cell-
Search® system was introduced as the first and only Food 
and Drug Administration (FDA)-approved method for 
the enumeration of CTCs in 7.5 mL of blood. The high-
est proportion of positive specimens was detected in 
patients with metastatic prostate cancer, followed by 
metastatic ovarian cancer and breast cancer [5]. The limi-
tation of the fact that CellSearch® detects EpCAM+ cells 
leading to the loss of EpCAM-cells has been improved 
in other methods by combining different specific tumor 
markers, including EGFR, cytokeratin, HER2, folic acid 
receptors (FRs), and recombinant VAR2CSA (rVAR2) 
[16, 86–88]. In recent years, several alternative immuno-
bead technologies that can improve the purity and recov-
ery and retrieve CTCs off-chip with high fidelity have 
been developed, involving MagSweeper [53], AdnaTest® 
[43, 89], IsoFlux™ [90], and CTC-μChip [91].

Recently, researchers have combined CTC specific sur-
face markers with other methods to improve the sensi-
tivity of CTC detection and maintain the integrity and 
biological characteristics of CTCs for subsequent studies. 
Park and colleagues developed a novel 3D printed immu-
nomagnetic concentrator (3DPIC) with an ATP lumines-
cence assay for CTC enrichment and rapid detection. The 
ATP luminescence assay is used to measure cell intracel-
lular ATP but has not been applied to CTC detection as a 
consequence of interference from non-CTC-derived ATP. 
An antibody (Ab)-conjugated magnetic nanoparticles 
(MNPs) conjugated with EpCAM provided spectacular 
enrichment in 3DPIC, and then, these cells were enumer-
ated using an ATP luminescence assay [92]. Researchers 
have presented chemically stable and instantly degrada-
ble (CSID) hydrogel immunospheres for CTC isolation. 
These researchers modified the CSID hydrogel spheres 
with the anti-EpCAM antibody to successfully isolate 
and effortlessly retrieve the target cells with an average of 
10.8 ± 5.9 CTCs/ml [93].

Negative selection is also a possible solution to over-
coming the low recovery rate associated with EpCAM-
cells. CD45 expressed in hematopoietic cells is the most 
prevailing antigen used in negative selection. CD45 
depletion is often combined with other label-free meth-
odologies, such as density gradient centrifugation or red 
blood cell lysis to improve the yield [85, 94]. Using these 
strategies, unconventional CD45-expressing CTCs may 
be accidentally removed, resulting in the underestimation 
of the number of CTCs [2]. DynaBeads® and EasySep are 
immunomagnetic methods in which antibodies recogniz-
ing cell surface antigens are coupled to magnetic beads 
and used to remove unwanted cells. However, it is not 
easy to enumerate massive Dynabead-bound cells due to 
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the autofluorescence of the beads, the large number of 
beads, and the low efficiency of the labeling of cell anti-
bodies when the beads are bound. In contrast, the smaller 
EasySep nanoparticles do not interfere with downstream 
immunocytochemical processing and are able to achieve 
higher purity [95].

Devices utilize microdevices
Nowadays microfluidic platforms have become among 
the most prevalent technologies because of their tre-
mendous applications, including biological and chemical 
analyses, fertility analyses, cell sorting, infectious dis-
ease diagnostics, DNA sequencing, ect [96]. Microfluidic 
platforms provide many attractive advantages, such as 
continuous sample processing to reduce target cell loss. 
Microfluidic platforms can capture CTCs through differ-
ent methods, which can be roughly divided into: 1) using 
epithelial cell markers as antigens; 2) using the physical 
properties of tumor cells; 3) using the electrical proper-
ties of CTCs; and 4) other methods [97].

A mass of microdevices utilize the unique antigen 
expression of CTCs as enrichment and capture meth-
ods. EpCAM, as already mentioned, is logically one of 
the most common surface markers applied to distinguish 
CTCs from hematopoietic cells [98–101]. An effective 
microfluidic named CTC-chip using antibody-coated 
microposts to capture these EpCAM-positive cells was 
demonstrated. Stott and colleagues developed a high-
throughput microfluidic mixing device, the herring-
bone-chip (HB-Chip) which could provide an enhanced 
efficiency of CTC isolation. The HB-Chip design applies 
passive mixing of blood cells through the generation 
of microvortices to significantly increase the interac-
tions between the target CTCs and the antibody-coated 
chip surface [98]. The electrochemical Lab-on-a-Disc 
(eLoaD) platform captures cancer cells from separated 
plasma through anti-EpCAM antibodies immobilized on 
gold electrodes and quantifies them by the use of label-
free electrochemical impedance [99]. Lin and colleagues 
developed three generations of NanoVelcro CTC chips, 
a nanostructured substrate, coated with anti-EpCAM 
antibodies. These authors developed a third generation 
NanoVelcro device using biotin-streptavidin interac-
tion linked anti-EpCAM antibodies to efficiently capture 
CTCs. At 37 °C, functionalized domains are present on 
the surface of the chips; thus, CTCs that interact with the 
substrate can be caught. The thermally responsive poly-
mer brushes of a poly N-isopropylacrylamide (PIPAAm) 
substrate undergo conformational changes when the 
temperature decreases at 4 °C, leading to the internaliza-
tion of the anti-EpCAM antibodies. Thus, the captured 
CTCs are capable of being released from the device [100]. 
A recent study presented a fully automated and rapid 

microfluidic system for efficient CTC identification. A 
lateral flow-based four-channel microfluidic chip was 
applied to separate and distribute CTCs as a single-cell 
array. An approximately 90% capture rate was achieved 
in different cell lines when spiking 100 cells in 2 mL 
of healthy donor blood samples from healthy donors, 
revealing the wide application of this platform to differ-
ent tumors [102].

It has been proven that metastatic cancer cells from 
patients with lung, breast and pancreatic cancer are 70% 
softer than benign cells from the body cavity through 
atomic force microscopy (AFM) [52]. The iterative 
mechanical characteristics (iMECH) analyzer provides 
a low-cost yet high-throughput solution for single-cell 
level metastatic detection. It directs the cyclic deforma-
tion regimen by pulling CTCs and other cells through a 
trial channel composed of narrow deformation channels 
interspersed with wider relaxation regions to simulate the 
dynamic microenvironment jointly. Researchers revealed 
that cells from nonmetastatic breast cell lines were more 
resistant to deformation when passing through cyclic 
deformations, and their average velocity through the 
channels decreased after each relaxation [103].

Alternatively, inertial microfluidics devices isolating 
cells based on size by utilizing the fluidic forces in straight 
or curved channels have already been developed [104, 
105]. These devices demonstrated remarkably higher 
flow rates than immunoaffinity based devices, allowing 
a high throughput process. Researchers devised an effi-
cient inertial device, the CTCKey™ without additional 
preprocessing steps. The study reported that CTCKey™-
enriched blood could be further processed utilizing the 
CellSearch® system, enabling processing higher volumes 
of blood (up to 5fold) [105].

Over the past decade microdevices have emerged as 
promising techniques to address challenges, given rar-
ity, phenotypic and size heterogeneities of CTC, and the 
need to preserve CTC viability for downstream analy-
sis. Nevertheless, there are still certain limitations of 
these novel technologies. Physical-based microdevices 
face with the risk of clogging, low purity, and challeng-
ing downstream analysis. For example, the throughput 
of microfluidic ratchets is relatively low with 1 mL/h. 
The device fails to process 7.5 mL of blood (standard vol-
ume for protocols), which may overstate the probability 
of recovering CTCs in the clinic trail with microfluidic 
ratchets [67]. The use of nanostructured substrates, 
such as silicon nanopillars (NanoVelcro Chip), was also 
reported to enhance CTC isolation sensitivity as the con-
sequence of high surface area-to-volume ratio of nano-
structured substrates and similar size to cellular surface 
components [90]. Moreover, subsequent enzymatic 
degradation may compromise the viability of CTCs due 
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to over exposure to the degrading membrane itself and 
enzymatic hydrolysis solutions. The irreversible capture 
of CTCs on these nanostructures greatly limits down-
stream analysis and subsequent cell culture [56]. The 
immunomagnetic separation can either target CTCs 
or WBCs. As previously mentioned, such tumor–anti-
gen dependent immunomagnetic separation methods 
are unable to overcome marker expression variability 
among CTCs. Nonetheless, given the high concentra-
tion of WBCs in blood, it is more challenging to deplete 
WBCs completely without CTC damage. In addition, 
these devices have to processed large volumes of blood to 
ensure the sufficient number of CTCs, which might lead 
to clogging on account of the large number of WBCs.

GILUPI GmbH CellCollector, an in  vivo and novel 
technology, uses an anti-EpCAM wire directly into the 
peripheral arm vein and captures targeted cells with 
high efficiency. In the study, all volunteers tolerated the 
30 min in  vivo exposure to the nanodetectors with no 
sign of adverse events. Within the test 24 cancer patients 
were examined; of those, 22 of 24 were detected with a 
median of 5.5 (0–50) CTCs in breast cancer (n = 12) 
and 16 (2–515) CTCs in non-small cell lung cancer 
(NSCLC) (n = 12). This technology has the ability to pro-
cess approximately 1.5 L of blood in 30 minutes, which 
improves the device’s sensitivity, thereby rendering it a 
promising candidate for future CTC studies [106].

Since the number of CTCs is very tiny and the time of 
tumor cells shedding into the blood might be related to 
biological rhythms. The fluorescence in vivo flow cytom-
etry (IVFC) is developed as an emerging and power-
ful optical technique. The biggest advantage of IVFC is 
that the blood collection is not required. This technique 
could detect fluorescent circulating cells in living ani-
mals through a noninvasive manner over a long period of 
time to reduce the error caused by acquisition time [107]. 
This method helps to identify the effects of treatments, 
as sorafenib was revealed to reduce CTC count through 
fluorescence IVFC [108]. Nevertheless, IVFC has limi-
tations: 1) its detection speed is 1 μL/min, while ~ 5 L/
min blood passes through human blood vessels; 2) this 
emerging technology is still at the stage of animal models 
due to the use of fluorescent dyes; 3) it is unfavorable for 
the detection of CTC molecular typing and the study of 
biological characteristics. However, this technique is par-
ticularly useful for CTC detection and counting, which 
should be valuable for clinical monitoring and prognosis 
evaluation.

The advantages and limitations of various CTC iso-
lation and detection technologies are summarized in 
Table 1.

CTCs detachment
How to release CTCs nondestructively after catching 
them from the surface effectively remains a challeng-
ing problem that needs to be solved. Detachment from 
filters, immunoaffinity chips and other substrates using 
excessive stress may reduce the cell viability and poten-
tially induce phenotypic change, resulting in the loss of 
valuable information regarding the isolated cells [128]. 
The current technologies that hold great potential for 
CTC detachment include enzymatic digestion, oligonu-
cleotide-mediated aptamer release, and stimuli-respon-
sive polymers [56–58].

Although enzymatic digestion is applied to digest the 
extracellular matrix and detach cells, which may reduce 
other cell membrane proteins and damage cell-to-cell 
junctions, it is still the standard method of CTC release. 
In recent years, many new enzymatic degradations, 
including alginate lyase and endonuclease, have been 
developed to ameliorate the cell viability and reduce cell 
damage [56, 129]. Aptamers are burgeoning and power-
ful tools used to study CTCs that provide high stability 
resistance to a spectrum of harsh conditions, thereby 
offering a noninvasive and efficient detachment tech-
nique. In addition, aptamers can be developed against 
binding targets in the range between small compounds 
and large cell membranes or transmembrane proteins 
on CTCs [57, 130]. Similarly, polymers can reversibly 
change their conformation via deformation or dissolu-
tion in response to changes in external conditions [131]. 
Temperature-responsive polymers have been used to 
control cell adhesion with the aim of recovering cells for 
additional analyses. The third-generation NanoVelcro 
chips have demonstrated the capture of CTCs at 37 °C 
and release at 4 °C. The temperature-dependent confor-
mational changes of polymer brushes can alter the acces-
sibility of the capture agent effectively with desired CTC 
viability and molecular integrity [100]. A dual-mode 
gelatin-based nanostructured coating that can achieve 
temperature-responsive release of CTCs from peripheral 
blood was presented. The cell viability was 88.3%, and the 
recovery rate was 93.2% [132]. Another type of polymer 
commonly used are pH-responsive polymers which are 
synthesized by linking structures with weakly acidic and 
basic functional groups to a hydrophobic base. They are 
specifically triggered by the pH of the environment (by 
either accepting or releasing protons), which undergoes 
changes in physicochemical properties [58]. The ioniza-
tion of polymers can directly affect their affinity to ECM 
proteins because these proteins are negatively charged 
under physiological conditions, resulting in high cell via-
bility and recovery [80].
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Clinical relevance of CTC 
Liquid biopsy, as a noninvasive detection method, can be 
extracted from peripheral blood to detect the biological 
characteristics and molecular typing of primary tumor 
cells (Table 2).

Studies based on CTC count
Higher CTC counts in patients’ peripheral blood have 
been reported to be associated with a poor prognosis 
in various types of cancers, including colorectal cancer, 
breast cancer, lung cancer，pancreatic cancer and so on 
[16, 79, 160–162]. It has been proven that the presence 
of ≥3 CTCs per 7.5 mL of peripheral blood is a strong 
predictor of progression-free survival (PFS) reduction, 
whereas the detection of < 3 CTCs per 7.5 mL indicates 
better overall survival (OS) [133, 163]. Initial CTC counts 
as well as early changes after treatment initiation are 
closely related to the primary tumor size, the number of 
metastases, and the PFS reduction in patients with breast 
cancer [27, 164, 165]. CTC counts increase with tumor 
progression and development of distant metastases [166]. 
It has been reported that the area under receiver operat-
ing characteristic (ROC) curve for CTC count in forecast 
of distant metastasis was 0.783 [167].

CTC detection is a potential novel approach to assess 
the efficacy of neoadjuvant chemotherapy (NAC) [168]. 
Indeed, the results of studies published in the past 
5 years, involving thousands of patients with breast can-
cer, have demonstrated that the CTC counts before and 
after neoadjuvant therapy are predictive of the risk of 
disease relapse [134]. Patients with ≥4 CTCs were more 
likely to be resistant to chemotherapy than those with 
< 4 CTCs, indicating that the CTC count is a promising 
indicator in the evaluation of biological activities and 
the chemotherapy response in gastric carcinoma (GC) 
patients [127]. CTCs may be a practical surrogate marker 
with the chemotherapy response since chemotherapy 
leads to a rapid decline in CTC counts with a 50% reduc-
tion in baseline apoptotic CTC count [135, 160].

Data obtained in animal models indicate that blood 
dissemination of cancer cells occurs early during tumor 
development, which may provide the possibility to 
explore CTCs as marker for early detection [169]. It has 
been demonstrated that CTC-positive chronic obstruc-
tive pulmonary disorder (COPD) patients were exam-
ined with lung nodules 1 to 4 years after CTC detection, 
leading to prompt surgical resection and histopatho-
logical type of early-stage lung cancer. Follow-up stud-
ies conducted one-year post-surgery showed no tumor 
recurrence [170]. It seemed that CTC as a sentinel of 
tumor development could save patient lives – especially 
in asymptomatic cancers for which no routine screening 
methods are available. The initial encouraging results of 

the pilot study in patients with COPD generated public 
attention, but the results of the later validation cohort 
study confirmed that CTC detection is not suitable for 
lung cancer early detection [142]. The low sensitivity of 
CTCs for early cancer detection might be explained as 
the gradient difference of tumor cells counts between 
the tumor-draining vessels and the peripheral veins 
[171, 172]. Metastases present in lymph nodes or distant 
organs promote the pool of CTCs in peripheral blood in 
later tumor stages, which considerably increases CTC 
counts. In conclusion, CTC plays a significant role in 
early detection, dynamic monitoring, efficacy evaluation 
and prognosis judgment.

Studies based on molecular characteristics of CTC 
In addition to pure quantitative analyses, the use of CTCs 
as a tumor surrogate was concerned as one of the main 
concepts studied in clinical trials. CTCs from patient 
peripheral blood may be a novel and attractive noninva-
sive alternative for assessing tumor heterogeneity, molec-
ular tumor characteristics and changes during treatment.

Many studies have identified genes that can be used as 
prognostic markers by CTC detection, including HER2, 
ESR1, PI3KCA, PSMA, MYC, TP53 and so on [173–176]. 
Several studies have demonstrated the feasibility of eval-
uating HER2 status of CTCs in BC using CellSearch® 
[136, 177, 178]. Jaeger and colleagues have found unu-
sual inconsistency of HER2 expression between CTCs 
and the primary tumor in early breast cancer. They have 
detected HER2-positive CTCs in peripheral blood from 
patients with HER2-negative breast cancer [178]. Current 
studies have reported that HER2-negative breast cancer 
patients with HER2-expressing CTCs can still benefit 
from trastuzumab therapy [137]. ESR1 gene mutations 
have reported as a biomarker for resistance to endocrine 
therapy in BC. ESR1 mutations which rarely detected at 
the beginning of first-line endocrine therapy were signifi-
cantly enriched during disease progression, suggesting 
that ESR1 mutations conferred endocrine resistance in 
metastatic breast cancer [179]. Mastoraki et  al. investi-
gated epigenetic silencing of ESR1 and its effect on endo-
crine therapy response. ESR1 methylation was observed 
in 27.8% (10/36) of CTC-positive samples and was asso-
ciated with non-response to treatment in peripheral 
blood samples from everolimus/exemestane-treated 
patients [180]. Changes in CTC count based on PSMA 
status were determining by EPIC Sciences technology in 
a phase 2 trial evaluated the efficacy and safety of BIND-
014 in prostate cancer patients. Interestingly, PSMA-
positive CTCs were reduced preferentially compared 
with the baseline, indicating the effect of PSMA-posi-
tive CTCs as biomarkers and monitors for PSMA-based 
treatment [181]. Gene expression profiling of CTCs in 
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metastatic breast cancer suggested that CTCs associ-
ated with brain metastasis had increased activity of the 
Notch signaling pathways [182]. Another study revealed 
that overexpression of MYC and copy-number gain of 
SEMA4D (a mediator of blood–brain barrier transmigra-
tion) were novel markers for brain metastasis through a 
genome-wide assessment of CTC lines established from 
breast cancer patients [183].

The appearance of inhibitors such as PD-1 or PD-L1 
has demonstrated interesting results in certain metastatic 
cancers. In NSCLC, CTC status was assessed with Cell-
Search® and PD-L1 staining methods at baseline, and 
at 3 and 6 months in patients treated with nivolumab. 
Patients with PD-L1 negative CTCs at 6 months gained a 
clinical benefit, while patients with PD-L1 positive CTCs 
experienced tumor progression [184]. A recent study 
using CellSearch® to continuously collect blood, utilized 
PD-L1 antibodies to measure CTCs and platelets in both 
patients with metastatic breast cancer and healthy sub-
jects. More than 40% patients (52/124, 42%) detected 
≥5 CTCS / 7.5 mL whole blood, and 21 (40%) were 
PD-L1 positive for CTCs [138]. These studies showed 
that PD-L1 expression existed independently on CTCs 
and could play a role as a pharmacodynamic biomarker 
predicting which patients should receive immune check-
point suppression and therapy.

Conclusions and future perspectives
The novel discovery of CTCs as a liquid biopsy had a rev-
olutionary effect on early diagnosis, metastasis detection 
and individualized treatment of tumors [134, 162, 163]. 
Despite the advantages above, the clinical use of CTCs 
is hindered by considerable challenges because of the 
heterogeneity, fragility, singularity and incomplete gene 
expression expertise of CTCs. Methods for isolating, 
detaching, and detecting these cells in blood from cancer 
patients have been rapidly developed to address the need 
for increased specificity, sensitivity, and throughput. The 
most commonly used detection methods are based on 
specific surface antigens, physical properties and func-
tional properties of CTCs [43, 80, 185]. CTCs extracted 
from patient samples can be used for further studies to 
develop the best treatment regimen, conduct effective 
disease surveillance and discover new drug targets for 
molecular and genetic analyses [14].

However, many problems have not been solved. First, 
several biological questions remain, such as, what deter-
mines the tendency of CTC metastases and which path-
ways could be targeted for metastatic restraint of CTCs. 
Also, since trafficking of CTCs may be regulated by cir-
cadian rhythm, the distribution of CTCs in circulation 
may not be uniform. Patients with zero CTC detected at 
a given time point may not be CTC-free [186]. Repeated 

blood draws to clarify the temporal distribution of CTCs 
in patients are not realistic. IVFC could help monitoring 
CTCs dynamically to reduce the false negative rate, but 
it is still need more preclinical research to prove whether 
it can be applied in patients to solve the false negative 
results caused by detection time.

Secondly, although there are many CTC isolation and 
detection techniques, different CTC-positive ratios are 
reported from the usage of different methods. There-
fore, it is necessary to establish and improve the stand-
ardized protocols off CTC-related detection methods 
as soon as possible. The Horizon 2020 SPIDA4P aims 
to develop and implement a comprehensive portfolio of 
22 pan-European CEN and ISO standards documents, 
driving the standardization of preanalytical workflows 
applied to personalized medicine (www. spidia. eu). Due 
to the high senescence of CTCs, blood is usually placed 
in blood collection tubes with preservatives for long term 
preservation, which could result in the loss of viable CTC 
cells [187]. It is also significant to consider the volume of 
blood samples to unify CTC isolation and identification 
protocols since CTCs are rare in the bloodstream [187]. 
In addition, how many CTCs are required for a genic 
panorama of the donor is another problem under solved.

Thirdly, different CTC techniques used for detecting 
the same sample may obtain completely different results; 
thus, how to choose the most suitable CTC detection 
method is also a major problem that currently needs to 
be solved [83, 188]. A study aimed to evaluate how two 
different isolation techniques, evolving the physical (Par-
sortix®) and biological (MACS®) separation techniques, 
affect cell morphology. The researchers found that in the 
MBC patient cohort, the morphological features of CTCs 
were dependent on the separation process. CTCs with a 
preserved cell morphology were detected after physical 
separation while the identification of the cell morphol-
ogy was difficult due to the degeneration of CTCs after 
biological separation [111]. A comparative study indi-
cated that although the EpCAM-dependent CTC enrich-
ment was superior in terms of specificity compared to 
label-free CTC enrichment, it is more suitable to choose 
size-dependent enrichment approaches in considera-
tion of the evaluation of CTC molecular characterization 
[189]. Regardless, not all CTC methods are appropriate 
for downstream analysis, such as DNA analysis. It is also 
challenge to find the most suitable detection method to 
be applied in different tumor screening setting. Devices 
based on positive selection achieve the high purity in 
clinical applications but lose CTC subpopulations includ-
ing EMTed CTCs, clusters, and CTCs cloaked by blood 
cells. On the contrary, negative selection-based tech-
niques are theoretically capable of enriching all potential 
CTC subpopulations but with low purity. Along with the 

http://www.spidia.eu
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devices based on biological properties, techniques isolat-
ing and detecting CTCs based on their physical proper-
ties appear suitable for use in a clinical cytopathology 
laboratory for identification of CTC morphology and 
evaluation of CTC molecular characterization [112].

In addition, the current studies investigating the clin-
ical application of CTCs mostly focus on advanced or 
metastatic cancers and rarely involve their application 
in early-stage cancer. Can CTCs be detected reliably 
in early disease and ca be used to routinely guide can-
cer patient care are still unanswerable problems. The 
number of CTCs detected in the blood of patients with 
early-stage cancer is lower than that in patients with 
metastatic disease, requiring higher sensitivity. There-
fore, is it necessary to apply such a high-cost technique 
for the detection of rare CTCs in the patients with 
early-stage cancer?

Finally, whether the CTCs obtained by these CTC 
detection techniques are truly representative of the het-
erogeneity of the primary tumor or whether these tech-
niques could detect those so-called CTCs remains an 
unanswered question. A recent study demonstrated that 
transcriptional profiles may be altered when cells leave 
hypoxic primary lesions and enter the well-oxygenated 
bloodstream [190].

CTC analysis is a simple and feasible liquid biopsy 
technique that has attracted great attention and achieved 
great success, although there are still some problems to 
be solved. The further development of CTC diagnostic 
technology should be of great value in the individualized 
treatment of cancers.
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