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Abstract 

Natural killer (NK) cells are unique innate immune cells and manifest rapid and potent cytotoxicity for cancer immu-
notherapy and pathogen removal without the requirement of prior sensitization or recognition of peptide antigens. 
Distinguish from the T lymphocyte-based cythotherapy with toxic side effects, chimeric antigen receptor-transduced 
NK (CAR-NK) cells are adequate to simultaneously improve efficacy and control adverse effects including acute 
cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GVHD). Moreover, considering the 
inherent properties of NK cells, the CAR-NK cells are “off-the-shelf” product satisfying the clinical demand for large-
scale manufacture for cancer immunotherapy attribute to the cytotoxic effect via both NK cell receptor-dependent 
and CAR-dependent signaling cascades. In this review, we mainly focus on the latest updates of CAR-NK cell-based 
tactics, together with the opportunities and challenges for cancer immunotherapies, which represent the paradigm 
for boosting the immune system to enhance antitumor responses and ultimately eliminate malignancies. Collectively, 
we summarize and highlight the auspicious improvement in CAR-NK cells and will benefit the large-scale preclinical 
and clinical investigations in adoptive immunotherapy.
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Introduction
Anticancer immunotherapies, including adoptive cyto-
therapy and checkpoint inhibitors, have present as 
novel pillars with oncology management [1, 2]. For dec-
ades, pioneering investigators have devoted to verify 
the interactions between the responses of the human 
immune system and numerous cancers or invaders such 
as bacteria and viruses, which collectively accelerate the 

development of clinically effective cancer immunother-
apy [3, 4]. However, those reported “immune enhance-
ment” strategies have a series of disadvantages such 
as rare objective responses and concomitant immune-
related adverse events (irAEs), which could be largely 
alleviated by the termed “immune normalization” (e.g., 
PD-1/PD-L1) with more beneficial cancer response-to-
toxicity profile [4].

Current studies have indicated the diversity of can-
cer immunotherapies together with the potentially 
combined strategies in multiple indications [5, 6]. For 
instance, we and other investigators have reported the 
successful generation of T lymphocyte-mediated tac-
tics including chimeric antigen receptor-modified T 
(CAR-T) cells and T cell receptor-engineered T (TCR-
T) cells as well as tumor-infiltrating lymphocytes (TILs) 
and regulatory T (Treg) cells in eliminating malignant 
hematologic tumors (e.g., B acute lymphoblastic leu-
kemia) and metastatic solid tumors (e.g., HBV-related 
hepatocellular carcinoma, head and neck squamous 
cell carcinoma) processed by antigen-presenting cells 
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(APCs) and fine-tuned by co-stimulatory or co-inhibi-
tory signals [6–12]. However, the adoptive T cell-based 
immunotherapy severely constrained by the major 
limitation of the rapidly declined cellular viability and 
function, together with the requirement of concurrent 
administration of the adjuvant drugs after transplan-
tation [13]. Moreover, due to the alteration in genetic 
mutation and cell-surface biomarker expression and 
the resultant off-target effects, tumor escape has 
become a common but intractable outcome of malig-
nant transformation and identification of more optimal 
candidates or personalized neoantigens seems bound-
less [14–16]. Collectively, the autologous T lympho-
cytes, including the classical T cell receptor-engineered 
T (TCR-T) cells and CAR-transduced T (CAR-T) cells, 
are labor-intensive to manufacture and logistically chal-
lenging to personalized deliver to inpatients.

In consequence, state-of-the-art renewal has turned 
to rediscover the immune recognition and eradication 
of tumor cells by comminating with immune check-
point blockade (e.g., CTLA4, PD-1/PD-L1), and in par-
ticular, to harness the innate immune response with 
moderate cytotoxicity and reduced adverse effects [17, 
18]. Of the indicated innate immune cells such as mac-
rophages (Mø) and dendritic cells (DCs), autologous or 
allogeneic NK cells are adequate to fulfill the biofunction 
of combating malignant tumors and pathogenic micro-
organisms via paracrine effects (e.g., IFN-γ, GM-CSF), 
antibody-dependent cell-mediated cytotoxicity (ADCC) 
and direct cytolytic effect dispense with preliminary anti-
gen presentation as well as manipulating other immune 
contextures to recognize and attack cancer cells [1, 5, 
19–21]. However, the heterogeneous tumor cells with 
genetic or epigenetic variations are also sufficient to 
elude the immunological surveillance and even reversely 
suppress NK cell cytotoxicity by interdicting the cor-
responding activating receptors [5, 22, 23]. Considering 
the deficiency of CAR-T and non-gene-edited NK cells, 
CAR-NK cells have been recognized as novel therapeutic 
options aiming at reducing the incidence of relapse and 
attaining complete remission. Of note, considerable pro-
gresses have been achieved in an increasing number of 
therapeutic dimensions ranging from preclinical studies 
to clinical practices [24].

Therefore, in this review article, we mainly summarize 
the key elements and current advances of CAR-NK cell-
based immunotherapy including cell sources, novel tar-
get selection, design of CAR construction, mode of CAR 
transduction, and ultimately discuss the opportunities 
and challenges of adoptive CAR-NK cell-based cancer 
immunotherapy. Collectively, the CAR-NK cell-mediated 
cytotherapy has constituted a promising area of cellular 
immunotherapy innovation.

Cell sources for CAR‑NK cells
NK cell lines
Generally, considering the difficulty in isolating, puri-
fying and expanding primary NK cells as well as the 
inefficiency in transducing CAR constructs, the well-
established NK cell lines with indefinite expansion capac-
ity have been used in clinical practice [25]. Notably, the 
representative IL-2 depend NK-92 cell line and the NK-
92MI derivation exhibit splendid advantages of easy 
expansion, cultivation and activation in the context of 
lymphodepletion, together with sustainable and reli-
able cytotoxicity after infusion against leukemia cells 
(Fig.  1) [24]. For example, Boyiadzis and the colleagues 
conducted a phase 1 clinical trial of NK92 cell-based 
adoptive immunotherapy in patients with refractory and 
relapsed acute myeloid leukemia (AML) and confirmed 
the feasibility, safety and strong anti-leukemia activity 
[26]. Simultaneously, it’s noteworthy that NK92 cells are 
originated from patients with non-Hodgkin’s lymphoma 
and thus require irradiation prior to infusion to eliminate 
risks of malignant transformation and the accompanied 
chromosomal abnormalities [27]. Another preclinical 
study upon AML immunotherapy by Kloess et al verified 
that engineered CD123-CAR-NK-92 cells showed higher 
levels of granzyme and interleukin secretion and prefer-
able cytotoxic activities over the primary human donor-
derived CD123-CAR-NK cells, while revealed significant 
side effects against nonmalignant cells as well [28]. Addi-
tionally, Binyamin et al. found that NK-92 cells revealed 
enhanced ADCC by blocking the inhibitory receptors 
(e.g., KIR2DL1, KIR3DL1) and combining with rituximab 
[29].

Another classical NK cell line YT with the prostate can-
cer cell antigen PSMA transduction and shp-2 (PTPN11) 
deletion has been indicated with enhanced cytotoxicity 
[30]. Meanwhile, the leukemic cell line YT has also been 
proved with spontaneous cytotoxicity against B lym-
phoma and specifical lytic effect upon AML by targeting 
 CD80+/CD86+ B lymphoblastoid cells and  CD33+ leuke-
mia cells, respectively [31, 32]. Despite the increasing ref-
erences of CAR-NK cell-based cancer immunotherapy, 
yet most of the current studies are preclinical. However, 
the observations of the existing studies are favor of novel 
treatment concepts employing CAR-NK cell lines with 
potent degranulation and selective cytotoxicity in malig-
nancies [33].

Peripheral blood‑derived NK (PB‑NK) cells
In peripheral blood, NK cells account for a propor-
tion of 5–20% of leukocytes, which are divided into the 
dominating  CD56dimCD16high subset (85–95%) and 
the minimal  CD56brightCD16low/neg subset (5–15%) [5, 
34]. Besides, PB-NK cells express a wide range of active 
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receptors and thus hold potential as splendid sources for 
adoptive CAR-NK cell generation (Fig. 1) [21, 35]. In gen-
eral, resting PB-NK cells reveal a tremendous prolifera-
tive  CD3−CD56bright cellular phenotype and are capable 
of secreting immunomodulatory cytokines, while the 
 CD3−CD56dim counterpart possesses highly cytotoxicity 
and poor proliferation in response to cytokine stimula-
tion (e.g., IL-2) [36].

To date, autogenous and allogeneic donor-derived 
PB-NK cells and CAR-PB-NK cells have been most effec-
tive in the treatment of acute leukemia (clinically effective 
doses ranging from 1 ×  106/kg to 9.3 ×  106/kg) whereas 
with relatively minimal activity against solid tumors 
[37–39]. Recently, a preclinical study by Quintarelli et al 
confirmed that CD19-CAR-transduced PB-NK cells were 
sufficient to mediate robust cytotoxicity against B-cell 
precursor acute lymphocytic leukemia (Bcp-ALL) and 
maintain the function of all “native” NK coreceptors after 
genetic modification [40].

Umbilical cord blood‑derived NK (UC‑NK) cells
Differ from PB-NK cells, NK cells in umbilical cord blood 
(UC-NK) only account for a proportion of approximately 
5% of total mononuclear cells (TNCs) but offer unique 

alloreactive advantages for adoptive immunotherapy and 
boost the potential as a third-party product for extensive 
clinical scalability (Fig. 1) [36, 41]. In spite of the higher 
percentage of naïve NK cell population in circulating 
umbilical cord blood, yet most of the UC-NK cells were 
adequate to differentiate into functionally mature and 
active effector cells and thus the successful acquisition of 
functional competence after ex vivo co-stimulation with 
cytokine cocktails (e.g., IL-2, IL-7, IL-12, IL-15, IL-18) 
[36, 42]. For example, Xing et al reported the low cytol-
ytic activity of resident UC-NK cells in vivo attribute to 
impaired lytic immunological synapse formation as well 
as the enhancement by IL-2 stimulation during ex  vivo 
expansion and activation [43]. Collectively, the existing 
literatures indicate that UC-NK cells are phenotypically 
and functionally immature but are capable of maturation 
[42].

Of note, an increasing number of investigators have 
turned to UC-NK cells for generating preclinically or 
clinically tested CAR-NK cells [44]. For instance, a fist-
in-human phase 1/2 clinical trial identified the feasi-
bility of lympho-depleted CAR-UC-NK cells for the 
treatment of recurrent and refractory  CD19+ B-cell lym-
phoma including seven cases with complete remissions 

Fig. 1  The schematic diagram of the sources of NK cells
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without causing major toxic effects [45]. Despite the 
once reported generation of over 100 engineered CAR-
NK cell doses from one cord blood unit, yet the UC-NK 
cells have noteworthy limitations in cell mass for large-
scale adoptive immunotherapy but with high level of the 
inhibitory receptor NKG2A expression and poor in vitro 
cytotoxicity [36, 42, 46].

Placental blood‑derived NK (P‑NK) cells
In spite of the rare content of P-NK cells (< 2%) in TNCs, 
yet placental blood is more abundant compared to the 
aforementioned adult peripheral blood and umbilical 
cord blood (Fig.  1). Meanwhile, current strategies have 
indicated the high-efficient generation of clinical-grade 
 CD3−CD56+ NK cells (an average of nearly 1.0 billion 
NK cells per donor) with remarkably increased antitumor 
cytolytic activity from placenta perfusate [38]. Compared 
to UC-NK cells, the derived P-NK cells are largely similar 
to UC-NK cells phenotypically and functionally, but dis-
play distinct microRNA expression profiles, immunophe-
notypes and superiority in killing a wide range of cancer 
cell lines in vitro and thus hold potential for CAR-P-NK 
cell-based immunotherapeutic development [38, 47]. 
Notably, Guo et al very recently raised the possibility of 
enhancing cytotoxicity of P-NK cells via CRISPR/Cas9-
induced CBLB ablation [48].

Stem cell‑derived NK cells
Currently, prospective studies have also indicated the fea-
sibility of deriving mature NK cells from  CD34+ hemat-
opoietic stem/progenitor cells (HSPCs). In a preclinical 
study upon AML xenograft model, Cany et  al reported 
the proof-of-concept safety and efficiency of target-
ing bone marrow-residing leukemia cells via the CCR6/
CCL20 and CXCR3/CXCL10–11 axis in NOD/SCID/
IL2Rgnull mice [49].

Human pluripotent stem cells (hPSCs), including 
human induced pluripotent stem cells (hiPSCs) and 
human embryonic stem cells (hESCs), possess self-
renewal and multi-lineage differentiation potential 
[50–52]. During the past decades, we and other investi-
gators have reported the generation of progenitor cells 
and functional cells from hPSCs including mesenchymal 
stem/stromal cells (MSCs), megakaryocytes (MKs) and 
NK cells [50, 53]. Notably, differ from other cell sources 
with dominating limitations in NK cell survival and pro-
liferation, hPSC-NK cells can be manufactured from the 
standardized hPSC population and thus satisfy the clini-
cal demands for large-scale, homogeneous CAR-NK cell 
products (Fig. 1) [54, 55]. Meanwhile, considering the rel-
atively low efficiency of CAR transduction into primary 
NK cells, the deficiency of adult PB-NK cells and perina-
tal UC-NK cells and P-NK cells in cellular activity against 

solid tumors might be overcome by the genetically modi-
fied CAR-hPSC-NK cells via viral or non-viral strategies 
as hypothesized by pioneering investigators [54, 56].

Moreover, it is considered that CARs can be easily and 
conveniently delivered into hPSCs by utilizing the non-
viral transgenic strategy [57, 58]. For example, Ni and the 
colleagues reported the integration of chimeric recep-
tor CD4ζ into hPSC-derived NK cells (CD4ζ-hESC-NK 
cells, CD4ζ-hiPSC-NK cells) with improved efficacy upon 
human immunodeficiency virus (HIV)/AIDS [57]. Of 
note, Li et al recently highlighted the feasibility of trans-
ducing CAR constructs with conventional NK cell-spe-
cific intracellular activating domains into iPSC-NK cells 
(CAR + iPSC-NK cells) for the further optimization of 
tumor-specific recognition and cytotoxicity [59].

Memory‑like NK (ML‑NK) cells
Cytokine-induced ML-NK cells with the dominant 
NKG2A checkpoint expression, phenotypically distinct 
from the in vivo conventional NK cells, have been consid-
ered safe and sufficient to induce remissions in patients 
with AML, which are recognized as new avenues to facili-
tate CAR-NK cell therapeutics (Fig. 1) [60, 61]. Therefore, 
we and other investigators presume that CAR-ML-NK 
cells possess more potent and flexible response to a vari-
ety of cancer cell-associated triggers compared to the 
conventional NK cells [62, 63]. It’s noteworthy that the 
differentiated memory-like CAR-NK cells displayed ele-
vated activating receptors against myeloid leukemia and 
prolonged survival in vivo dispense with the typical KIR-
KIR ligand interactions [61, 64]. Meanwhile, numerous 
preclinical data have demonstrated the superior degran-
ulation and IFN-γ-associated response of CAR-NK cells 
as well as enhanced cancer cell killing and ADCC effect 
against tumor cells [65, 66].

Notably, peripheral blood-derived ML-NKs with a 
truncated CD-19-CAR transduction were phenotypically 
and functionally mature and manifested significantly 
raised IFN-γ secretion and degranulation, broaden rec-
ognition and specific killing against NK-resistant lym-
phoma compared to the conventional CAR-NK cells or 
no-specific NK cells [63]. Moreover, Foltz et al reported 
that the CAR-NK cells could even survive and persist 
in vivo for over 2 months following adoptive transfer in 
the immune compatible environment, which would be 
significant improvement of the short lifespan of conven-
tional NK cells.

Targets for CAR‑NK cells
Aiming to generate novel CAR-NK cell-based cancer 
therapeutics, the consideration of tumor-specific surface 
antigens and the costimulatory molecules is the first-line 
decision to be made by investigators [55]. Direct transfer 
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of CAR structures involved in CAR-T (e.g., CD19, CD3ζ, 
4-1BB, CD28) into NK cells is the predominantly ini-
tial CAR-NK cell-based studies (Fig.  2, Table  1) [111, 
112]. For instance, there are a series of activating recep-
tors such as TNF-related apoptosis-inducing ligands 
(TRAILs), co-stimulatory receptors (e.g., CD244, CD137) 
and the well-established subsets (e.g., FcgRIIIa, FasL, 
NKG2D, NKp44, NKp46), which are capable of provok-
ing cytolytic programs via intra-cytoplasmic ITAMs (e.g., 
2B4, 41BB) [59, 113, 114]. Significant efforts have been 
made to enhance CAR-NK cell responses against surface 
antigens by multiple targeted activation such as CD19, 
CD20, CD22, CD276, CD138, CS1, HER-2, NKG2D and 
GD 2 [5, 67, 69, 115, 116].

Nowadays, several groups further indicated the re-
designment of CAR-NK cells with NK cell signaling-
associated domains to enhance the antitumor efficacy 
by improving cytotoxicity and INF-γ secretion such as 
DAP-10, DAP-12, 2B 4 [117]. Nevertheless, due to the 
rare tumor-specific cell-surface antigens, CAR-NK cells 
also endure the main disadvantages of requiring extra-
cellular surface expression of specific targets on cancer 
cells, which thus restrict the broadness and specificity of 
CAR-NK cell application [4, 118]. To overcome the short 

lifespan and transient cytotoxic activity of CAR-NK cells, 
Zhang et  al recently transduced the homodimers and 
heterodimers of ErbB2/HER2-specific CARs with CD3ζ 
and composite CD28ζ signaling domains into NK-92/63.z 
cells to induce long-lasting endogenous cytotoxicity 
against immunocompetent glioblastoma (Fig. 2, Table 1) 
[87].

Construction of CARs
Generally, the CARs are engineered receptor proteins 
to enable NK cells with novel ability to target cancer 
cell-specific antigen proteins, which are composed of an 
intracellular activating signaling domain, a transmem-
brane region and an extracellular antigen binding domain 
(Fig.  2, Table  1) [55]. The intracellular activating signal-
ing domains (e.g., CD137, CD28) mainly mediate the 
activation and cytotoxicity of CAR-NK cells, while the 
extracellular antigen binding domains (e.g., the single-
chain variable fragments) recognize the specific anti-
gen of tumor cells [21]. For example, Quintarelli and the 
colleagues reported the successful design of retroviral 
plasmid carrying the cassettes of a second-generation 
CD19-CAR construct and transduced into PB-NK cells 
for Bcp-ALL management [40]. Simultaneously, another 

Fig. 2  The overview of the constructs and targets of CAR-NK cells
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Table 1 Targets for CAR-NK cell generation

Target Tumor References

CD19 Acute lymphocytic leukemia (ALL) Romanski, et al [67]

CD7 Acute lymphocytic leukemia (ALL) You, et al [68]

CD5 Acute lymphocytic leukemia (ALL) Xu, et al [69]

FLT3 Acute lymphocytic leukemia (ALL) Oelsner, et al [70]

CD33 Acute myelocytic leukemia (AML) Tang, et al [71]

CD123 Acute myelocytic leukemia (AML) Klöß, et al [72]

CD4 Acute myelocytic leukemia (AML) Pinz, et al [73]

HER2 Breast cancer Schönfeld, et al [74]

EpCAM Breast cancer Sahm, et al [75]

TF Breast cancer Hu, et al [76]

EGFR Breast cancer Chen, et al [77]

NKG2D Breast cancer Chang, et al [78]

CD19 Chronic lymphocytic leukemia (CLL) Boissel, et al [79]

EpCAM Colorectal cancer Zhang, et al [80]

CEA Colorectal cancer Shiozawa, et al [81]

NKG2D Colorectal cancer Xiao, et al [82]

GD2 Ewing sarcoma Kailayangiri, et al [83]

HER2 Gastric cancer Wu, et al [84]

EGFRvIII Glioblastoma Han, et al [85]

EGFR Glioblastoma Han, et al [85]

CD73 Glioblastoma Wang, et al [86]

HER2 Glioblastoma Zhang, et al [87]

ROBO1 Glioma and Neuroblastoma Qu, et al [88]

GPC3 Hepatocellular cancer (HCC) Huang, et al [89]

NKG2D Hepatocellular cancer (HCC) Chang, et al [78]

c-MET liver cancer Liu, et al [90]

NKG2D Lung cancer Lu, et al [91]

Target Tumor References
B7-H3 Lung cancer Yang, et al [92]

CD19 Lymphoma Gang, et al [63]

CD4 Lymphoma Pinz, et al [73]

GPA7 Melanoma Zhang, et al [93]

CD138 Multiple Myeloma Jiang, et al [94]

CS1 Multiple Myeloma Chu, et al [95]

BCMA Multiple Myeloma Ng, et al [96]

GD2 Neuroblastoma Esser, et al [97]

CD276 Neuroblastoma Elahi, et al [98]

aFR Ovarian cancer Ao, et al [99]

HER2 Ovarian cancer Kruschinski, et al [100]

Mesothelin Ovarian cancer Cao, et al [101]

GPC3 Ovarian cancer Ueda, et al [102]

NKG2D Ovarian cancer Ng, et al [103]

Mesothelin Pancreatic cancer Batchu, et al [104]

ROBO1 Pancreatic cancer Li, et al [105]

PSMA Prostate Montagner, et al [106]

HER2 Renal cell carcinoma (RCC) Schonfeld, et al [74]

EGFR Renal cell carcinoma (RCC) Zhang, et al [107]

PSCA Ladder carcinoma Topfer, et al [108]

HLA-G Kidney renal clear cell carcinoma, Kidney renal papillary cell carcinoma, Pancreatic 
ductal adenocarcinoma, Thyroid cancer

Jian, et al [109]
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preclinical study reported the splendid efficiency of CAR-
NK-92 and CAR-NK-92MI cells with the second- or 
third-generation CARs targeting CD3ζ and CD5 domains 
against mouse model of T-cell malignancies, respectively 
[69, 119]. Very recently, Daher et al took advantage of the 
fourth-generation “armored” CARs for generating CAR-
UC-NK cells by targeting the cytokine-inducible SH2-
containing (CIS) protein, which efficiently boosted NK 
cell antitumor activity against lymphoma xenografts and 
resulted in enhanced aerobic glycolysis [41, 120].

Therewith, due to the potentially excessive cytokine 
secretion of CAR-NKs, there is a possibility that the 
fourth-generation of CARs might cause unanticipated 
toxicity and should reinsert suicide genes (Fig. 2, Table 1) 
[121]. Collectively, the genetically engineered CAR-NK 
cells contain a typically extracellular antigen-binding 
domain, a hinge and transmembrane region and the 
concomitant intracellular costimulatory domains from 
receptors, which represents the paradigmatic design of 
utilizing engineered NK cells for effective attack of can-
cer cells [4, 122]. Of note, the choice and design of the 
NK cell activating receptor (e.g., NKG2D, DAP10) and 
remaining domains of the CAR construct, including the 
aforementioned transmembrane domains (e.g., CD28), 
co-stimulatory domains and signaling domains (e.g., 
CD3ζ), together with the NK cell subtypes, should be 
taken into incorporated consideration [55].

CAR transduction
CAR-transduced cytotherapy was initially advocated 
using autologous T lymphocytes (CAR-T) and obtained 
great success in treating hematological malignancies 
whereas marginal success in facing solid tumors largely 
attributes to the highly immunosuppressive cancer 
microenvironment [9, 122, 123]. Advances in genome 
editing technique and the applicability of the approach 
have vastly accelerated the development of designer 
CAR-NK cell therapy products, which are currently being 
tested in both preclinical studies and clinical trials [55].

Retrovirus
For decades, a plethora of groups have reported the suc-
cessful transduction of CAR constructs into expanded 
NK cells by utilizing a single round of retroviral vector-
based method ranging from 27 to 52%, and in particular, 

an even higher efficient transduction (approximately 
70%) has been achieved by Imamura and the colleagues 
for IL-15 expression [124, 125]. Strikingly, Daher and 
the colleagues compared the retrovirus transfection of 
iC9.CAR19.CD28-z-2A-IL-15 (with IL-15) with CAR19.
CD28-z (without IL-15) into UC-NK cells, and confirmed 
the feasibility of high-efficient CAR-NK cell generation 
and the persistence of in vivo antitumor activity in xeno-
geneic lymphoma models [41]. Furthermore, Suerth et al 
systematically compared different retroviral pseudotypes, 
retroviral vector systems and transduction protocols, 
and verified that the highest (up to 60%) transduction 
levels of CAR-19 expression cassette were achieved with 
α-retroviral plasmids into primary human NK cells [126]. 
Simultaneously, the retrovirus-based gene-delivery vehi-
cles also have main obstacles to widespread clinical appli-
cations including the immunogenicity and insertional 
mutagenesis as well [58].

Lentivirus
As with retrovirus, lentiviral also have been widely used 
by preclinical studies for CAR vector transduction into 
NK cells such as UC-NK cells, PB-NK cells, iPSC-NK 
cells and ML-NK cells. For example, talented investiga-
tors utilized the scFvs-based CD33-CAR and CD19-CAR 
lacking the immunoreceptor tyrosine-based activation 
motif (ITAM) domains to manufacture the second-gener-
ation CARs with CD3ζ and CD137 intracellular domains 
[63, 127, 128]. Simultaneously, Oelsner and other investi-
gators verified that gene-modified CAR-NK-92 cells after 
lentiviral-mediated gene transfer displayed stable and 
homogeneous CD-19-and CD20-specific CAR expres-
sion, high and specific ADCC against lymphoma and leu-
kemia cells [5, 33, 129].

Nonviral‑mediated transfection
To overcome the major barriers of low-efficient 
exogenous gene transfer into the primary NK cells, a 
certain number of research groups turn to the nonvi-
ral-mediated transfection such as lipofection and elec-
troporation [58, 130]. Of them, the nonviral plasmids 
are emerging as promising alternatives and facilitate 
clinical CAR-NK cell-based cancer immunotherapy 
[58]. Compared to the aforementioned virus-mediated 
strategies, the nonviral methods revealed transient 

Table 1 (continued)

Target Tumor References

Mesothelin Ovarian cancer Li, et al [59]

CD20 Lymphoma, Leukemia cells Muller, et al [110]

NKG2D Osteosarcoma Chang, et al [78]
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and rapid expression of CAR-conjunct genes as well 
as less variability and apoptosis, whereas the gener-
ated CAR-NK cells showed declined expression level 
of transgenes due to the non-integrated property [58]. 
Of note, the current progresses of transfection tech-
nologies, including the DNA transposon systems com-
posed of the PiggyBac (PB) and the sleeping beauty 
(SB) subsets, are sufficient to deliver CAR structures 
into the genomes of primary NK cells or iPSCs with 
long-lasting transgene expression [131].

Collectively, the transposon systems for high-effi-
cient CAR-NK cell generation have splendid advan-
tages such as increased biosafety, rapid and persistent 
transgene expression, low immunogenicity, cost-effect 
and capacity for large gene fragment (> 100 kb) trans-
duction, which make them attractive options for 
CAR-NK cell manufacturing [130]. Nevertheless, con-
sidering the dissatisfactory efficiency in current trans-
duction and the potential advances in CAR construct 
design, the next-generation of CAR-NK cells might 
cause fewer cytotoxicity and even ultimately eliminate 
the demands for suicide genes or safety switches [121].

CAR‑NKs in cancer immunotherapy
Nowadays, CAR-NK cell-mediated immunotherapy 
has grown exponentially and emerged as an alternative 
treatment option for patients with metastatic malignan-
cies (Fig. 3, Table 2). Despite the manifestation of CAR-
NK cells in cancer immunotherapy has been extensively 
explored, yet most of the applications in numerous tumor 
models are relatively restricted and mainly staying at the 
preclinical stage [5, 24]. Clinically approved second-gen-
eration CAR-NK cells usually contain the CD3ζ domain 
in combination with either a 4-1BB (Kymriah®) or CD28 
(Yescarta®) co-stimulatory domain, and prominently 
focus on  CD19+ lymphoid-derived hematologic malig-
nancies [55].

Hematological malignancies
Similar to CAR-T-based immunotherapy, CAR-NK cells 
were initially introduced to combat with hematologi-
cal malignancies such as lymphoma, myeloma and leu-
kemia (Fig.  4, Table  2) [121, 122]. Current studies have 
indicated the preferable efficiency of CD19-CAR-NK 
cells in combating lymphoid malignancies over CAR-T-
based cellular immunotherapy, which largely attribute to 
the aforementioned merits [55, 132]. For example, a pre-
clinical study took advantage of the UC-NK cells and the 

Fig. 3  The distribution of CAR-NK cell-based clinical trials worldwide
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fourth-generation iCas9.CAR-19-CD28-ζ-IL15 plasmid 
with a suicide gene for Raji lymphoma xenograft model 
treatment, the CD19-CAR-UC-NK cells exhibited pref-
erable antitumor efficacy and enhanced persistence over 
the non-transduced UC-NK cells [46].

Simultaneously, the first large-scale trial of HLA-mis-
matched CAR-UC-NK cell-based immunotherapy (Clini-
calTrials.gov number: NCT03056339) in combination 
with lymphodepleting chemotherapy for 11 patients with 
 CD19+ CLL and B cell lymphoid tumors has shown safety 
and inspiring clinical outcomes (response rate: 73%; com-
plete remission rate: 64%) within 30 days [45]. However, 
as commented by Karadimitris, CAR-UC-NK cells could 
also result in high rate of non-durable clinical response, 
which suggested the favorable initial toxicity and efficacy 
but uncertain durability of clinical manifestation of CAR-
NK-based leukemia immunotherapy [133].

Metastatic solid tumors
In recent years, CAR-T cell immunotherapy has revealed 
promising therapeutic manifestation in a series of 

hematologic malignancies, yet also with considerable 
drawbacks and limitations in metastatic solid tumor 
management as well (Fig.  4, Table  2) [55, 134]. Consid-
ering the intrinsic and advantaged properties, including 
substantially cytolytic ability, non-MHC-restricted rec-
ognition, natural infiltration in tumor tissues and conven-
ience for their preparation as well as minimal untoward 
effects (e.g., CRS, GvHD and neurotoxicity), engineered 
CAR-NK cells are supposed as promising therapeutic 
option for solid tumor administration in clinical prac-
tice [54, 134, 135]. Currently, CAR-NK cells have been 
preclinically tested in multiple solid tumors including 
breast cancer, ovarian cancer, pancreatic cancer, colon 
cancer, glioblastoma, hepatocellular carcinoma, head and 
neck squamous cell carcinoma (HNSCC) [90, 117, 136, 
137]. For example, numerous preclinical studies have 
confirmed the efficacy of CAR-NK cells upon CXCL12/
SDF-1α secreting glioblastoma and epithelial cell adhe-
sion molecule (EpCAM) positive colorectal cancer cells 
in xenograft model by targeting EGFRvIII via intravenous 
infusion [80, 138].

Fig. 4 The dissection of CAR-NK cell-based clinical trials A-B. The status (A) and phase (B) of CAR-NK cell-based clinical trials. C. The detailed 
distribution of CAR-NK cell-based clinical trials in cancer immunotherapy
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However, there are very limited clinical data existing 
on the potential of CAR-NK cells in solid tumor treat-
ment (Fig. 4, Table 2) [117]. For instance, the outcomes 
of three phase I/II clinical studies of allogeneic ROBO-
1-CAR-NK-92 cell-based cellular immunotherapy in pan-
creatic ductal adenocarcinoma (PDAC) and relative solid 
tumors with ROBO-1 expression for enrolled patients in 
China (NCT03940820, NCT03941457, NCT03931720) 
ulteriorly indicated the feasibility for non-hematological 
neoplasm treatment with CAR-NK cells [117, 135, 139]. 
Another phase II trial of PD-L1-CAR-NK cell-based 
immunotherapy combined with IL-15 agonist (N-803) 
and pembrolizumab (NCT04847466) is currently 
launched in the United States. Therefore, integration of 
the CAR-NK cells and antitumor drugs is promising for 
further altering immunosuppressive tumor microenvi-
ronment (TME) and administrating the aggressiveness 
and the metastatic ability of the resistant tumors [117].

Conclusion and perspective
The heterogeneous NK cell population is advantaged 
immune cells with powerful cytotoxic activity and plays 
a unique role in both innate and adoptive immune 
responses, while the signatures could be eluded by tumor 
microenvironment [118, 140–142]. NK cells engineered 
with CAR expression (CAR-NK cells) have been cele-
brated as a landmark breakthrough of anti-tumor immu-
notherapy by discerning germline-encoded cell surface 
receptors between healthy and cancer tissues [143, 144]. 
Differ from NK cells and CAR-T cells, the genetically 
modified NK (CAR-NK) cells have superiority in fur-
ther augmenting the specificity and cytotoxicity of adop-
tive NK cells without causing adverse effects including 
GvHD, CRS or immune cell- associated neurotoxicity 
syndrome (ICANS) [5, 60, 143, 145]. Thus, CAR-NK cells 
with favorable cytotoxicity, short lifespan and low manu-
facturing costs have been considered as promising alter-
natives to engineered CAR-T cells [143].

Despite the encouraging progress of CAR-NK cell-
based immunotherapy, the discontented response-to-
toxicity ratio and the insufficiently broad spectrum of 
indications further limit the application of these therapies 
[4]. Moreover, compared to the updates of CAR-T-based 
immunotherapy, the number of clinical trials and the 
detailed information of CAR-NK cell infusion in patients, 
including the in  vivo spatio-temporal metabolism and 
host factors in the microenvironment that reversely 
contribute to CAR-NK cells, have not been extensively 
investigated [60]. Generally, compared to CAR-T cells, 
CAR-NK cell-based adoptive immunotherapy is also 
restricted to the major limitations before large-scale 
practical application such as insufficient capacity in pro-
liferation and activation in  vivo and durability, together 

with the obstacle in preparation of CAR-NK cells (e.g., 
low genetic transfection efficiency, low proportion of 
NK cells in blood, and limited amplification efficiency) 
[133, 146]. Conversely, CAR-NK cells have various mer-
its over CAR-T cells due to their unique biological char-
acteristics [117]. On the one hand, CAR-NK cells can be 
conveniently prepared from a wider range of autogenous 
and allogeneic sources without causing severe adverse 
reaction (e.g., aGVHD, CRS) by CAR-T-based implanta-
tion. On the other hand, CAR-NK cells are adequate for 
cell immunosurveillance dispense with pre-sensitization 
and thus have more flexible killing capacity upon both 
hematologic and solid tumor cells over CAR-T cells via 
both the CAR-dependent manner and CAR-independ-
ent intrinsic mechanisms, which thus provide alterna-
tive strategies for conquering tumor escape and varied 
adverse events (e.g., “on-target, off-tumor toxicity” dur-
ing CAR-T application) [5, 112, 117, 147].

Nevertheless, the success of CAR-NK cells in the 
administration of multiple malignancies provides proof-
of-principle for harnessing the immune system thera-
peutically, yet the short lifespan (2 weeks) and in  vivo 
kinetics (e.g., proliferation rate, ageing) of CAR-NKs 
also narrows the therapeutic window and the resultant 
short duration of responses after infusion [122, 148, 149]. 
Therefore, the ex  vivo expansion and activation of pri-
mary NK cells as well as the storage and shipping of NK 
cells for large-scale CAR-NK cell generation are prereq-
uisites for ensuring the safety and effectiveness in  vivo. 
For instance, a series of methodologies have been con-
tinuously developed for the persistence and activation of 
primary NK cells such as feeder cell stimulation (e.g., the 
irradiated PBMCs, K562-mb15-41BBL cells, EBV-LCLs) 
[150–153], cytokine cocktail (e.g., IL-2, IL15, 1 L-18) [14, 
35] and physicochemical irritation (e.g., bioreactors with 
an assorted bag) [154]. Of note, it is great important to 
improve the freezing and shipping conditions (e.g., refrig-
eration, liquid nitrogen, drikold) for sustaining primary 
NK cell vitality, which will finally help CAR-NK cells 
necessitate adaptation of cancer immunotherapy under 
GMP conditions [5, 155].

Therefore, before large-scale application in can-
cer immunotherapy, a cohort of central issues in basic 
research and clinical practice of CAR-NK cells need to 
be improved. Firstly, many healthy tissues of the body 
also express cancer-associated surface antigens on tumor 
cells, which might cause potential off tumor or on tar-
get toxicity of CAR-NK cells. Current pioneering stud-
ies have suggested the engineering solution by inserting 
suicide genes or transducing genes encoding cytokines 
into the CAR-transduced effectors to prolong the in vivo 
persistence, respectively [45, 118, 156]. Secondly, the les-
sons learned from modified T cells (e.g., CAR-T, TCR-T) 
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and NK cells in the administration of malignancies are 
worthy to be further exploited in CAR-NK cell-mediated 
cancer immunotherapy in future such as the optimiza-
tion of large-scale NK cell-expansion approaches, antigen 
targets including the chimeric co-stimulatory convert-
ing receptors (CCCRs), structures with nanobodies and 
delivery efficiency as well as the selection of ideal patient 
populations in clinical trials [91, 111, 117]. Likewise, 
the potential tumor escape from CAR-NK cell cytotox-
icity by shedding pivotal ligands and even via immuno-
suppressive tumor microenvironment should also take 
into consideration [14, 140, 157]. In particular, the piv-
otal signaling pathways and inhibitory checkpoints (e.g., 
CIS) that orchestrate CAR-NK cell “fitness” (e.g., effec-
tor function, survival and differentiation) and biofunc-
tion in tumor microenvironments have not been well 
defined [41, 120, 158]. Thirdly, despite CAR-NK cells 
are considered as “off-the-shelf” cancer immunotherapy, 
there’s still a long way before the large-scale generation 
of clinical-grade products under good manufacturing 
practice (GMP) and convenient to universally save the 
lives of inpatients with standard supervision. For exam-
ple, Gaddy and Broxmeyer reported the functional matu-
ration subset (adult-like NK activity) and the phenotypic 
maturation subset (adult-like  CD3−CD56+CD16+ or 
 CD3−CD56+CD16− phenotype) of UC-NK cells by IL-2, 
IL-12 or IL-15 stimulation [42]. As to the recommended 
parameters of cell products, the manufactured CAR-NK 
cells should contain mostly  CD3−CD56+ cells (≥90%), 
minimally  CD3+ (≤0.2%) and  CD14+ (≤5%) cells, 
together with the removal of endotoxin, mycoplasma and 
bacterial contaminations as well as contamination of co-
cultured cells (≤1%) [159, 160]. Fourthly, the schedule 
of CAR-NK cell-based cancer immunotherapy, includ-
ing the dosage, duration, kinetics and the concurrent 
interactions with endogenous immune cells as well as 
the underlying mechanisms of CAR-NK cell function, is 
awaiting to be optimized according to large-scale clinical 
trials [5, 161]. For instance, the molecular understanding 
of the biofunction of the natural cytotoxicity receptors 
(NCRs) (e.g., NKp30, NKp44, NKp46) and multidimen-
sional immune correlations (e.g.,  NKG2A+, CD8α+) in 
cancer immunosurveillance, and in particular, the onto-
genic development and maturational signals of NK cells 
is instrumental to exploring novel access points to com-
bat malignancies [42, 60, 144, 162].

Moreover, the comprehensive treatment composed 
of a plethora of methods, including traditional therapy 
(e.g., surgery, radiotherapy, chemotherapy), non-cel-
lular immunotherapy (e.g., CTLA-4, mRNA vaccine) 
and cellular immunotherapy (e.g., CAR-T, TCR-T, γδT, 
ML-NK cells) as well as auxiliary methods (TriKEs, 
ROCK engagers, TriNKETs) and immune-checkpoint 

inhibitors (e.g., CTLA-4, PD-1/PD-L1), are under clini-
cal investigation to augment the longevity and cyto-
toxicity of CAR-NK cells [146, 163]. For example, a 
latest study upon combined approach suggested that 
antitumor activity and metabolic fitness of armored 
CAR-NK cells with IL-15 secretion could be enhanced 
by targeting a cytokine checkpoint, which represented 
an important milestone in the exploration of the next-
generation cancer immunotherapy [41, 117, 164, 165]. 
Another study conducted combined CAR-T infu-
sion after NKG2D.ζ-NK cell administration and found 
improved anti-cancer activity and tumor infiltration 
[55]. Collectively, the pioneering preclinical and clini-
cal studies have suggested the multifaceted opportuni-
ties and challenges of allogeneic CAR-NK cells, which 
are recognized as pivotal and promising “off-the-shelf ” 
product in the next-generation cellular immunothera-
pies targeting recurrent and refractory malignancies.
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