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Abstract 

Adoptive cell therapy using patient-derived chimeric receptor antigen (CAR) T cells redirected against tumor cells has 
shown remarkable success in treating hematologic cancers. However, wider accessibility of cellular therapies for all 
patients is needed. Manufacture of patient-derived CAR T cells is limited by prolonged lymphopenia in heavily pre-
treated patients and risk of contamination with tumor cells when isolating T cells from patient blood rich in malignant 
blasts. Donor T cells provide a good source of immune cells for adoptive immunotherapy and can be used to gener-
ate universal off-the-shelf CAR T cells that are readily available for administration into patients as required. Genome 
editing tools such as TALENs and CRISPR-Cas9 and non-gene editing methods such as short hairpin RNA and block-
ade of protein expression are currently used to enhance CAR T cell safety and efficacy by abrogating non-specific 
toxicity in the form of graft versus host disease (GVHD) and preventing CAR T cell rejection by the host.
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Background
Chimeric antigen receptor (CAR) T cells have shown 
remarkable efficacy in treating B cell malignancies such 
as B cell acute lymphoblastic leukemia (B-ALL), B cell 
non-Hodgkin lymphoma (NHL), mantle cell lymphoma 
(MCL), follicular lymphoma (FL) and multiple myeloma 
(MM), although more improvements are needed for 
treating chronic lymphocytic leukemia (CLL) [1–19]. 
However, currently approved clinical treatments are 
expensive and complicated to manufacture, delaying 
patient access to treatments. This has prompted a need 
to investigate options for widening accessibility for all 
patients using donor sources to manufacture CAR T 
cells. Healthy donor peripheral blood (PB) is currently 
used to generate CAR T cells in preclinical and early 
phase clinical studies, but in addition to traditional uses 
in transplantation, umbilical cord blood (UCB) presents 
an untapped source of healthy donor T cells for adop-
tive immunotherapy and can be used to create a bank 

of readily available off-the-shelf CAR T cells. Both gene 
editing and non-gene editing approaches can be used to 
enhance CAR T cell function and eliminate alloreactivity 
from allogeneic donor-derived CAR T cells, making them 
safe for administration into patients and reducing their 
rejection by the host immune system.

CAR T cell therapy
CAR T cell immunotherapy offers potentially curative 
treatments for refractory leukemia and lymphomas. In 
the clinic, T cells isolated from patient PB can be geneti-
cally engineered to express CARs that specifically target 
tumor antigens [5, 6, 10, 20–25]. After ex  vivo ampli-
fication to numbers suitable for adoptive cell therapy, 
these autologous CAR T cells are infused back into the 
patient, where they become living drugs that detect and 
kill tumor cells, even in advanced stages of disease [5, 6, 
10, 20–25]. Approximately 80% of patients with relapsed 
or refractory B-ALL (r/r B-ALL) and 40–60% of patients 
with relapsed or refractory diffuse large B cell lymphoma 
(DLBCL) showed complete responses after anti-CD19 
CAR (CAR19) T cell treatment [5, 6, 10, 20–25]. As a 
result, the FDA has recently approved 3 autologous anti-
CD19 CAR T cell therapies: tisagenlecleucel (Kymriah, 
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Novartis) for treating pediatric and adolescent (age 25 or 
under) B-ALL and adult DLBCL; axicabtagene ciloleucel 
(Yescarta, Gilead) for treating DLBCL, NHL, and FL; and 
brexucabtagene autoleucel (Tecartus, Gilead) for treat-
ing adult relapsed or refractory (r/r) MCL [1–6, 8–19, 
26–28]. The FDA has also approved idecabtagene vicleu-
cel (Abecma, Bristol Myers Squibb), an autologous anti-
BCMA CAR T cell therapy, for treating adult r/r MM [7, 
29].

CARs are fusion proteins typically combining extracel-
lular monoclonal antibody-derived targeting fragments 
with intracellular signaling domains that activate T cells 
(Fig. 1A). Variable light (VL) and heavy (VH) chains are 
linked by a flexible peptide to form a single chain variable 
fragment (scFv) that recognizes and binds to tumor anti-
gens [30, 31]. The scFv is connected via a hinge or spacer 
to the transmembrane domain (TM) that anchors the 
CAR to the T cell membrane. The hinge provides flexibil-
ity for the scFv to reach tumor antigens and, along with 
the TM, provides stability for CAR expression. The hinge 
and TM are typically extracellular domains like CD8α 

(Kymriah) or CD28 (Yescarta) that avoid Fcγ receptor 
(FcγR) binding activity, in order to circumvent off-target 
effects and improve CAR T cell engraftment, persistence, 
and antitumor efficacy. Beneath the TM are intracellular 
co-stimulatory and T cell receptor (TCR) derived CD3ζ 
signaling domains that are crucial for CAR T cell activa-
tion, proliferation, differentiation, survival, and persis-
tence. First-generation CARs consist only of CD3ζ while 
second and third-generation CARs include additionally 
1 and 2 co-stimulatory domains respectively [30, 31]. 
Commonly used co-stimulatory domains include 4-1BB 
(Kymriah), CD28 (Yescarta), ICOS, OX40, or CD27.

Clinical CAR T cell therapeutics such as Kymriah and 
Yescarta are commonly manufactured using lentiviral or 
gamma-retroviral vectors, respectively, to transfer CAR 
genes to T cells [32]. Protocols are safe and optimized, 
but are complicated by the time and expense needed to 
ensure that all viral vectors used are replication-deficient; 
thus production of these CAR T cells is mostly central-
ized [32]. Automated cell processing platforms such 
as the CliniMACS Prodigy® (Miltenyi Biotec) and the 

Fig. 1  Creating universal CAR T cells with genome editing. A Healthy donor T cells isolated from PB or UCB are genetically modified to express 
CAR. VL and VH chains are linked by a flexible peptide to form the scFv that recognizes tumor antigens. The hinge connects the scFv to the TM 
that anchors the receptor to the T cell’s membrane. TCR-derived CD3ζ and one or more co-stimulatory signaling domains activate CAR T cells. B To 
avoid alloreactivity, TCR-KO CAR T cells can be generated using genome editing techniques such as paired TALENs, composed of TALEs fused to FokI 
endonucleases for targeted DNA cleavage. C TCR KO can also be achieved using CRISPR-Cas9. Cas9 endonucleases and sgRNA form RNP complexes 
that cleave DNA at HNH and RuvC nuclease active sites. D DSBs from DNA cleavage are repaired via NHEJ or HDR mechanisms.
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Cocoon® Platform (Lonza) can expedite and scale-up 
CAR T cell manufacture, but issues of manufacturing 
standardization and product characterization remain 
[33].

Ex vivo CAR T cell manufacture is challenged by prob-
lems in generating high enough numbers for infusion 
while maintaining viability and high antitumor efficacy 
with minimal exhaustion. The cells generated are also a 
mix of helper (CD4+) and cytotoxic (CD8+) T cells. Pre-
clinical studies by Pfeiffer et  al. and Agarwal et  al. pre-
sent an alternative solution by using lentiviral vectors to 
selectively generate CD8+ or CD4+ CAR T cells in vivo 
[34, 35]. Interestingly, Agarwal et al. showed that CD4+ 
CD19-targeting CAR T cells have higher antitumor effi-
cacy at high tumor burden than CD8+ CAR T cells alone 
[34]. Some mice in Pfeiffer et al.’s proof-of-concept study 
displayed symptoms indicative of cytokine release syn-
drome (CRS), an acute inflammatory syndrome that can 
cause multi-organ dysfunction in some patients as a seri-
ous side effect of CAR T cell therapy [35]. An advantage 
of in vivo CAR T generation is the slower manifestation 
of CRS, since CAR T cell levels increase homeostati-
cally and thus more gradually than that of adoptive cell 
therapy, where patients are infused with high numbers of 
ex vivo activated CAR T cells [35]. Another recent study 
by Nawaz et al. demonstrated that CAR T cells can also 
be generated in vivo using adeno-associated virus (AAV) 
vectors in a similar mouse model with promising results 
showing high efficacy against T cell leukemia, which 
is immensely difficult to treat using current CAR T cell 
therapies [36]. Successful clinical translation of in  vivo 
generation of CAR T cells can help significantly in solv-
ing the challenges of ex  vivo CAR T cell manufacture, 
widen patient access to immunotherapies, and improve 
clinical outcomes.

Compared with viral vectors, non-viral transposon-
based gene delivery systems are simpler, cheaper, have 
no infectious potential, and enable CAR T cells to be 
produced by hospitals for wider patient access to CAR 
T therapies [37]. Transposon-based methods have 
similar DNA integration profiles to viral vectors, but 
can carry larger cargoes (up to 200  kb) and simultane-
ously deliver multiple transgenes, which will be use-
ful as future generations of CAR T cells become more 
sophisticated [37]. CAR T cells engineered using trans-
poson-based systems to target CD19+ leukemia and 
lymphomas have demonstrated strong efficacy in pre-
clinical mouse models and early phase clinical trials 
in USA, Australia, and China [37–40]. Recent Phase I 
clinical trial (ACTRN12617001579381) data showed 
9 out of 10 patients achieving complete remission after 
treatment with donor-derived piggyBac transposon-
based CAR19T cells against r/r B-ALL or aggressive 

lymphoma post-HSCT; however, 2 patients developed 
malignant CAR19T cell-derived lymphoma that resulted 
in the death of 1 patient while the other was successfully 
treated [41, 42]. Thus the risk of oncogenicity of piggy-
Bac transposon-based CAR T manufacture presents a 
safety challenge that must be overcome for further clini-
cal applications.

Healthy donor peripheral blood or umbilical cord 
blood as sources of allogeneic CAR T cells
Despite the aforementioned successes, autologous CAR 
T cell production is often not feasible for heavily pre-
treated patients, as shown by interim analyses of the 
Phase II ELIANA trial (NCT02435849) for pediatric 
r/r ALL that revealed CAR T cell manufacture failed in 
approximately 8% of patients [43, 44]. In the setting of B 
cell malignancies, prolonged lymphopenia in chemother-
apy-treated patients can limit the generation of potent 
autologous CAR T cells, with CD8+ T cells taking at least 
3–6  months to recover post-chemotherapy and CD4+ 
T cells taking even longer [45–48]. Additionally, T cells 
derived from chemotherapy-treated patients are often 
more differentiated compared with those derived from 
healthy blood, and demonstrate lower ex vivo and in vivo 
proliferative capacity and rapid exhaustion following 
antigen-specific stimulation. Thus harvesting lympho-
cytes from patients earlier in their treatment may provide 
a better source of lymphocytes for CAR T cell manufac-
ture. Alternatively, using healthy donor peripheral blood 
may provide high numbers of cells with stronger prolif-
erative capacity. Other donor cell sources, such as UCB, 
may also be considered for CAR T cell development. The 
advantages and disadvantages of autologous and allo-
geneic CAR T cell therapies are summarized in Table  1 
[49–52], with comparison of clinical trial data in Table 2.

Manufacture of CAR T cells for T cell malignancies 
faces unique challenges due to the similarities between 
normal and malignant T cells. CAR T cells that target 
antigens common between normal and neoplastic T cells 
may kill both tumor T cells and CAR T cells [60, 61]. This 
fratricide, or mutual killing of CAR T cells, may prevent 
the generation and expansion of CAR T cells during the 
manufacture process. However, the targeting of malig-
nant T cells without killing normal or CAR T cells can be 
achieved by using CAR T cells that have been genetically 
edited ex vivo to prevent expression of the T cell target 
[60, 61].

Contamination with tumor cells is an additional con-
cern in refractory leukemia patients, since T cells are 
isolated from PB that may contain malignant blasts. This 
has resulted in at least one case of accidental expression 
of CAR in leukemic B cells leading to epitope mask-
ing and relapse, but is especially problematic in T cell 
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malignancies where selection steps in CAR T manufac-
ture using CD3, CD4 or CD8 are also likely to enrich 
leukemic cells and cause manufacture failure [32, 62]. 
Moreover, the peripheral blood of patients suffering 
from T cell acute lymphoblastic leukemia (T-ALL) or T 
cell lymphoma (TCL) often contain neoplastic T cells 
that may inadvertently be harvested and transduced with 
CAR, which can competitively bind to the target antigens 
on malignant T cells. The challenges of isolating healthy 
T cells from the phenotypically identical neoplastic T 
cells can be avoided by transfecting NK cells or healthy 
donor T cells [60, 63–67].

CAR T cells can potentially be manufactured from the 
peripheral blood mononuclear cells (PBMCs) of healthy 
donors that can be stored and validated before use, and 
infused into multiple patients immediately as needed. 
However, donor CAR T cell-mediated graft versus host 
disease (GVHD) and recipient-mediated rejection of 
CAR T cells needs to be eliminated to make allogeneic 
CAR T cells safe and effective. CAR T cells derived from 
a matched sibling donor have been safely used to treat 
patients who relapsed after allogeneic hematopoietic 
stem cell transplantation (allo-HSCT), but outside of the 
setting of past transplant, the identification of a suitable 
sibling followed by CAR T cell manufacture is even more 
logistically challenging than autologous CAR T cells and 
no less expensive [68–70].

UCB can be a new source of healthy donor T cells 
for developing effective immunotherapies. Compared 
with those derived from adult blood, UCB-derived T 
cells have more naïve phenotype, higher proliferative 
capacity, delayed exhaustion following antigen-specific 

stimulation, lower immunogenicity and reduced risk of 
inducing GVHD [71–73]. Up-regulation of T cell exhaus-
tion markers decreases CAR T cell persistence, limiting 
the efficacy of CAR T cell therapy and increasing the 
risk of relapse [74]. We have demonstrated that CAR19 
T cells up-regulated PD-1 and TIM-3 exhaustion mark-
ers in co-cultures with CD19+ leukemia cells and in leu-
kemia patient-derived xenograft (PDX) mouse models 
[74]. UCB T cells generally express lower levels of T cell 
inhibitory receptors compared to those of adult PB [72]. 
Importantly, UCB T cells also mount more effective anti-
tumor responses via faster tumor infiltration with CCR7+ 
CD8+ T cells and faster induction of cytotoxic CD8+ T 
cells and CD4+ Th1 cells in the tumor microenvironment 
[72]. All these factors make the readily available UCB 
potentially more advantageous than other T cell sources.

Studies have shown that CAR T cells can be efficiently 
produced from UCB. UCB-derived T cells co-expressing 
endogenous TCR against common viruses that affect 
patients post-SCT, for example, cytomegalovirus (CMV), 
Epstein-Barr virus (EBV), and adenovirus (AdV), were 
genetically modified with CD19-targeting CAR [75]. 
Allogeneic UCB-derived CAR19 T cells were infused in 
patients with B cell malignancies after SCT in a recently 
completed clinical trial (NCT01362452), showing the 
potential of UCB T cells for cancer immunotherapy and 
especially in combination with SCT [76].

Methods to reduce CAR T cell alloreactivity
Adoptive transfer of donor-derived CAR T cells can be 
compromised by potential risks of alloreactivity due to 
the diverse TCR repertoire expressed by mature T cells 

Table 1  Advantages and disadvantages of autologous and allogeneic CAR T cell therapies [49–52]

Autologous CAR T cells Allogeneic CAR T cells

Manufacture is complex and expensive with variability in starting material 
(patient T cells) and resulting CAR T cell product. Limited T cell quality 
and quantity (autologous PBMCs from leukapheresis product) with risk of 
manufacture failure for heavily pre-treated patients (lymphopenia).

Standardized manufacture with high quality starting material (healthy 
donor T cells) and high quality CAR T cell product. Multiple T cell sources 
from many healthy donors (PB or UCB).

Low scalability (1 product per patient) with increased time to treatment 
and production costs due to manufacture and quality control specific for 
individual patient.

High scalability (1 product for many patients) with “off-the-shelf” bank 
of CAR T cell products, readily available (decreased time to treatment). 
Reduced production costs with manufacture and quality control applicable 
to many patients.

Risk of contamination with malignant cells in patient blood. Minimal risks of malignant cell contamination since T cells are sourced from 
healthy donor blood.

Limited optimization of T cell phenotype and function with limited edit-
able cancer targets, promising applications in B cell malignancies but 
limited applications in T cell malignancies.

High optimization of T cell phenotype and function to improve CAR T 
efficacy with multiple editable cancer targets, e.g. promising applications in 
both B and T cell malignancies.

Limited potency of CAR T cell product due to chemotherapy-treated 
patient T cells being more differentiated with lower proliferative capacity 
and rapid exhaustion. Increased in vivo persistence compared with allo-
geneic CAR T cells due to lack of immune rejection from the host.

Potent CAR T cell product from healthy donor T cells, but with decreased 
in vivo persistence due to higher immunogenecity (from the host against 
infused CAR T cells).

CRS or CRES toxicities. Low immunogenicity and minimal risk of alloreac-
tivity or immune rejection affecting clinical outcomes.

CRS or CRES toxicities. Risk of alloreactivity factors (e.g. GVHD, immune 
rejection) affecting clinical outcomes.
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[77, 78]. The TCR on adoptively transferred donor T cells 
may recognize recipient tissues as foreign and induce a 
cytotoxic immune reaction known as GVHD [77, 78]. 
GVHD is caused by expanding alloreactive donor T cells 
that infiltrate and destroy host tissues such as those in 
the skin, liver, and gut [77, 78]. In myeloablative condi-
tioned recipients of haploidentical hematopoietic stem 
cell transplantation (haplo-HSCT) with post-transplant 
cyclophosphamide (PTCy) as GVHD prophylaxis, grades 
II–IV and III–IV acute GVHD were higher after ≤ 5/8 
and 6–8/8 HLA-matched UCB HSCT, while chronic 
GVHD was comparable between donor sources [79]. 
Similarly, grade III–IV acute GVHD was higher in recipi-
ents of haploidentical relative donor HSCT than in recip-
ients of matched unrelated donor (MUD) HSCT [80]. 
Many variables such as conditioning, T cell depletion 
and GVHD prophylaxis can affect the rates of GVHD 
with HLA-haploidentical or UCB transplants, but most 
importantly, all allogeneic T cell sources carry a risk of 
GVHD without some form of manipulation.

Despite toxicity issues such as hypotension and fever, 
HLA-matched donor-derived CAR T therapy for patients 
with relapsed B cell malignancies [68, 81–85] post allo-
HSCT have lower rates of GVHD compared to those 
expected with unmanipulated donor lymphocyte infu-
sions [41, 82, 86, 87]. This does not seem to be the case in 
donor-derived CAR T cells for T cell malignancies, where 
grade I-II acute GVHD was seen in 60% of recipients of 
CD7-specific T cells [88]. These results are from small, 
early-phase studies with variation in manufacturing pro-
tocols and CAR design, but they highlight the need for 
further technical advances to eliminate the risk of GVHD.

GVHD is not the only alloreactivity factor affecting 
clinical outcomes. Recent murine studies demonstrat-
ing potent graft-versus-lymphoma (GVL) activity with 
reduced xenogeneic GVHD of donor-derived CAR19 
T cells in allo-HSCT also highlight the importance of 
CAR design; while CD28-co-stimulated CAR T cells 
had reduced alloreactivity, 4-1BB-co-stimulated and 
first-generation CAR T cells retained alloreactivity and 
increased risk of GVHD [83].

In a recent clinical trial, 8 r/r B-ALL patients received 
either HLA-matched (n = 4) or HLA-haploidentical 
(n = 4) CAR19T cells immediately preceding an intended 
HSCT as a leukemia debulking strategy [84]. The haploi-
dentical CAR T cells induced transient or no reduction in 
peripheral blood leukemia with no significant CAR T cell 
expansion which suggests rejection [84]. Patients treated 
with HLA-matched CAR19T cells exhibited higher com-
plete response rates although more severe toxic side 
effects compared with those treated with haploidentical 
CAR19T cells, with no GVHD observed in either group 
[84]. Only 3 out of 8 patients reached complete response 

and only 2 of the 8 patients proceeded to transplant, with 
all 4 haploidentical CAR19T-treated patients dying of dis-
ease progression and 1 HLA-matched CAR19T-treated 
patient dying of lung infection [84]. Thus HLA-matched 
and HLA-haploidentical allogeneic CD19-directed CAR 
T cell infusions are feasible in r/r B-ALL before HSCT, 
but other factors besides GVHD need to be considered 
in clinical applications of allogeneic CAR T cell infusions.

Interestingly, the generation of CAR T cells from 
hematopoietic stem cells (HSCs) may provide an ave-
nue to overcome alloreactivity. Transgenic expression 
of CAR was shown to inhibit rearrangements of endog-
enous TCR during T cell differentiation from primitive 
HSCs [89]. Introducing CARs to HSCs or early T cell 
precursors should therefore provide only antigen-spe-
cific targeting while preventing non-specific allogeneic T 
cell activation [89–92]. We and others have shown that 
CD34– CD7+ early T cell precursors with pro-T1 pheno-
type can be generated ex vivo from UCB-derived CD34+ 
stem cells using conditions that mimic the thymic micro-
environment (OP9-DL1 cells) or feeder-free conditions 
and immobilized delta-like 4 (DL4) ligands [89–92]. We 
have shown that CAR19-transduced ex  vivo generated 
CD34– CD7+ T cell precursors can efficiently engraft 
in immunodeficient mice and generate mature T cells 
that express CAR19 [92, 93]. Delayed leukemia progres-
sion was seen in immunodeficient mice reconstituted 
with UCB-derived CAR19-modified T cell precursors 
and challenged with CD19+ leukemia cells in an alloge-
neic xenograft mouse model [92, 93]. Notably, CAR T 
cells generated from UCB-derived T cell precursors did 
not exhibit xenogeneic reactivity against the host in this 
model, suggesting that UCB-derived CAR T cell precur-
sors can potentially be used in conjunction with HSCT 
[92].

Compared to PB-derived T cells, cord blood-derived 
T cells exhibit lower risk of GVHD but higher GVL 
activity [72, 83, 94]. However, the alloreactivity of UCB-
derived CAR T cells must be ablated before they can be 
safely used as universal off-the-shelf CAR T cells, ready 
for administration into patients as needed. Since TCRs 
mediate alloreactivity, approaches to down-regulate TCR 
chain expression using RNA interference or removing 
endogenous TCRs from donor T cells using genome edit-
ing can be used [95].

Current clinical trials investigating the safety and 
efficacy of donor-derived CAR T cells against r/r MM 
(NCT04093596), r/r B cell leukemia or lymphoma 
(NCT03939026, NCT04416984, NCT03166878), or 
r/r T cell malignancies (NCT04264078) employ vari-
ous strategies to minimize GVHD, and most, if not 
all, involve knocking out the TRAC​ and/or B2M genes 
[96–100]. Most CAR T cells are genetically engineered 
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from αβ T cells, named for the disulfide-linked TCRα 
and TCRβ that form the TCR whose hypervariable or 
complementarity-determining regions recognize foreign 
antigens [101–105]. TCRα is formed via VJ recombina-
tion and TCRβ via VDJ recombination in early stages of 
T cell maturation to create the highly diverse repertoire 
of TCRs that recognize pathogenic and tumor antigens 
[106]. TCRαβ non-covalently associates with transmem-
brane protein heterodimers CD3δε and CD3γε to form a 
hexamer, which then associates with CD3ζζ to form the 
TCR-CD3 assembly or TCR complex (Fig. 1A) that ena-
bles intracellular signal transduction via phosphorylation 
of tyrosine residues in the immunoreceptor tyrosine-
based activation motifs (ITAM) of CD3 chains [101–
105]. The CD3ζζ homodimer is linked by a disulfide bond 
and CD3 proteins are essential for TCR surface expres-
sion [101–105]. Without CD3γ, CD3δ, or CD3ε, TCRαβ 
cannot leave the endoplasmic reticulum and is degraded 
[101–105]. Without CD3ζ, the TCRαβ-CD3δε-CD3γε 
hexamer is transported to lysosomal degradation rather 
than the cell surface [101–105]. Therefore, knocking 
down the expression of a single TCR chain using genome 
editing or non-genome editing methods can result in the 
loss of the whole TCR complex from the cell surface, cre-
ating TCR-knockout (TCR-KO) CAR T cells which can 
be isolated by screening for CD3– CAR T cells. Recent 
proof-of-concept studies showed that the resulting TCR-
KO CAR T cells do not respond to TCR stimulation 
but do respond to CAR stimulation [107]. Allogeneic 
anti-BCMA CAR T cells, generated using short hairpin 
RNA (shRNA) to target CD3ζ to knock out TCR, demon-
strated systemic CAR T cell engraftment with no GVHD 
in a recent dose-escalation phase I clinical trial with 6 r/r 
MM patients [108, 109].

Genome editing CAR T cells to enhance safety 
and efficacy
Genome editing can also be used to improve CAR T cell 
function and enhance antitumor responses to bypass 
tumor immune evasion strategies. Compared to other 
genome editing tools such as zinc finger nucleases 
(ZFNs) and transcription activator-like effector nucleases 
(TALENs), CRISPR-Cas shows much promise in generat-
ing universal CAR T cells due to its relative ease and rea-
sonable costs [110]. Table  2 compares and summarizes 
the safety and efficacy of various gene-edited CAR T cells 
in recent clinical trials.

TALENs are restriction enzymes comprised of tran-
scription activator-like effectors (TALEs), derived from 
proteins secreted by Xanthomonas spp. bacteria, fused to 
FokI endonucleases via the C-terminal linker for targeted 
DNA cleavage [110–112]. FokI endonucleases bind to the 
5’-GGATG-3’ recognition site and cleave the 5’ strand 

9 base pairs away and the 3’ strand 13 base pairs away 
[113]. TALEs consist of central DNA-binding domains 
flanked by N-terminal translocation domains for bind-
ing to the target DNA preferentially at 5’ thymine [114], 
and C-terminal activation domains with nuclear localiza-
tion signals for translocation into cell nuclei [110–112]. 
Within the DNA-binding domains are repeated, highly 
conserved 33–34 amino acid sequences with diver-
gent amino acids at positions 12 and 13, known as the 
repeat variable di-residue (RVD) [110–112]. RVDs are 
highly variable but generally recognize specific nucleo-
tide bases: NI (asparagine, isoleucine) for adenosine, NG 
(asparagine, glycine) for thymine, HD (histidine, aspar-
tic acid) for cytosine, and NN (asparagine, asparagine) 
preferentially for guanine [110–112]. Thus TALENs can 
be designed to recognize and cut any DNA sequence 
by combining segments that have the suitable RVDs 
(Fig. 1B). Double-strand breaks (DSB) induced by TAL-
ENs are repaired by either non-homologous end joining 
(NHEJ) or homology directed repair (HDR) mechanisms 
[110–112].

In a recently completed phase I clinical trial 
(NCT02808442) conducted by Qasim et  al., human 
infants were treated with allogeneic CD19-specific CAR 
T cells generated via lentiviral transduction followed by 
TALEN-mediated disruption of TRAC and CD52 [57, 
115, 116]. TRAC​ disruption prevented TCRαβ cell sur-
face expression, and residual TCRαβ+ cells were removed 
using magnetic beads. CD19+ r/r B-ALL patients received 
lymphodepleting chemotherapy, anti-CD52 serotherapy 
(alemtuzumab), and 1 dose of TCR​– CD52– CAR19 T 
cells that established molecular remission within 28 days 
without GVHD which persisted until conditioning before 
allo-SCT [57, 115, 116]. Antitumor activity and CAR T 
cell persistence was dependent on receipt of alemtu-
zumab conditioning [117]. Persistence of CAR T cells in 
the peripheral blood was seen up to 80  days post-infu-
sion, but assessment of long-term persistence was limited 
due to the majority of patients proceeding to allogeneic 
stem cell transplant. Complete response or complete 
response with incomplete hematological recovery was 
seen in 67% patients and the 6-month progression-free 
survival was 27% [57, 115, 116]. Despite depleting TCR​
+ cells from the product, GVHD was seen in conjunction 
with expansion of CAR​+ TCR​+ T cells in 10% patients. 
While the results in B-ALL are inferior to those seen with 
autologous products, they provide a reference point for 
future products to improve upon [22, 53].

Clustered regularly interspaced short palindromic 
repeats (CRISPR) and CRISPR-associated (Cas) proteins 
are part of bacterial adaptive immunity against bacteri-
ophage infections and work by digesting invading DNA 
[118–120]. Although many variants of CRISPR-Cas exist, 
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the type II CRISPR-Cas9 system found in Streptococcus 
pyogenes is the simplest and most often used in genome 
editing (Fig.  1C). To cut DNA, the Cas9 endonuclease 
forms a ribonucleoprotein (RNP) complex with a syn-
thetic single guide RNA (sgRNA) consisting of a CRISPR 
RNA (crRNA) joined to a trans-activating CRISPR RNA 
(tracrRNA) by a linker loop [118–120]. The crRNA pro-
vides the specificity for Cas9 and has a 20-nucleotide 
sequence complementary to the target sequence [118–
120]. At the HNH and RuvC nuclease active sites in Cas9, 
blunt-ended double-strand breaks (DSB) are created in 
the target DNA approximately 3 nucleotides upstream 
of the protospacer adjacent motif (PAM, 5’-NGG-3’ for 
SpCas9 where N is any nucleotide) [118–120]. DSB are 
repaired by either NHEJ or HDR mechanisms (Fig. 1D). 
NHEJ is favored but error-prone, and creates inser-
tions or deletions (indels) in target DNA. This results 
in frameshift mutations that disrupt gene function and 
can be used to knock out genes. HDR is more precise 
but requires single-stranded or double-stranded DNA 
donor templates containing genes of interest (GOI) 
flanked on both sides by homology arms (HA) that match 
the sequences next to the genomic target [118–120]. 
HDR is used to knock in genes since it replaces the tar-
get sequence with the sequence in the donor template. 
Genome editing of mammalian cells by CRISPR-Cas9 
requires longer tracrRNA sequences and additional 
nuclear localization signals to enable Cas9 to access cell 
nuclei [118–120].

Pitfalls of genome editing include off-target muta-
tions that can potentially be oncogenic depending on 
the sequences involved [121]. CRISPR-Cas9 induces 
DSB repair that can result in large deletions and complex 
rearrangements [121]. Partial mismatching is tolerated 
by Cas9 which can inadvertently allow cutting of DNA 
despite the match being several nucleotides different to 
the exact target sequence [121]. With mammalian DNA 
being much longer than the prokaryotic DNA that Cas 
originated in, chances of off-target effects are increased 
when editing mammalian cells [121]. CRISPR-Cas9 
genome editing also induces p53-mediated DNA dam-
age responses [122]. In human pluripotent stem cells 
(PSCs), p53 inhibits CRISPR-Cas9 engineering, leading 
to selection against cells with functional p53 pathways 
[122]. p53 inhibition prevents the damage response and 
increases the rate of HDR from donor templates. Taken 
together, the results suggest that CRISPR-Cas9 engineer-
ing in human cells may lead to accumulation of genome 
edited cells with dysfunctional p53 and increased risk of 
neoplastic transformation [122]. This, along with other 
clinical toxicities like CRS, prompts the need to care-
fully modulate CAR T cell levels for patient safety with-
out reducing antitumor efficacy. One effective strategy 

is to incorporate pharmacologically inducible suicide 
genes into CAR constructs as safety switches; for exam-
ple, inducible caspase-9 (iC9 or iCasp9) which consists 
of fused domains modified from human caspase-9 and 
FK506-binding protein-12 (FKBP12) [123–126]. Small-
molecule chemical inducers of dimerization (CID), 
such as rimiducid (AP1903) or the B/B homodimerizer 
(AP20187), can then be used to eliminate excess iC9-
transduced CAR T cells by cross-linking FKBP domains 
to synthetically activate caspase-9 and initiating intrinsic 
apoptotic pathways for rapid cell death [123–126].

Although the issue of off-target mutagenesis has been 
largely improved due to recent advances in CRISPR-Cas 
base editing and prime editing, potential effects of off-
target gene editing are still largely unknown and unpre-
dictable, especially in approaches that target multiple 
genes at once [127–129]. Whole-genome sequencing 
is important to accurately assess off-target effects and 
develop algorithms for predicting single and multiplex 
off-target cleavage sites. One possible solution is to gen-
erate CAR T cells from PB-derived induced pluripotent 
stem cell (iPSC) lines that have been genome edited to 
enhance antitumor properties or modify TCR and HLA 
genes to reduce alloreactivity and graft rejection [130]. 
While iPSC lines can be screened and validated under 
GMP conditions before use, the lack of clinically com-
patible feeder-free or serum-free differentiation methods 
to generate enough mature T cells for subsequent CAR 
modification poses a significant challenge [130]. How-
ever, with extensive preclinical analyses to assess the 
safety and efficacy of genome edited anti-cancer immu-
notherapy products, banks of TCR-KO CAR T cells can 
be made in advance from common HLA-expressing 
blood donors for a broad cohort of patients and be read-
ily used to treat hematologic cancers.

T-ALL comprises 20–25% of cases of all adult ALL and 
is notoriously difficult to treat due to its complexity and 
quick progression [131, 132]. CD7 is expressed on more 
than 95% of T-ALL but also expressed on normal T cells, 
which complicates the development of CD7-targeting 
CAR T cells due to potential contamination by T-ALL 
cells, and target-driven T cell fratricide which limits ade-
quate CAR T cell production [131, 132]. It is encourag-
ing that donor-derived anti-CD7 CAR T cells achieved 
efficient expansion with high complete remission rates 
and manageable safety profile in a recent phase I trial 
of 20 r/r T-ALL patients [131]. However, the value of 
genome-edited CAR T cells is demonstrated in another 
recent early-phase clinical trial of 5 adult r/r T-ALL 
patients where Universal CAR T therapy (TruUCART™ 
GC027) was shown to be safe and effective [132]. TruU-
CART™ GC027 was generated using lentiviral vectors 
to deliver second-generation CAR onto T cells sourced 
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from HLA-mismatched healthy donors, with CRISPR-
Cas9-mediated knockout of TCRα and CD7 to minimize 
GVHD and T cell fratricide [132]. Preclinical testing in 
CCRF-CEM xenograft mouse models showed strong 
antitumor activity and prolonged survival in all treated 
groups, and 80% of human patients treated with a single 
infusion of TruUCART™ GC027 without precondition-
ing showed robust CAR T cell expansion and persisting 
MRD– complete responses [132]. Updates to this trial 
showed 5 out of 6 patients achieving MRD– remission at 
1 month which was maintained in 3 patients at 6 months 
[133]. The authors reported robust early expansion of the 
CAR T cells, but no information was provided regard-
ing long-term persistence. Further promising results 
from Georgiadis et  al. showed that base-edited CAR T 
cells exhibit no chromosomal translocations or off-target 
mutations that may affect CAR T cell specificity in pre-
clinical studies using Jurkat and patient T-ALL cells and 
NSG mice [134]. Activated donor T cells were electropo-
rated with sgRNA targeting TRBC and CD7 and codon 
optimized BE3 mRNA, followed by lentiviral transduc-
tion with 3CAR and 7CAR [134]. Precise multiplexed 
CRISPR base-editing was used to disrupt TRBC1/2 and 
CD7 to create TCRαβ/CD3– and CD7– CAR T cells, with 
shared antigens CD3 and CD7 removed to prevent T cell 
fratricide [134]. Fratricide-resistant TCR​– CD3– CD7– 
CAR T cells showed high antitumor activity against 
T-ALL targets in vitro and in vivo [134].

Other phase I clinical trials (NCT03399448) demon-
strate the safety and feasibility of CRISPR-Cas9 mul-
tiplex editing [135, 136]. Adult patients (age 62–66 yrs) 
were treated with autologous T cells generated by elec-
troporation of CRISPR-Cas9 RNP complexes (contain-
ing 3 sgRNAs targeting TRAC, TRBC1, TRBC2, PDCD1) 
and lentiviral transduction of NY-ESO-1 and LAGE-1 
cancer-specific TCR into patient T cells [135, 136]. Mul-
tiplex CRISPR-Cas9 editing was used to delete TRAC, 
TRBC, and PD-1 encoding genes. Endogenous TCR 
were deleted before replacement with transgenic TCR 
(specific for NY-ESO-1 and LAGE-1) to minimize trans-
genic and endogenous mixed-dimer formation. Endog-
enous PD-1 knockout enhances T cell persistence and 
antitumor immunity [135, 136]. Durable engraftment of 
transgenic T cells was achieved with genomic edits at 
all 3 loci and minimal chromosomal translocations that 
decreased after infusion into patients. T cells trafficked 
to tumor sites and persisted for 9 months with minimal 
immunogenicity, and biopsies showed residual tumors 
but reduced NY-ESO-1 and/or LAGE-1 in refractory 
myeloma patients [135, 136].

Another important application of multi-targeted gene 
editing is in creating CAR T cells that mitigate the anti-
gen escape responsible for CD19– relapses in B cell 

malignancies. A potential strategy is to also target CD22, 
which is highly expressed by lymphoid blasts in 60–90% 
of B-ALL [137]. Hu et  al. showed this in a dose-escala-
tion phase I clinical trial on adult r/r ALL patients treated 
with universal CD19/CD22 dual-targeting CAR T cells 
(CTA101) [138]. Activated CD3+ T cells were trans-
duced with lentiviral constructs consisting of CD19 and 
CD22 scFv with 4-1BB co-stimulatory and CD3ζ signal-
ing domains, followed by electroporation for CRISPR-
Cas9 mediated knockout of TRAC​ and CD52 genes and 
depletion of TCR/CD3+ cells [138]. Patients treated with 
CTA101 did not exhibit GVHD, neurotoxicity, or gene 
editing associated toxicities, but suffered from manage-
able levels of CRS [138]. CTA101 demonstrated robust 
anti-leukemic activity with 83.3% of patients achieving 
complete remission 28  days post-treatment, and 60% of 
these patients remained MRD– 4.3  months post-treat-
ment [138].

As more genomic tools become available, CAR con-
structs can be further refined by testing combinations of 
features in preclinical studies. Experiments by Eyquem 
et  al. on CD19+ cell lines and NSG mice demonstrated 
that, compared to conventional CAR T cells, TRAC​-CAR 
T cells had uniform CAR expression and higher anti-
leukemic potency in  vivo [139]. Activated T cells were 
electroporated with Cas9 mRNA and guide RNA (gRNA) 
and then transduced with rAAV6 (containing the CAR 
cassette, TRAC​-1928z, flanked by HA) for CRISPR/Cas9 
mediated CAR19 gene knock-in to the TRAC​ locus. Inte-
gration of CAR into the TRAC​ locus mitigates tonic sign-
aling, promotes CAR expression on antigen exposure, 
and delays effector T cell differentiation and exhaustion 
[139].

Kagoya et al. tested triple knockout (tKO) CAR T cells 
in leukemia and melanoma cell lines and in NSG mice 
[140]. T cells were electroporated with Cas9/sgRNA 
RNPs and retrovirally transduced with CAR19 to gener-
ate CRISPR-Cas9 mediated HLA-I, HLA-II, and TCR 
tKO CAR T cells (using targeted sgRNA to simultane-
ously knock out B2M, CIITA, and TRAC​ genes) [140]. 
After expansion, HLA and TCR KO cells were isolated 
using FACS or magnetic beads. Multiplexed gene KO did 
not affect CAR T cell function and tKO CAR19 T cells 
had high anti-leukemic activity but did not induce GVHD 
[140]. Deletion of HLA-II, TCR, and B2M abrogated allo-
reactivity in tKO CAR T cells [140]. It is relevant that 
both HLA-I and HLA-II needed to be ablated for effi-
cient donor T cell persistence. Compared with TRAC 
and B2M double-KO T cells, tKO CAR T cells retained 
antitumor responses, showed better persistence, and did 
not exhibit alloreactivity when cultured with allogeneic 
PBMCs [140]. These results demonstrate the benefits of 
HLA-I, HLA-II, and TCR deletion for enabling donor T 
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cells to be used as off-the-shelf adoptive immunotherapy 
[140].

Unlike the previous studies, Kamiya et  al. did not use 
genome editing but instead used anti-CD3ε protein 
expression blockers (PEBLs) to block surface expression 
of CD3/TCRαβ [141]. MSCV retroviral vectors contain-
ing anti-CD19-41BB-CD3ζ and PEBL constructs and 
mRNA were electroporated into T cells [141]. Compared 
to CD3/TCRαβ+ CAR T cells, anti-CD3ε PEBL CAR T 
cells induced similar or higher cytokine secretion, pro-
liferation, and anti-leukemic activity but with greatly 
reduced xenogeneic GVHD potential in NSG mice [141].

The general approach of removing HLA or TRAC 
expression in CAR T cells described above demonstrates 
promising results in reducing GVHD while maintain-
ing high antitumor efficacy [139–141]. However, this 
may not be the case depending on the method used to 
remove TCR expression, as shown by Stenger et al. who 
used CRISPR-Cas9 mediated KO of endogenous TCRβ 
to create TCR​– CAR T cells [142]. T cells were retrovi-
rally transduced with second-generation CAR19 (con-
taining CD8 transmembrane and 4-1BB co-stimulatory 
domains), then electroporated with Cas9/gRNA RNP 
[142]. These TCR​– CAR T cells showed strong activation 
and proliferation with significantly lower alloreactivity 
but shorter persistence and lower anti-leukemic activity 
than TCR​+ CAR T cells [142]. Our recent experiments 
with transposon-based TCR​– CAR19 T cells, generated 
via CRISPR-Cas9-mediated CD3γ knockout, showed 
equally high antitumor activity but lesser persistence 
than TCR​+ CAR19 T cells based on the same construct 
(unpublished data). This may lead to reduced duration 
of remission induced by TCR​– CAR T cells compared to 
TCR​+ CAR T cells, and aligns with the reduced persis-
tence reported by Stenger et al. [142].

Interestingly, Roth et  al. showed that non-viral mul-
tiplexed genome editing can also provide a fast, simple, 
and cost-effective method of engineering T cells [143]. 
Human T cells were co-electroporated with CRISPR-
Cas9 RNP and dsDNA HDR templates for non-viral 
CRISPR-Cas9 genome targeting of endogenous TRAC​ 
exon 1 on T cells, replacing it by integrating HDR tem-
plates with NY-ESO-1 antigen-specific TCR [143]. NY-
ESO-1 TCR knock-in T cells trafficked to tumors, where 
they persisted and proliferated to produce effective anti-
tumor responses comparable to lentiviral-transduced T 
cells in NSG mice and in melanoma cell lines [143].

Modifications by genome editing on the genomic level 
provide opportunities to modulate inhibitory signals to 
enhance antitumor effects. Initial results have shown that 
multiple genomic modifications of T cells are feasible, 
and it is expected that this will lead to more multiplexed 
genome-edited anti-cancer cellular products. However, 

there is still much to be done before allogeneic CAR T 
cells can fully replace autologous CAR T cells, since 
most of the current clinical trials to confirm high effi-
cacy and long-term safety are done with autologous cel-
lular therapies [1–19]. Despite encouraging results, most 
studies with sophisticated allogeneic products are still 
in the preclinical stage due to design and/or production 
challenges, particularly those manufactured using non-
viral vectors or involving genome editing, since poten-
tial oncogenicity or off-target mutagenesis must first be 
eliminated before progression to clinical use. An example 
is the FDA’s recent temporary hold on several phase I/II 
AlloCAR T clinical trials: ALPHA [98], ALPHA-2 [100], 
IGNITE [144], TRAVERSE [145], and UNIVERSAL 
[97]. An abnormality on chromosome 14 (location of the 
TRAC​ locus) was detected in the bone marrow biopsy of 
a patient treated with ALLO-501A CAR T cells during 
the ALPHA-2 trial [146, 147]. Testing is needed to deter-
mine if the abnormality arose from the gene edits, if this 
presents a risk for other CAR T cells that use similar gene 
editing techniques, and how effects may change as CAR 
T cell levels rise then drop during the course of therapy 
[146, 147]. The FDA clinical hold has since been lifted 
from all AlloCAR T clinical trials, since the chromo-
somal abnormality was clinically insignificant and only 
occurred in this particular patient due to rearrangement 
of TCR and immunoglobulin gene regions during T or B 
cell maturation, and not due to the AlloCAR T manufac-
ture process or TALEN gene editing [148].

Conclusion
T cell immunotherapy using donor T cells appears prom-
ising in aiming for better disease control in patients 
with malignant indications. However, improvements are 
needed before it can be developed into standard thera-
peutics. Applications of genome editing techniques to 
donor T cells should be explored for safety, feasibility, 
and whether it can lead to better next-generation treat-
ments for hematologic malignancies and other cancers.
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