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Abstract

Background: In Western countries, ovarian cancer (OC) still represents the leading cause of gynecological cancer-
related deaths, despite the remarkable gains in therapeutical options. Novel biomarkers of early diagnosis, prognosis
definition and prediction of treatment outcomes are of pivotal importance. Prior studies have shown the potentials
of micro-ribonucleic acids (miRNAs) as biomarkers for OC and other cancers.

Methods: We focused on the prognostic and/or predictive potential of miRNAs in OC by conducting a
comprehensive array profiling of miRNA expression levels in ovarian tissue samples from 17 non-neoplastic controls,
and 60 tumor samples from OC patients treated at the Regina Elena National Cancer Institute (IRE). A set of 54
miRNAs with differential expression in tumor versus normal samples (T/N-deregulated) was identified in the IRE
cohort and validated against data from the Cancer Genoma Atlas (TCGA) related to 563 OC patients and 8 non-
neoplastic controls. The prognostic/predictive role of the selected 54 biomarkers was tested in reference to survival
endpoints and platinum resistance (P-res).

Results: In the IRE cohort, downregulation of the 2 miRNA-signature including miR-99a-5p and miR-320a held a
negative prognostic relevance, while upregulation of miR-224-5p was predictive of less favorable event free survival
(EFS) and P-res. Data from the TCGA showed that downregulation of 5 miRNAs, i.e., miR-150, miR-30d, miR-342,
miR-424, and miR-502, was associated with more favorable EFS and overall survival outcomes, while miR-200a
upregulation was predictive of P-res. The 9 miRNAs globally identified were all included into a single biologic
signature, which was tested in enrichment analysis using predicted/validated miRNA target genes, followed by
network representation of the miRNA-mRNA interactions.
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Conclusions: Specific dysregulated microRNA sets in tumor tissue showed predictive/prognostic value in OC, and
resulted in a promising biological signature for this disease.

Keywords: Ovarian cancer, miRNAs, Prognostic/predictive biomarkers

Introduction
In Western countries, ovarian carcinoma (OC) is the third
most frequent gynecologic malignancy, and the leading
cause of gynecological cancer-related death [1]. Epithelial
OC is the most common hystologic subtype, accounting
for more than 90% of cases [2]. The heterogeneous nature
of the disease, along with the paucity of symptoms in the
early phase, translates into a late diagnosis for approxi-
mately two-thirds of patients [3]. In advanced-stage tu-
mors, patients often present with diffuse peritoneal
spread, making radical surgery not feasible [4]. Cytoreduc-
tive surgery and chemotherapy combined with biological
agents represent the standard of care for a relevant frac-
tion of these patients. Usually, debulking surgery for ad-
vanced OC is followed by platinum-based chemotherapy,
with disease relapse/progression occurring within 6
months in approximately 25% of patients. This latter per-
cent estimate also defines the fraction of patients with
platinum-resistant (P-res) tumors [4, 5]. Even though the
remaining patients respond to initial chemotherapy, most
of them will experience recurrence within 2–3 years due
to acquired drug resistance [6]. Recently, surgical tech-
niques have significantly improved and new targeted drugs
such as poly ADP ribose polymerase (PARP)-inhibitors
have been introduced in clinical practice [7]. However, the
onset of drug resistance still translates into disappointing
5-year overall survival (OS) rates, which for all the stages
combined are set at about 45% [8]. In such a scenario, bio-
markers for OC early diagnosis, prognosis definition and
prediction of treatment outcomes are eagerly needed.
Combination of biomarkers such as Ca125, human
epididymis protein 4 (HE4), and risk of ovarian malig-
nancy algorithm (ROMA) index has been associated with
increased performance compared to the use of single
biomarkers [9]. Still, the unraveling of the biological
mechanisms underlying the disease may significantly con-
tribute to the identification and validation of adjunctive,
increasingly accurate biomarkers, which may better orient
the diagnostic workup and inform therapeutic decisions.
A wide spectrum of biological processes involved in OC
initiation and progression, including the potential of can-
cer cells to acquire invasive and metastatic properties as
well as to develop drug resistance, are strongly impactedby
epithelial-mesenchymal transition (EMT), a process
whereby epithelial cells acquire a mesenchymal pheno-
type. The main regulators of EMT include signaling path-
ways suchs as WNT, and PI3K-AKT, and several

transcription factors [10]. Relapse and resistance/sensitiv-
ity to platinum-compounds are also affected by biological
mechanisms relatated to DNA damage and repair [11].
Moreover, cancer stem cells (CSC), a rare subset among
the cancer population cells with stem cell features, are
crucial for both cancer metastatization and chemoresis-
tance [12].
The regulation of gene expression is crucial to for the

vast majority of the aforementioned processes. The regu-
latory mechanisms act at the epigenetic, genetic, tran-
scriptional, post-trascriptional, and translational level,
with a wide spectrum of biological elements being in-
volved at one or more of the prespecified contexes.
MicroRNAs (miRNAs) consist of evolutionarily well
conserved small non-coding RNAs of 19 to 23 nucleo-
tides in length, which regulate gene expression by com-
plementary base-pairing to the 3 ′untranslated region
(UTR) of target mRNA, with consequent transcription
inhibition, or direct degradation of target mRNA [13].
Hence, miRNAs act mainly via suppressing gene expres-
sion, and regulate approximately 30% of genes in the hu-
man genome [14]. The role of miRNA expression has
been thoroughly investigated in cancers, including
OC [15]. In particular, studies in OC have shown
that miRNAs have a relevant impact on chemoresis-
tance, metastatic pontetials, EMT and CSCs regula-
tion [16, 17]. However, to our knowledge, a
restricted number of investigators have performed a
wide miRNA profiling in OC aimed at the identifi-
cation/validation of miRNA expression biological
fingerprints that extend beyond the prognostic and/
or predictive relevance.
We herein present results from an observational study

based on tissue miRNA profiling performed in a cohort
of OC patients and matched controls from the Regina
Elena National Cancer Institute (IRE). MicroRNAs iden-
tified in neoplastic and non-neoplastic tissues were
tested for differential expression, and for prognostic/pre-
dictive value, with the attempt to validate results against
data from the Cancer Genome Atlas (TCGA) and other
pertinent public datasets. Relevant miRNAs were evalu-
ated as a biological signature of OC, enrichment analysis
was performed using their relative target genes, and fi-
nally a network representation of the miRNA-mRNA in-
teractions was carried out. Results were finally
interpreted and discussed in light of the most recent in-
herent literature.
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Materials and methods
Case selection and definition of relevant clinical
outcomes
This is a single institution study that retrospectively
identified patients with an OC, treated at the IRE. For
the purposes of this study, non-neoplastic ovarian tissue
samples stored at the IRE biobank served as controls.
The study protocol was approved by the IRE Ethics
Committee. Our study was carried out in agreement
with the Declaration of Helsinki and adheres to the
Reporting Recommendations for Tumor Marker Prog-
nostic Studies guidelines.
This study included patients treated with a platinum-

based regimen administered as neo-/adjuvant/first-line
treatment in the early or advanced setting for
histologically-confirmed OC. Additional inclusion criteria
were age ≥ 18 years and baseline ECOG performance sta-
tus 0–1. Patients were excluded if they had a diagnosis of
a second tumor. Patients treated with a platinum-based
regimen in the adjuvant setting were included if they had
received at least 6 cycles, while patients treated in the neo-
adjuvant setting were included if having received at least
3 cycles of treatment before surgery, and completed at
least 6 cycles following surgery. Patients treated in the
metastatic setting or any other patient with persistent/re-
current disease after surgery could have also been treated
with bevacizumab added to chemotherapy and as a subse-
quent maintenance therapy, according to the international
guidelines.
Non-neoplasic ovarian tissue samples from 17 age-

matched women who underwent abdominal surgery at
the IRE served as controls. In this group of study partici-
pants, the oophorectomy was concomitant to hysterec-
tomy and motivated by uterus fibromatosis complicated
by or at high risk of hemorrhagic events. The primary
aim of this study was to identify biomarkers of prognos-
tic and/or predictive relevance throughout miRNA ex-
pression profiling in tumoral tissues. Validation was
planned using the TCGA data. To our study purposes,
the following endpoints were chosen: overall survival
(OS), event free survival (EFS) and platinum-sensitivity
status (PSS). Overall survival was defined as the time
elapsed from the date of the first cycle of neo-/adjuvant/
first-line chemotherapy to the date of death from any
cause. Event free survival was measured in months, and
was calculated according to the disease setting. For pa-
tients with ab initio metastatic disease, who received a
first-line treatment, EFS was calculated from the date of
the first chemotherapy to disease progression or death
from any cause. For patients who received chemotherapy
in the neo−/adjuvant setting, EFS was calculated as the
time from the first cycle of chemotherapy to disease re-
lapse/recurrence or death from any cause. Platinum sen-
sitivity status was categorized on the basis of time in

months from the last cycle of platinum-based chemo-
therapy to disease progression/relapse/recurrence. When
this time interval was ≤6 months, the tumor was classi-
fied as platinum-resistant (P-res), otherwise, it was con-
sidered platinum-sensitive (P-sens).

MicroRNA data extraction for the IRE cohort
Signals from miRNAs arrays were verified for quality
control and extracted by Agilent Feature Extraction
10.7.3.1 software. The arrays were quantile normalized.
All values lower than 1 were considered below detection
and thresholded to 1 and data were log2-trasformed.
MiRNAs not expressed in at least 50% of the samples
were excluded.
A second analytical method consisting in real-time

polymerase chain reaction (RT-PCR) was performed in
10 ovarian tumor and 10 normal tissue samples from
the IRE cohort, to quantify the expression level of 3 rep-
resentative miRNAs.

MicroRNA data extraction from the TCGA cohort
Normalized miRNA and gene expression profiles of high-
grade serous OC (HG-SOC) were obtained from Broad
Institute TCGA Genome Data Analysis Center (2016):
TCGA data from Broad GDAC Firehose 2016_01_28 run.
Broad Institute of MIT and Harvard. Dataset. (https://doi.
org/10.7908/C11G0KM9) (http://gdac.broadinstitute.org/
runs/stddata_2016_01_28/data/OV/20160128/).
MiRNA expression in the TCGA cohort was per-

formed by both miRNA sequencing and miRNA array
profiling. MicroRNA sequencing data were used for val-
idating predictive/prognostic miRNAs, while miRNA
array data were used for validating tumor versus normal
deregulation (only this second dataset provided miRNA
expression data on normal ovarian tissue samples).

MicroRNA data extraction from GEO and GTEx
MiRNA expression data of ovarian cancer tissue and nor-
mal tissue were extracted from the GEO database with ac-
cession number GSE119055 (6 ovarian cancer tissue
samples and 3 normal ovarian tissue samples run on Affy-
metrix miRNA array), and GSE83693 (8 primary ovarian
cancer tissue and 4 normal ovarian tissue on Agilent plat-
form). Data were analyzed by GEO2R software.
MiRNA expression data of 88 normal ovarian tissue

samples was obtained from GTEx dataset and combined
with miRNA expression data of tumor samples from
TCGA RNAseq dataset using GEPIA2 web tool (http://
gepia2.cancer-pku.cn/#index).

Gene set enrichment analysis, target prediction/
validation, and network analysis
A Preranked Gene Set Enrichment Analysis (GSEA) (https://
www.gsea-msigdb.org/gsea/index.jsp) was performed on a list
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of genes correlated to a selected groups of 9 miRNAs. The
GSEA algorithm calculates an enrichment score reflecting
the degree to which the genes included in a gene set are
overrepresented at the top or bottom of the ranked list of all
genes present in the expression dataset. Correlation was eval-
uated on matched miRNA\mRNA samples of TCGA casuis-
try based on the Spearman’s correlation coefficient.
The gene list for enrichment analysis was restricted to

those genes that resulted 1) differentially expressed be-
tween 88 normal samples of the GTEx dataset and 499
ovarian tumor samples from the TCGA, and 2) coher-
ently modulated according to an anti-correlating fashion
with respect to the tumor versus normal deregulation of
the relative miRNAs.
Gene Set Enrichment Analysis was run in preranked

mode using classic as metric and 1000 permutations
selecting the curated gene sets of Molecular Signatures
Database (MsigDB) derived from Hallmark, Kyoto
Encyclopedia of Genes and Genomes (KEGG) and onco-
genic collections. Gene sets enrichment was assessed by
positive and negative normalized enrichment score
(NES).
MicroRNA\mRNA predicted interactions and enrich-

ment analysis were performed by miRWalk version 3
(http://mirwalk.umm.uni-heidelberg.de/search_mirnas/)
and miRDB (http://mirdb.org/index.html).
A miRNA-centric network based on validated target of

the miRNA signature was created with miRNet (https://
www.mirnet.ca/miRNet/home.xhtml). MiRNA target
gene data were collected from well-annotated databases:
miRTarBase v8.0, TarBase v8.0 and miRecords.
We used the same targets genes as for GSEA to also

build a Protein-Protein Interaction Network by STRING
database (ShinyGO v0.61).

Statistical analysis
Descriptive statistics were used to calculate frequencies
and represent distributions of patient-, tumor- and
treatment-related features. Overall survival and EFS were
evaluated by Kaplan-Meier method and the log-rank test
was used to establish the statistical significance of the
distance between medians and/or curves. The impact of
clinical variables on the survival curves was investigated
by univariate Cox proportional hazard regression
models. High and low levels of specific features were
assessed by positive and negative z-score, respectively.
MicroRNA signature level was defined by considering
the average z-scores of the selected miRNAs.
Differences between subgroups of samples were

evaluated applying unpaired T-test, Wilcoxon test,
ANOVA test, Chi square test or logistic regression
according to the specific data distributions and num-
ber of subsets compared. Tukey post-hoc test was
employed when appropriate. A false discovery

procedure was included for multiple comparisons.
Statistical significance was set at 5%.
Unsupervised hierarchical clustering analysis (HCA)

was performed to individuate specific patterns of expres-
sion using the Euclidean distance metric. After
normalization, miRNA expression data was used to per-
form eigen-vector-based multivariate analysis by princi-
pal component analysis (PCA). Differential miRNA
expression data was displayed using volcano plots. Ana-
lyses were performed by using MATLAB R2019b
software.
A summary workflow of the analysis that we con-

ducted on the set of miRNAs detected in the IRE cohort,
including the modalities of the external validations,
miRNA signature selection, and pathway analysis, is rep-
resented in Fig. 1.

Results
IRE cohort characteristics and clinical outcomes
Sixty samples of OC and 17 non-neoplastic ovarian tis-
sue samples were collected from patients treated at the
IRE from 2007 through 2015. The median follow-up for
the whole cohort was 47.5 months, with the last update
of time-to-event clinical outcomes carried out in July
2020. The median age at diagnosis of OC patients was
55-years (range: 36–81). Six (10%) of these patients car-
ried a germinal mutation in BRCA1 or BRCA2 genes.
Regarding histology, 45 (75.0%) of them had a serous
carcinoma, 4 (6.7%) had a clear cell carcinoma, 1 (1.6%)
patient had a mixed serous and clear cell carcinoma, 6
(10.0%) had a poorly differentiated carcinoma, 4 (6.7%)
had a not otherwise specified OC. All 60 patients started
a systemic treatment with carboplatin plus paclitaxel in
a neo−/adjuvant or metastatic setting. Two patients
switched to cisplatin plus gemcitabine and carboplatin
plus docetaxel from the second cycle, due to allergic re-
actions occurred following exposure to the initially ad-
ministered regimen. The timing of systemic treatment
administration of the primary platinum-based regimen
was dependent on the clinical stage at diagnosis. Eleven
(18.3%) patients presented with metastatic disease at the
initial diagnosis (FIGO clinical stage IV), therefore, re-
ceived the platinum-based regimen as a first-line treat-
ment. Four (6.7%) of them also received bevacizumab in
association with chemotherapy. Twenty-seven (45.0%)
patients presented with an apparently operable disease
(FIGO clinical stage I - IIIB), thus receiving surgery as
an up-front treatment and platinum-based chemother-
apy in the adjuvant setting. Twenty-two (36.7%) patients
presented at the initial diagnosis with a non-metastatic,
non-operable disease (FIGO clinical stage IIIC), and
were treated with an up-front platinum-based neoadju-
vantchemotherapy. All these patients underwent surgery
following neodjuvant treatment. Main patient-and
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disease-related characteristics for the IRE cohort are
summarized in Table 1.
The median EFS was 21.9 months (mo) (range: 1.1–

147.5) for the whole IRE OC patient population. The
median EFS was 14.1 mo (range: 1.1–37.2), 15.5 mo
(range: 4.9–89.3) and 38.0 mo (range: 3.7–147.5) for pa-
tients treated in the metastatic, neoadjuvant and adju-
vant setting, respectively (log-rank p = 0.001). The
median OS was 56.5 mo (range: 3.4–147.5) for the whole
cohort. Median OS was 41.9 mo (range: 3.4–71.8),
52.8 mo (range: 14.3–108.9) and 105.7 (range: 3.7–
147.5) mo for patients treated in the metastatic, neoadju-
vant and adjuvant setting, respectively (log rank p =
0.002). Regarding PSS, 19 (31.7%) and 39 (65.0%)
patients were respectively classified as having P-res and
P-sens tumors. For 2 (3.3%) patients, platinum-sensivity
could not be evaluated because point censoring occurred
before 6 months with respect to the last follow-up.
Patients with metastatic disease or having received neod-
juvant therapy tended to have more frequently a P-res
disease compared to patients treated with adjuvant
systemic therapy (Chi square test, p = 0.022).

Correlation between differential miRNA expression and
clinical outcomes in the IRE cohort
Microarray-based miRNA expression profiling was carried
out in tumor samples of 60 patients diagnosed with OC
and in non-neoplastic tissue samples from 17 women.
Only miRNAs with an AUC > 0.9 were included in further
analysis. We started our analysis by searching for
expressed miRNAs with a relevant impact on the prespe-
cified clinical endpointsin the IRE cohort (Fig. 1, Panel a).
For the detection of miRNAs whose expression had an

impact on EFS and OS, we employed univariate Cox
regression and selected only those with a statistically
significant effect. We identified 8 miRNAs whose expres-
sion correlated with longer EFS, i.e., miR-6769b-5p,
miR-631, miR-514b-5p, miR-6124, miR-665, miR-6085,
miR-8072, miR-6165. Conversely, 9 miRNAs impacted
EFS negatively, i.e., miR-224-5p, miR-148a-3p, miR-15b-
5p, miR-320d, miR-361-5p, miR-99a-5p, miR-320a, miR-
149-5p, and miR-101-3p (Fig. 2 Panel a). Regarding OS,
we identified 2 miRNAs associated with a statistically
significant impact for lower risk of death, i.e., miR-1249-
3p, miR-3195 (Fig. 2 Panel a).

Fig. 1 Workflow of the study. Identification of prognostic/predictive miRNAs in the Regina Elena National Cancer Institute cohort (IRE
miRNA_array 60 T), and validation in the TCGA cohort (TCGA miRNA_array 563 T, and TCGA miRNA_seq 499 T) (a). Differential miRNA expression
analysis according to disease setting, BRCA 1/2 status, and in tumor versus normal tissue for the IRE cohort (b). TCGA validation of the tumor
versus normal dysregulated miRNAs, and identification of prognostic and biological signatures based on their deregulation (c). Abbreviations:
EFS = event free survival; OS = overall survival; T = tumor samples. MiRNAs included in the rectangular shape intersect within the same panel.
MiRNAs in red color are negatively associated to prognosis and platinum sensitivity, while those in blue color are positively associated with the
same outcomes. MiRNAs preceded by a upward arrow are upregulated in cancer tissue with respect to normal tissue, while those preceded by a
downward arrow are downregulated

Krasniqi et al. Biomarker Research            (2021) 9:57 Page 5 of 17



Differential miRNA expression analysis between 19 P-
res and 39 P-sens tumors allowed to identify 15 miRNAs
with statistically significant deregulation (Fig. 2, Panel b).
Four of them, namely, miR-4746-5p, miR-6871-5p, miR-
3680-3p and miR-520e, resulted significantly more
expressed in P-sens tumors compared to their resistant
counterpart, while miR-500a-3p, miR-33b-3p, miR-629-
3p, miR-4284, miR-664a-3p, miR-149-5p, miR-6508-5p,
miR-6516-3p, miR-15b-5p, miR-301a-3p and miR-224-5p
were significantly more expressed in P-res tumors (Fig. 2,
Panel c). Even though each of the 15 miRNAs correlated
with PSS, when we performed hierarchical clustering ana-
lysis (HCA) on the 60 IRE tumor samples including all the
15 miRNAs, no separation between P-res and P-sens sam-
ples emerged (Fig. 2, Panel d).
Noteworthy, among the miRNAs predictive of shorter EFS,

miR-224-5p, miR-15b-3p, and miR-149-5p were in common
with the miRNAs predictive of P-res (Fig. 1, and Fig. 2).
For validation purposes, we used TCGA data obtained

throughout RNA sequencing of 499 tumor samples.
None of the prognostic/predictive miRNAs identified
based on the analysis performed in the IRE cohort was
validated in the TCGA cohort (Fig. 1, Panel a).

Differential miRNA expression in the IRE cohort according
to disease setting and BRCA 1/2 status
In the IRE cohort, 32 miRNAs with a statistically signifi-
cant differential expression by disease setting were

identified (Supplementary Table 1). Among them, only 3
had emerged in prior analysis. In more detail, miR-99a-
5p and miR-101-3p were significantly deregulated in pa-
tients treated within each clinical setting. These same
miRNAs were also among those correlated with shorter
EFS (Fig. 2, Panel a). A two-by-two groups comparison
using Tukey post-hoc test showed that these two miR-
NAs were more expressed in tumor samples of patients
treated in the neoadjuvant setting with respect to those
treated in the adjuvant setting (respectively, p = 0.007
and p = 0.010). The third miRNA was miR-500a-3p,
which we previously found to be more expressed in
tumor samples of patients with P-res disease, compared
to those with P-sens disease (Fig. 2, Panel c). This
miRNA resulted also significantly more expressed in
tumor samples from patients in the neoadjuvant setting
compared to those in the adjuvant setting (post-hot
Tukey test p = 0.034).
Differential miRNA expression analysis between the 6

patients BRCA 1/2 mutated and their wild type counter-
part detected only 1 miRNA with a significant deregula-
tion. In particular, miR-512-3p resulted less expressed in
the tumor samples of BRCA 1/2 mutated patients, when
compared to the wild type ones (Wilcoxon test p =
0.040). This miRNA was not found among those impact-
ing clinical outcomes in the IRE cohort, nor among miR-
NAs deregulated according to the specific clinical
setting. A summary of the analyzes described in this sec-
tion is represented in Fig. 1, Panel b.

Differential miRNA expression between tumor and normal
tissue in the IRE cohort
Differential expression analysis between tumor and nor-
mal tissue (T/N) showed 266 miRNAs having a statisti-
cally different expression level between the two sample
sets (Supplementary Table 2). A HCA using the expres-
sion level of these 266 miRNAs showed a separation be-
tween tumor samples and normal tissue samples (Fig. 3,
Panel a). Subsequent principal component analysis
(PCA) was performed to quantify the miRNA expression
variation between tumor and normal tissue samples and
identify possible clusters. Tumor samples were also la-
beled separately in accordance to their PSS. As shown in
Fig. 3, panel b, there was a 65.0% variation in the first
principal component and a 7.0% variation in the second
principal component, which translated into a clear-cut
separation between tumor and normal tissue samples.
Conversely, no separation emerged among P-sens and P-
res samples. Both, the supervised HCA and PCA,
showed the normal tissue from only 1 individual (with
ID 80) clustering better with the tumor tissue samples
than other normal samples (Fig. 3, panels a and b).
None of the two miRNAs impacting OS in the IRE co-

hort could be found in the tumor versus normal

Table 1 Summarized characteristics of IRE cohort patients (N= 60)

Characteristics N(%)

Age yr, median (range) 55 (36–81)

BRCA 1/2 status

Wild Type 54 (90%)

Mutated 6 (10%)

Hystology

Serous carcinoma 45 (75.0%)

Clear cell carcinoma 4 (6.7%)

Mixed serous and clear cell carcinoma 1 (1.6%)

Poorly differentiated carcinoma 6 (10.0%)

Not otherwise specified carcinoma 4 (6.7%)

Disease setting (FIGO Stage)

Metastatic (Stage IV) 11 (18.3%)

Adjuvant (Stage I - IIIB) 27 (45.0%)

Neoadjuvant (IIIC) 22 (36.7%)

First systemic treatment

Carboplatin + Paclitaxel 54 (90%)

Carboplatin + Paclitaxel + Bevacizumab 4 (6.8%)

Carboplatin + Docetaxel 1 (1.6%)

Cisplatin + Gemcitabine 1 (1.6%)
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deregulated (T/N-deregulated) miRNA set. Conversely, 6
among the miRNAs found to be downregulated in the
tumor samples with respect to normal tissue (T/N-
downregulated), namely miR-148a-3p, miR-320d, miR-
361-5p, miR-99a-5p, miR-320a and miR-101-3p (T-test
p-values for all of them< 0.001), were also listed among
the miRNAs that were previously detected as predictive
of shorter EFS in the IRE cohort (Fig. 2, Panel a). More-
over, as described in the previous section, miR-99a-5p
and miR-101-3p were also found to be more expressed
in tumor samples of patients treated in the neoadjuvant
setting, with respect to those treated in the adjuvant set-
ting. Among the T/N-deregulated miRNAs, 2 miRNAs
coincided with miRNAs predictive of PSS. Specifically,
miR-500a-3p and miR-664a-3p, which resulted enriched
in P-res tumor samples in the previous analysis (Fig. 2,
Panel c), were also found dowregulated in the tumor
samples, with respect to normal tissue (T-test p-value
for both < 0.001). Interestingly, miR-500a-5p was also
found to be T/N-upregulated in patients treated in the
neodjuvant setting, when compared to those treated in
the adjuvant setting. A summary of the analyzes
described in this section is represented in Fig. 1,
Panel b.

External validation of IRE cohort T/N-deregulated miRNAs
To validate T/N-deregulated miRNAs detected in the
IRE cohort, we used data obtained by array profiling of 8
normal tissue samples and 563 tumor samples of the
same TCGA cohort. Among the 266 miRNAs that were
T/N-deregulated in the IRE cohort, 54 were concor-
dantly and significantlyT/N-deregulated also in the
TCGA cohort (Supplementary Table 3). Hence, 20.3% of
T/N-deregulated miRNAs in the IRE cohort were vali-
dated against data from the TCGA cohort. Hierarchical
clustering analysis and PCA were performed using ex-
clusively the expression levels of the 54 T/N-deregulated
miRNAs identified in the IRE cohort and validated in
TCGA cohort. The HCA confirmed the clear separation
between Tumor and Normal tissues also in this case
(Fig. 3, Panel c). Regarding PCA, 60% of the variation
was found in the first principal component and 6% in
the second, which is consistentwith the results from the
PCA in the IRE cohort (Fig. 3, Panel d). Also in this case,
no separation according to PSS was observed. Moreover,
the same normal tissue sample falling among tumor
samples (ID 80) outlied again the clustering from normal
samples by classifying into the group of tumor samples
in both HCA and PCA. The separation by PCA of tumor

Fig. 2 Identification of prognostic and predictive miRNAs in the IRE cohort. Forest plots indicating miRNAs with statistically significant (p < 0.05)
impact on EFS and OS in the IRE cohort (a). Volcano plot showing the differentially expressed miRNAs between 39 platinum sensitive and 19
platinum resistant tumor samples (b). Box plots displaying miRNAs with statistically significant (Wilcoxon test, p < 0.05) differential expression
between 39 platinum sensitive and 19 platinum resistant tumors (c). Heatmap illustrating the unsupervised hierarchical clustering analysis of the
15 miRNAs predictive of platinum sensitivity state (d), profiled on 39 platinum sensitive and 19 platinum resistant tumors. Abbreviations: HR =
hazard ratio; sens = platinum sensitive; resist = platinum resistant
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samples from normal samples using the 54 commonly
T/N-deregulated was also validated in the TCGA cohort,
with first and second principal components’ variations of
respectively 20 and 16% (Fig. 3, Panel e).
To further consolidate the validation of the IRE cohort’s

miRNA T/N deregulation against the TCGA data, we per-
formed an additional experiment by using a different ana-
lytic technique represented by real time polymerase chain
reaction (RT-PCR). In more detail, we randomly selected
from the IRE cohort a subgroup including 10 samples of
ovarian tumor tissue and 10 samples of normal tissue.
Then RT-PCR was performed on these samples to meas-
ure the expression of level of 3 representative miRNAs
chosen among the 54 commonly T/N deregulated with re-
spect to TCGA. All these three miRNAs were confirmed
to have the same T/N-deregulation as was found by array
profiling in the IRE cohort and confirmed common de-
regulation with respect to TCGA. Specifically, miR-99a-5p
and miR-145-5p resulted T/N-downregulated, and miR-
224-5p T/N-upregulated (Supplementary Fig. 1, panels A,
B and C).
Moreover, by taking into account the low number of

only 8 normal ovarian tissue samples in the TCGA

cohort, we performed a confirmatory analysis on the 54
commonly T/N-deregulated miRNAs by using data from
2 additional studies. Data from the GEO database were
used with accession number GSE119055, which includes
6 OC tissue samples and 3 normal ovarian tissue sam-
ples, run on Affymetrix miRNA array, and GSE83693,
which includes 8 primary OC tissue samples and 4 nor-
mal ovarian tissue, run on Agilent platform. We respect
to our 54 T\N deregulated miRNAs, we found corres-
pondence for 44 miRNAs in the first dataset and 40
miRNAs in the second dataset. Around 80% of the miR-
NAs showed the same modulation, confirming our re-
sults (Supplementary Table 4).
Noteworthy, none of the miRNAs impacting OS or

predictive of PSS in the IRE cohort were found among
the 54 commonly T/N-deregulated IRE-TCGA miRNAs.
However, two miRNAs impacting EFS negatively in the
IRE cohort were present among the 54 validated miR-
NAs. Specifically, miR-99a-5p and miR-320a were both
related to shorter EFS in the IRE cohort and resulted
dowregulated in tumor samples with respect to normal
tissue, in both the IRE and the TCGA cohorts (Fig. 1,
Panel c; and Fig. 2 Panel a).

Fig. 3 Dimensionality reduction analysis of differentially expressed miRNAs between tumor samples and normal. Unsupervised hierarchical
clustering analysis (a) and principal component analysis (b) using the expression levels of the 266 miRNAs differentially expressed in tumor tissue
versus normal tissue in the Regina Elena National Cancer Institute (IRE) cohort. These miRNAs separate the two types of samples, i.e., tumoral and
normal tissue samples. This was confirmed by hierarchical clustering analysis in the IRE cohort (c), and by principal component analysis in the IRE
cohort (d), and TCGA cohort (e), when using the 54 miRNAs validated against TCGA data. Statistical differences in miRNAs expression were
assessed by permutation test and Student’t T-test. Abbreviations: T/N = tumor versus normal; Tsens = platinum sensitive tumor; Tresist = platinum
resistant tumor; PC1 = first principal component; PC2 = second principal component; TCGA = The Cancer Genome Atlas
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Characterization of prognostic/predictive miRNA
signatures based on T/N-deregulation
For the characterization of viable miRNA signatures
impacting the clinical course and/or the biological as-
pects of OC we prioritized selection from the 54 miR-
NAs that were T/N-deregulated in the IRE cohort, and
that had such deregulation validated in the TCGA co-
hort. The secondary criteria for miRNA selection that
was employed in the pursue of signatures, required the
selected miRNAs to have significant impact on clinical
outcomes in the IRE cohort and/or in the TCGA cohort
(Fig. 1, Panel c).
We identified only 2 miRNAs profiled in the IRE co-

hort satisfying both criteria of selection by following this
method. In particular, the 2 miRNAs were miR-99a-5p
and miR-320a, which were already mentioned in the pre-
vious section asT/N-downregulated in the IRE and
TCGA cohorts, and at the same time significantly associ-
ated to worse EFS in the IRE cohort. MiR-99a-5p was
also relatively more expressed in the tumors of patients
who had received a neoadjuvant treatment, when com-
pared to those treated by adjuvant chemotherapy, in the
IRE cohort. MiR-99a-5p, and miR-320a were unified into
a single T/N-downregulated prognostic signature, which

showed to negatively impact EFS (HR 1.64, 95%CI 1.10–
2.44, p = 0.014), and OS (HR 1.45, 95%CI 0.97–2.18, p =
0.07) (Fig. 4, Panel a and Panel b), in the IRE cohort.
However, this signature was not prognostic in the TCGA
cohort (Supplementary Fig. 2, Panels A and B). Note-
worthy, we identified a third miRNA at the limit of our
criteria for the selection. Specifically, miR-224, which
was found to be correlated with P-res and shorter EFS in
the IRE cohort (Fig. 2, and Supplementary Fig. 2, Panel
C), was also T/N-upregulated in both the TCGA cohort
(Suplementary Fig. 2, Panel D) and the IRE cohort, not
reaching statistical significance in the latter (Supplemen-
tary Fig. 2, Panel E). However, this miRNA resulted sig-
nificantly T/N-upregulated when the subset analysis
using RT-PCR was performed (Supplementary Fig. 1,
Panel C). We decided to keep this miRNA as an opti-
mizing factor for subsequent pathway analysis.
In a further analysis, the 54 miRNAs validated in the

TCGA for T/N-deregulation, were tested for prognostic
and predictive impact inthe TCGA cohort. Six miRNAs
with an impact on clinical outcomes in the TCGA co-
hort were identified (Fig. 1, Panel c). In particular, miR-
502-3p, miR-150-5p, miR-342-3p, miR-30d-5p, and miR-
424-3p, which were T/N-dowregulated, had a positive

Fig. 4 Characterization of miRNA prognostic signatures in the IRE and TCGA cohorts. Kaplan-Meier survival curves of event free survival (EFS) (a),
and overall survival (OS) (b), of patients with low versus high expression of the 2-miRNA prognostic signature identified in the IRE cohort
(statistically significant differences when logrank test p < 0.05). Forest plot illustrating univariate Cox regression analysis for EFS (c) and OS in the
TCGA of the 5 miRNAs selected for the inherent prognostic signature (d). Kaplan-Meier survival curves of event free survival (EFS) (e), and overall
survival (OS) (f), of patients with low versus high expression of the TCGA 5 miRNA prognostic signature (statistically significant differences when
logrank test p < 0.05). Univariate Cox regression for prognostic signatures is displayed beneath the relative Kaplan-Meier curves, inside a rectangle.
Abbreviations: HR = hazard ratio
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prognostic effect for both OS and EFS in the TCGA co-
hort (Fig. 4, Panel c and Panel d). In supplementary Fig. 3
and Supplementary Fig. 4, Kaplan Meier curves for EFS
and OS are displayed. Higher expression levels for each
of the selected 5 miRNAs were associated with better
outcomes for both the variables. We built a T/N-down-
regulated positive prognostic signature using these 5
miRNAs, which showed a statistically significant and co-
herent effect on both OS and EFS in the TCGA cohort
(Fig. 4, Panel e and Panel f). The sixth miRNA, namely
miR-200a-5p, was previously detected among the T/N-
upregulated in both the IRE and TCGA cohorts, and im-
pacted PSS in the TCGA cohort, resulting correlated
with P-res (Supplementary Fig. 2, Panel F).

Selection of a biological signature and its use for
pathway analysis
Concerning the selection of a set of miRNAs to be struc-
tured as a biological signature adequate for gene ontol-
ogy analysis, we used tha same inclusion criteria
previously defined in terms of T/N-deregulation and im-
pact on clinical outcomes in the IRE and TCGA cohorts.
Hence, we included in this signature the 7 miRNAs from
the 2 prognostic signatures identified in the previous
section (miR-99a-5p and miR-320a from the IRE cohort,
and miR-502-3p, miR-150-5p, miR-342-3p, miR-30d-5p,
and miR-424-3p from the TCGA cohort), and the 2
miRNAs selected as predictive representatives (miR-224
from the IRE cohort and miR-200a-5p from the TCGA
cohort).
The resulting biological signature was composed of 9

miRNAs. As illustrated in Supplementary Fig. 5, the 7 miR-
NAs impacting prognosis were T/N-downregulated in both
the IRE cohort (Panel A and Panel B), and in the TCGA co-
hort (Panel C). Conversely, the 2 miRNAs selected as pre-
dictive of PSS, were upregulated in both datasets.
Owing to the fact that the main criterion for the 9

miRNA signature was the T/N-deregulation, we per-
formed an ultimate confirmatory analysis on this aspect
by using a combination of data from 88 normal samples
from GTEx dataset and the tumor samples from TCGA
RNA sequencing-based dataset. A PCA was carried out
using differential T/N-expression of all the target genes
negatively correlated to the 9 miRNA signature. The tar-
gets genes were able to clearly discriminate tumors from
normal samples (Supplementary Fig. 6).
Once the 9 miRNA signature was set, we derived a

relative target gene list to be used for a gene set enrich-
ment analysis (GSEA) (Supplementary Table 5). Genes
for this list were selected according the following cri-
teria: i) anti-correlation to the 9 miRNAs of the signa-
ture based on target prediction using miRWalk and
miRDB, and target validation using miRNA/mRNA ex-
pression data from the TCGA RNA sequencing-based

dataset; ii) coherent T/N-deregulation with the 9 miR-
NAs of the signature based on the differential expression
analysis of the selected genes between 88 normal sam-
ples of the GTEx dataset and the 499 ovarian tumor
samples of the TCGA RNA sequencing-based dataset.
After the gene list was defined, enrichment analysis was
performed on immunogenic/oncogenic gene signatures
and cancer hallmarks related sets of genes according to
Kyoto Encyclopedia of Genes and Genomes (KEGG).
The genes targeted by the 7 T/N-downregulated miR-
NAs, which should result presumably upregulated in the
tumor with respect to normal tissue, showed the highest
enrichment for oncogenic pathways such as EMT path-
way, AKT signaling, and mTOR signaling, but also for
ATF2 signaling, TGF-beta signaling, VEGF A signaling
and other less specific cancer sustaining pathways (Fig. 5,
Panel a). On the other hand, the most enriched terms in
the GSEA of the genes negatively modulated by the 2 T/
N-upregulated miRNAs were the tumor suppressing sig-
naling pathways related to cell cycle regulating genes and
MAPK/ERk pathway (Fig. 5, Panel b).
Lastly, we conducted a network analysis relative to the 9

miRNAs of the biological signature by considering only
validated miRNA-mRNA interactions from the TCGA
RNA-sequencing based dataset. The interaction network
resulted very dense with 2008 nodes and 2215 edges. For
a selective visualization of the most important target genes
in the network, we highlighted the interactions of the fol-
lowing relevant pathways: the JAK-STAT, MAPK, P53,
Wnt and mTOR signaling pathway (Fig. 6). A complete
list of the validated target genes is represented in supple-
mentary Table 6, and the pathways detected by the target
network analysis are displayed in supplementary Table 7.
As illustrated in Fig. 6, the most intensively regulated
genes by our 9 miRNA biological signature (and their rela-
tive functional ontologies) resulted PRKCA (angiogenesis),
EP300 (chromatin remodelling), TP53 (apoptosis),
MAPK8 (gene expression), PIK3R2 (cellular glucose
omeostasis), PPP3CB (response to cytokines), AKT1 (cell
growth), CASP3 (apoptosis), SERPINE1 (angiogenesis),
MYC (cell cycle),CDK6 (cell cycle), FAS (apoptosis),
RPS6KA1 (response to stress), RAC1 (cytoskeleton
organization), MAPK1 (differentiation), CCND2 (cell
cycle), JUN (immune response) and CCND1 (cell cycle).
We conducted a further supportive analysis by building a
protein-protein interaction network this time based on
target genes from the aforementioned GSEA gene list,
therefore more restricted. The involved pathways largely
overlapped with outomes from validated target network
analysis (Supplementary Table 8).

Discussion
In this study, we performed a comprehensive analysis of
miRNAs as biomarkers of clinical behaviour of OC in
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patients receiving their first systemic chemotherapy in
the neo−/adjuvant or metastatic setting. We also
assessed the association between biological aspects of
OC and the expression of specific miRNA sets. All our
results were tested for external validation.
A total of 34 miRNAs expressed in the 60 IRE tumor

samples were detected showing a significant impact on
at least 1 among OS, EFS and PSS in the IRE patients’
cohort.
The 2 miRNAs whose expression was associated with

longer OS in the IRE cohort, namely miR-1249-3p, and
miR-3195, were not reported to impact OC in previous
studies. However, they were associated with longer OS
(miR-3195) and increased chemiosensitivity (miR-1249-
3p) in a previous study of non small cell lung cancer
(NSCLC) patients [18].
Previous data on part of the 17 miRNAs which im-

pacted EFS in the IRE cohort often showed contrasting
conclusions with respect to our results. In particular,
concerning miRNAs associated with longer EFS in the
IRE cohort, previous studies on miR-665 showed its as-
sociation with poor prognosis in NSCLC and in breast
cancer (BC) [19, 20]. Regarding miRNAs predicting a
shorter EFS in the IRE cohort, earlier studies showed
that at tissue level miR-101-3p was T/N-upregulated
[21], as opposed to what we obsverved in our cohort

(Supplementary Table 2), whereas miR-148-3p was T/N-
downregulated, consistently to the IRE cohort (Supple-
mentary Table 2). Lastly, in a previous study, miR-148
was associated with positive prognostic effect in OC pa-
tients, while negative prognostic effect was observed the
IRE cohort [22].
Regarding the 3 miRNAs which resulted associated

with both shorter EFS and P-res in the IRE cohort, find-
ings from prior studies were mostly consistent with ours.
In particular, studies found that both miR-224-5p [23]
and miR-149-5p [24] were associated with P-res in OC
patients.
Some interesting results from previous studies were

also reported on some miRNAs among those 12 deter-
mining only PSS in the IRE cohort. In particular, among
miRNAs predicting P-sens, miR-520e demonstrated an
association with negative prognosis in a previous study
of NSLC patients [25], therefore showing an opposite ef-
fect compared to our results. Concerning miRNAs pre-
dictive of P-res in the IRE cohort, the available evidence
regarding other types of tumors is extensively concord-
ant with our findings, even though no studies on OC
were identified. Notably, MiR-33b-3p, miR-629-3p, and
miR-301a, were respectively predictive of platinum re-
sistance in NSCLC [26], and head and neck cancer
(HNC) [27], and chemoresistance in pancreatic cancer

Fig. 5 Gene enrichment analysis of the 9 miRNA-biological signature. Enrichment analysis of 7 T/N-downregulated (a), and 2 T/N-upregulated (b)
miRNA gene targets. Analysis was performed by GSEA 4.1.0 software (BROAD Inst.) and run in pre-ranked mode. Predicted targets were ranked
based on the correlation coefficients obtained from miRNA\mRNA TCGA RNA-sequencing data. Results showed normalized scores for negative
enrichment (a) and positive enrichment (b). Color bar indicates the false discovery rate and the circle size represents the percentage of the genes
in the core enrichment pathway. Abbreviations: T/N = tumor versus normal; NES = normalized enrichment score; path. = pathway; sign. = signaling
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(PaC) [28]. Moreover, association with shorter OS was
reported for miR-629-3p in HNC [27] and NSCLC [29],
and for miR-301a-3p in BC, in which it also determined
shorter PFS [30].
The IRE cohort was heterogeneos in terms of disease

stages and, consequently, patients’prognosis. In fact, the
disease setting to which patients belonged, namely, neo-/
adjuvant or metastatic, was associated with distinctive
distributions of EFS, OS and PSS among the 3 subsets.
However, miRNAs differentially expressed between P-res
and P-sens patients, and miRNAs that resulted T/N-
deregulated, could not yield a separation between these
two groups when used in HCA (Fig. 2, Panel d), and in
PCA (Fig. 3, Panel b), respectively. Moreover, miRNAs
impacting OS and miRNAs impacting EFS and/or PSS
in the IRE cohort seemed not to intersect with each
other. Three miRNAs (miR-224-5p, miR-15b-5p, and
miR-149-5p) were represented both among those

impacting EFS and those impacting PSS, but this was ex-
pected, considering the strong relation between these
two outcomes.
Furthermore, internal analysis in the IRE cohort dem-

onstrated that only 3 of the 34 miRNAs with prognostic/
predictive effect were also found among those with dif-
ferential expression between the neoadjuvant, adjuvant,
and metastatic setting. Specifically, miR-99a-5p, and
miR-101-3p, associated with shorter EFS, and miR-500a-
3p, predictive of P-res, resulted all upregulated in neo-
adjuvant patients (Stage IIIC), with respect to adjuvant
patients (Stage I - IIIB).
Finally, differential miRNA expression based on BRCA

1/2 mutational status showed only miR-512 dowregu-
lated in mutated patients. This miRNA was not prognos-
tic neither predictive in the IRE cohort. However, it
demostrated tumor suppressive and chemotherapy sensi-
tizing effects in previous studies of BC [31]. Overall,

Fig. 6 Network analysis of 9 signature miRNAs using validated miRNA-mRNA interactions. Signature miRNAs were applied to a miRNA-centric
network visual analytics platform (MiRNet). miRNA target gene data were collected from well-annotated database: miRTarBase v8.0, TarBase v8.0
and miRecords. Targets were used to build a network of main interactions. Nodes indicated by rectangles represent signature miRNAs. Nodes
indicated by circles represent target genes. A standard enrichment analysis based on the hypergeometric tests after adjustment for false
discovery rate (FDR) was also included
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results from this subset of analysis show that differential
miRNA expression in the IRE cohort is only partly de-
termined by patients’ heterogeneity, while it is mostly a
function of inter-tumor differences. This conclusion
confers internal consistency to the analysis by which we
detected 34 miRNAs with prognostic/predictive value in-
side the IRE cohort itself. Nevertheless, external
consistency of our findings relatively to the impact of
these miRNAs on clinical outcomes such as OS, EFS and
PSS could not be confirmed when we tried to validate
their prognostic/ predictive potential in the dataset
based on miRNA sequencing of the TCGA cohort. This
result might be partially reconciled with the possible in-
sufficient matching in terms of patient and disease char-
acteristics between the IRE and TCGA cohorts,
difference in surgical and systemic treatment in the two
cohorts, or even related to the different technologies
used for miRNA profiling. For instance, the percentages
of patients with disease in stage I to IIIB, IIIC and IV
were respectively 18.3, 45 and 36.7% in the IRE cohort,
and 11, 73 and 16% in the TCGA cohort. Regarding sur-
gery, around 80% of IRE cohort patients and 90% of
TCGA cohort patients underwent maximum cytoreduc-
tion. All patients in the IRE cohort received platinum-
based systemic treatment which consisted in carboplatin
plus paclitaxel in 90% of cases, and was delivered with
a neo-/adjuvant, or palliative intent, according the dis-
ease stage. Similarly, nearly all patients in the TCGA co-
hort were treated with platinum-based systemic therapy,
but detailed information on treatment protocols is not
available, therefore making these two cohorts not fully
comparable. The intra-cohort heterogeneity with regards
to disease stage and treatment, and the inter-cohort im-
balances for the same characteristics, weaken the possi-
bility for a robust analysis of clinical outcomes in
connection with the biological aspects of the disease,
and impairs the validation of possible biological-to-
clinical implications between the IRE cohort and the
TCGA cohort. On the other hand, due to the small sam-
ple size of the IRE cohort, it was not possible to conduct
a more refined analysis by selecting groups stratified by
stage from the IRE and TCGA cohorts, respectively.
However, we hypothesized that an investigation mode
rooted on an exclusively biological basis could offer
more opportunities and help partially overcome such
limits. This was the main reason why we explored T/N-
deregulation of miRNAs in the IRE cohort and tried to
validate it against the TCGA data as a first step towards
identifying a biological signature. About 20.3% of the
miRNAs differentially expressed between tumor tissues
and control tissues in the IRE cohort were validated for
such deregulation in the TCGA cohort. Moreover, in an
additional experiment using RT-PCR, we selected a sam-
ple of 3 commonly deregulated miRNAs (miR-99a-5p,

miR-145-5p, miR-224-5p), and quantified their expres-
sion in a subset of the IRE cohort, by confirming the
same T/N-deregulation as detected by array profiling. Fi-
nally, due to the low number of normal samples in the
TCGA cohort (8 samples), we used two additional data-
sets from the GEO, namely GSE119055 (6 ovarian can-
cer tissue samples and 3 normal ovarian tissue samples),
and GSE83693 (8 primary ovarian cancer tissue and 4
normal ovarian tissue), to test the T/N-deregulation
state of the 54 commonly T/N-deregulated miRNAs be-
tween the IRE and TCGA cohorts. Results showed that
around 80% of them were confirmed with the same T/
N-deregulation. Differential expression of miRNAs be-
tween tumor and normal tissue is crucial for their func-
tional assessment. It was demonstrated by various
studies that it is a global tendency for tumors to have an
overall low miRNA expression, because of impared
miRNA biosynthesis [32]. Furthermore, a decreased ex-
pression of the endoribonuclease responsible for miRNA
biogenesis (Dicer), was associated with worse clinical
outcomes in OC patients, behaving as an independent
prognostic factor [33]. Our findings are concordant with
this aspect, since all 8 prognostic miRNAs which re-
sulted T/N-deregulated in the IRE cohort (miR-148a-3p,
miR-320d, miR-361-5p, miR-99a-5p, miR-320a, miR-
101-3p, miR-500a-3p, miR-664a-3p) had a lower expres-
sion in the tumor, when compared to normal tissues.
We worked exclusively on the 54 miRNAs validated in
the TCGA with respect to their T/N-deregulation, in the
process of identifying sets of miRNAs cogent for signa-
ture composition and functional analysis. Two miRNAs
from the IRE cohort fully satisfied this filtering process.
Specifically, miR-99a-5p, and miR-320a, resulted both
associated with shorter EFS in the IRE cohort, and with
decreased expression in tumor tissue in both IRE and
TCGA cohorts. The signature including both miRNAs,
maintained significance for EFS, and showed potentials
also for OS prediction in the IRE cohort, even though
these results were not confirmed in the TCGA cohort. A
previous study showed that plasma levels of miR-99a-5p
were elevated in OC patients and were associated with
pro-tumorigenic effect [34]. Studies on other solid tu-
mors showed that both miR-99a-5p, and miR-320a, were
T/N-downregulated at tissue level and this deregulation
determined poor prognosis [35–37]. Moreover, preclin-
ical studies demonstrated a tumor suppressive effect of
both these miRNAs at the tissue level for a wide
spectrum of solid tumors [38–46]. Overall, our findings
and data from literature support the idea for the validity
of these two miRNAs to be used as a prognostic signa-
ture. Moreover, the T/N-downregulation of the signa-
ture could have an independent negative prognostic
value which can be tested in future studies. Besides these
2 T/N-downregulated miRNAs, we also selected for
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further evaluation miR-224-5p, an IRE T/N-upregulated
miRNA (statistically significan in RT-PCR), with con-
cordant deregulation in the TCGA cohort. Based on the
fact that it was predictive for both shorter EFS and P-res
in the IRE cohort, and considering the concordant evi-
dence from literature focused on its role in OC and
other solid tumors, we believe that this miRNA is a valid
candidate to be studied as a biomarker for OC not only
at the tissue level, but also by measuring its plasma level
in future studies. It was demonstrated that bioactive
miRNAs can be released into the body fluids from can-
cer cells, where they result very stable, being resistant to
RNase degradation [47]. A further study on OC showed
that circulating miRNAs are crucial for intercellular
communication and metastatic spread [48, 49].
Besides their utility as prognostic/predictive bio-

markers, miR-99a-5p, miR-320a, and miR-224-5p
showed features which make them relevant for pathway
analysis. In order to extend the set of the selected 3 miR-
NAs in prospect of functional analysis, we used the same
methodology to seek for a prognostic signature and pre-
dictive miRNAs in both datasets relative to the TCGA
cohort. Hence, by using the 54 validated miRNAs for T/
N-deregulation, we identified 5 of them that were down-
regulated, associated with longer EFS and OS (miR-150,
miR-30d, miR-342, miR-424, and miR-502), and consti-
tuting a relative signature that conserved prognostic
value in the TCGA. We identified also 1 upregulated
miRNA which was predictive of P-res (miR-200a).
Altogether, the final set of 9 miRNAs was used for func-
tional and pathway enrichment analysis, as a biological
signature for OC. A further confirmation of the differen-
tial expression of these 9 miRNAs between normal ovar-
ian tissue and OC tissue was obtained by performing
PCA on their anti-correlated target genes profiled in 88
normal tissue samples from the GTXe dataset and the
TCGA RNAseq dataset (Supplementary Fig. 6).
Overall, the TCGA cohort together with the GEO and

GTXe datasets were used as validation datasets for T/N-
deregulation, and the TCGA dataset was futherly utilized
as an external data supplement for the conceptualization
of a viable 9 miRNA signature.
Results of gene enrichment analysis performed separ-

ately for T/N-upregulated and T/N-downregulated
miRNA target genes, and construction of a miRNA-
mRNA regulatory network demonstrated the validity of
the 9 miRNA signature as a biological fingerprint of OC.
The selected 9 miRNAs resulted involved in the main
biological processes which are hallmarks in the patho-
genesis of OC. In particular, the predicted targets of the
T/N-downregulated 7 miRNAs set were oncogenic path-
ways such as EMT, AKT, mTOR, ATF2, which have
been implicated in various aspects of OC pathogenesis,
diagnosis and treatment [50–52]. The most relevant

target of the 2 T/N-upregulated miRNAs resulted the
cell cycle regulation and MAPK/ERK pathway, which
has been targeted by novel therapeutical agents seeking
to overcome cisplatin resistance in OC [53]. We then
performed two types of network analyses based on inter-
actions between the target genes of the 9 miRNAs se-
lected as biological signature. The core network was built
by using gene interactions of validated targets, and a sec-
ond supportive network was constructed on the basis of
protein-protein interactions using targets restricted also
by target prediction and T/N-deregulation. Results were
extensively overlapping, and most affected pathways re-
sulted MTOR, AKT, MAPK, P53, and Wnt signaling path-
ways, shown to be pivotal in OC biology [50, 51, 53–55].
A collateral aspect that deserves further consideration

when discussing our study results, and which is supported
by previous literature on miRNAs in OC and other can-
cers, is related to some generalizable features concerning
their biological function. In first place, miRNA’s T/N-de-
regulation direction didn’t show to have a universal effect
on their oncogenic/tumor suppressive activity, neither
could down- or up-regulation be used as a surrogate for
the negative or positive prognostic effect. Hence, our work
and previous evidence did not support the existence of a
fixed dogma for the function of miRNAs in the onco-
logical landscape, such as the hypothetical: T/N-upregula-
tion ➔ oncogenic effect ➔ drug resistance ➔ poor
survival, or the inverse. It is consequential to think that
the role of miRNAs in biological systems should be stud-
ied in a context encompassing other crucial factors affect-
ing their function, such as, the co-expression of long non
coding RNAs, which might exert sponging effect on miR-
NAs, and a definition of the predominant driver pathways
in a specific preclinical or clinical experimental platform.
Most of the currently available results of miRNAs in OC
pathogenesis were obtained from cell lines in gain-and
loss-of function experiments, which cannot reflect the
complexity and dynamicity of the biological processess in
human organisms. Hence, another way to improve reli-
ability of results in future preclinical studies could impli-
cate the use of organoids, which can resemble histological
and genetic characteristics of OC [56]. Lastly, the rele-
vance of studying miRNAs in OC or other cancers is not
limited only to an informative function, but extends also
to their potential as future therapeutical targets, especially
as modulators of chemoresistance [57].

Conclusion
In conclusion, our study corroborates previous evidence
on the relevance of miRNA expression in understanding
the clinical course and various biological aspects of OC.
We detected a set of miRNAs impacting main clinical
outcomes in OC patients. Moreover, based on differen-
tial miRNA expression between tumor and normal
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ovarian tissue, a wider group of miRNAs was identified,
which is highly involved in crucial biological pathways of
OC. The next step will contemplate the extension of this
study with the inclusion of a larger and more
homogenous patient population, in order to reach more
standardized results, which can be easily validated
against external datasets. Indeed, T/N-deregulation was
confirmed as a hallmark when conducting miRNA pro-
filing studies and future investigations should put more
efforts also on this aspect. And finally, the role of miR-
NAs in OC should be studied while taking into account
additional factors affecting their function at a molecular
level. Having all this in mind, it is clear that the potential
utility of miRNAs in OC still needs to be leveraged
adequately.
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