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Erythrocyte fatty acid profiles in children
are not predictive of autism spectrum disorder
status: a case control study
Daniel P. Howsmon1,2,5, James B. Adams3, Uwe Kruger4, Elizabeth Geis3, Eva Gehn3 and Juergen Hahn1,2,4*

Abstract

Biomarkers promise biomolecular explanations as well as reliable diagnostics, stratification, and treatment strategies
that have the potential to help mitigate the effects of disorders. While no reliable biomarker has yet been found for
autism spectrum disorder (ASD), fatty acids have been investigated as potential biomarkers because of their association
with brain development and neural functions. However, the ability of fatty acids to classify individuals with ASD from
age/gender-matched neurotypical (NEU) peers has largely been ignored in favor of investigating population-level
differences. Contrary to existing work, this classification task between ASD and NEU cohorts is the main focus of this
work. The data presented herein suggest that fatty acids do not allow for classification at the individual level.
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Background
Autism spectrum disorder (ASD) comprises a broad class
of psychological disorders characterized by compromised
social communication/interaction and the presence of
restricted, repetitive patterns of behavior [1]. The preva-
lence of ASD has increased markedly from 0.64% in 2002
to 1.14% in 2008 [2], a rate which exceeds that of other
developmental disabilities [3]. Despite the high prevalence
rates, the impaired quality of life associated with ASD
[4], and substantial health care costs to families [5], the
biochemical basis for ASD is largely unknown and there-
fore still an active area of research. Currently, ASD is only
diagnosed and assessed through a variety of psychometric
tools. However, numerous research efforts investigating
potential biomarkers of and therapeutic strategies for ASD
are ongoing.
Post-mortem brain analysis has revealed several struc-

tural and functional abnormalities associated with ASD,
including altered synapse connectivity/plasticity [6],
decreased neuron size and increased neuron density in
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the amygdala and hippocampus [7], decreased Purkinje
cell size and number in the cerebellum [7], neuroinflam-
mation [8], and aberrant activity-dependent transcrip-
tion/translation [8]. On the molecular scale, alterations
in Wnt/β-catenin signaling (corroborated by putative
mechanisms for valproate-inducing and folate-protective
contributions to ASD), Ca2+ signaling, and glutamater-
gic/GABAergic signaling have been implicated in ASD. It
is this role in neuroplasticity, neurogenesis, and synap-
togenesis [9] that have led to investigations of polyun-
saturated fatty acids (PUFAs) as potential targets for
biomarker development and therapeutic intervention
in ASD. PUFAs are essential fatty acids: precursors
α-linolenic acid (ALA, 18:3n-3) and linoleic acid (LA,
18:2n-6) must be obtained from the diet. The down-
stream products docosahexaenoic acid (DHA; 22:6n-3)
and arachidonic acid (AA; 20:4n-6) are the most abundant
PUFAs in the brain and are vital components of neuronal
phospholipids.
Plasma and erythrocyte levels of DHA and other fatty

acids have been shown to be moderately correlated with
fatty acid concentrations in the brain [10]; thus, plasma
and erythrocyte fatty acid profiles have been investigated
as potential biomarkers for ASD. Table 1 summarizes the
recent literature evidence for ASD-related differences in
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erythrocyte-membrane/plasma fatty acid profiles and a
recent meta-analysis by Mazahery et al. [11] suggests that
individuals with ASD have lower AA, DHA, and EPA than
their neurotypical (NEU) peers. It is important to note
that some researchers choose to represent their results in
terms of absolute fatty acid concentration in the sample,
whereas other researchers represent their results in terms
of relative concentration (to reflect concentration in the
erythrocyte membrane rather than the blood sample) and
that these disparate methods of reporting results can alter
conclusions [12].
A successful biomarker or therapeutic target for ASD

requires the metabolite or metabolite panel to separate
individuals with ASD from NEU controls and/or strongly
correlate with ASD severity. Therefore, this ability to sep-
arate individuals with ASD and NEU participants is not
appropriately assessed with hypothesis testing on popula-
tion means. More appropriate metrics are given in terms
of classification performance on individuals (e.g. sensi-
tivity/specificity, C-statistic, etc.). El-Ansary et al. [13]
reported their results in terms of sensitivity/specificity
and ROC curves; however, they had limited sample sizes
of 26 ASD and 26 NEU participants and they assessed
participants on the basis of absolute erythrocyte con-
centrations. Furthermore, their observed near-perfect
separation in multiple fatty acid measurements (e.g.,
C-statistic of 1.00 for AA) has not been observed in larger
cohorts (e.g., AA from [14]).
The aim of this study was to compare the level

of erythrocyte-membrane fatty acids in a large cohort
of ASD and NEU participants, and assess the ability of
multivariate classification to separate ASD and NEU par-
ticipants. The results presented herein contrast many
of the conclusions about fatty acid biomarkers for ASD
in the scientific literature, even though (as it will be
shown) some other reports can be interpreted differ-
ently if these biomarkers are assessed on the individual
level rather than comparing population means/medians.
While no conclusions about the effectiveness of treat-
ments that seek to raise fatty acid concentrations can
be drawn from this work, the results indicate that fatty
acid measurements are not a viable biomarker for ASD
classification.

Methods
Study population
This paper analyzes baseline (prior to treatment) data
from a 12-month nutrition/dietary treatment study
known as the ASU Comprehensive Nutrition/Diet Treat-
ment Study. Erythrocyte fatty acid measurements were
available for 63 ASD and 49 NEU participants with a
median (IQR) age of 9.7 (6.7) years and 10.0 (6.3) years,
respectively. The average effect size d (i.e., Cohen’s d)
for the fatty acid measurements under investigation was

estimated a priori to be between 0.18 and 2.4 using data
from the three largest studies in Table 1 [14–16]. With
a d,α, and β of 0.5, 0.1, and 0.8, respectively, the mini-
mum sample size is calculated to be 49 samples per group.
The sample size used in this work is also greater than 8
of 10 studies reported in Table 1 that found statistically
significant differences between ASD and NEU popula-
tions. This study was approved by the Institutional Review
Board of Arizona State University. Eligibility and exclusion
criteria, characteristics of the study population (including
comorbidities), and descriptions of autism severity and
overall functioning assessments are presented in [17]. It is
important to note that both ASD and NEU participants
were not allowed to have taken nutritional supplements or
restricted to abnormal diets in the previous two months
to be eligible for this study. Furthermore, since seafood
consumption is the largest contributor of n-3 fatty acids
in the Western diet, parents/caregivers were required to
report the number of seafood servings eaten by the partic-
ipant per month. All data used in this study are provided
in Additional file 1.

Fatty acid measurements
Fatty acid measurements were measured by Doctor’s
Data, a commercial laboratory approved by the Clini-
cal Laboratory Improvement Amendments (CLIA) pro-
gram operated by the US Department of Health and
Human Services. Red blood cell fatty acids were quan-
tified by a flame ionization detector. Red blood cells
were washed and derivatized to their methyl esters and
fatty acids were extracted according to carbon num-
ber. All fatty acid measurements are normalized by
the concentration of total fatty acids in the sample.
Table 2 defines notation for the fatty acids measured
herein.

Table 2 Fatty acids from erythrocyte membranes measured in
this work

Name Abbreviation C:D Group

Arachidonic acid AA 20:4 n-6

Dihomo-γ -linoleic acid DGLA 20:3 n-6

Docosahexanoic acid DHA 22:6 n-3

Eicosapentaenoic acid EPA 20:5 n-3

Elaidic acid 18:1 n-9 (trans)

Linoleic acid LA 18:2 n-6

Oleic acid 18:1 n-9

Palmitelaidic acid 16:1 n-9 (trans)

Palmitic acid 16:0 —

Palmitoleic acid 17:1 n-7

Stearic acid 18:0 —
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Statistical analysis
Hypothesis testing
Individual measurements for each cohort were first
assessed for normality with the Anderson-Darling test
[18] at a significant level of 0.05. If distributions from
both cohorts failed to reject the null hypothesis of the
Anderson-Darling test, the F-test for equal variances at
a 0.05 significance level was performed to determine
whether a Student’s t or Welch’s test [19] should be
performed to determine the significance of differences
in mean values between cohorts. If distributions from
one or more cohorts rejected the null hypothesis of
the Anderson-Darling test, the two-sample Kolmogorov-
Smirnov test [20] was used to test whether or not sam-
ples came from distributions of the same shape. If the
distributions failed to reject the null hypothesis of the
Kolmogorov-Smirnov test, the Mann-Whitney U test [21]
was used to test for significant differences in the median
values between cohorts; else, Welch’s test was used to
test for significant differences in the mean values between
cohorts. All statistical tests were performed in MATLAB.
All probability distribution functions (PDFs) are visual-
ized using kernel density estimation (KDE) [22].

Classification
Univariate classification for each measurement was
assessed with receiver-operating characteristic (ROC)
curve analysis of the PDFs of each cohort. The C-statistic
is the area under the ROC curve and a C-statistic of 0.5
indicates a random separation, whereas a C-statistic of 1
indicates a perfect separation. Multivariate classification
was assessed with Fisher Discriminant Analysis (FDA)
[23] and PDFs were calculated on the resulting FDA scores
in a similar manner as for the PDFs of the individual
measurements.

Data extraction
No published study on fatty acid profiles in ASD dis-
closes raw, individual-level data. Therefore, comparison
data were extracted from reported figures in [14, 24].
Briefly, images of each figure were saved and masks of
individual markers were manually selected. The center of
each marker was identified by cross-correlation and the
resulting data points were extracted for further analysis.

Results
Univariate statistics and classification
Fatty acid measurements were first analyzed for signif-
icant differences in mean/median concentration levels
(Fig. 1 and Table 3). From Table 3, only DGLA showed
significantly different values between the ASD and NEU
cohorts (8% lower in ASD, p = 0.03), although stearic acid
was marginally significant (2% lower in ASD, p = 0.06).
After correction for multiple hypothesis testing, none of

these differences are significant. Furthermore, the visu-
alization of the distributions (Fig. 1) illustrate that none
of the measurements can be used to classify individual
participants due to the significant overlap in the PDFs
and this univariate classification is quantified with the C-
statistic on the PDFs (Table 3). These results were virtually
unaffected by excluding the 8 Asperger’s and 7 PDD-NOS
participants. Overall, these results suggest that none of
the individual fatty acids measured can be used alone as a
diagnostic biomarker for ASD.

Multivariate classification
Multivariate classification using FDA was then used to
examine whether combinations of fatty acid measure-
ments could be used to generate a diagnostic biomarker
for ASD. All variables presented in Table 3 were included
in the FDA analysis. PDFs of the FDA scores are provided
in Fig. 2 and this multivariate classifier has a C-statistic
of 0.76. Although the multivariate results seem to be an
improvement over the univariate classification in Table 3,
the multivariate classification has many more variables
and a validation strategy would be needed to compare
the univariate and multivariate classification. However,
because the multivariate classification did not generate
sufficient diagnostic accuracy, further validation schemes
(see the cross-validatory approach in [25] for an example)
were not performed as fitting results will almost always
outperform prediction results, i.e., if multivariate classi-
fication without cross-validation does not perform well
then classification with cross-validation will not result in
acceptable results either. Similarly, identifying a subset of
input variables to avoid overfitting was unnecessary here
as fitting performance of a subset of variables will at best
be as good as fitting a classifier using all inputs. Since the
performance for all inputs is rather poor, the performance
of a subset of inputs for fitting will be even worse and
therefore was not investigated.
For the sake of completeness, regression analysis of 12

measures of ASD severity [17] against combinations of
fatty acids has been performed using partial least squares
and its nonlinear extension kernel partial least squares.
The prediction accuracy was generally poor with low R2

values even for the best combinations of fatty acids.

Regression with seafood intake
Using the information provided by the caregiver ques-
tionnaire, the red blood cell fatty acid compositions were
regressed onto the number of seafood meals per month
(Table 4). The distribution of seafood meals per month
was similar between the ASD and NEU cohorts. Unsur-
prisingly, increased seafood consumption was modestly
correlated with increased DHA and EPA in ASD, NEU,
and ASD+NEU cohorts. Increased seafood consumption
was also correlated with decreased stearic acid in the NEU
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Fig. 1 Distributions of fatty acid measurements for ASD and NEU cohorts. Fatty acids investigated are (a) AA, (b) DGLA, (c), DHA, (d) EPA, (e) elaidic
acid, (f) linoleic acid, (g) oleic acid, (h) palmitelaidic acid, (i) palmitic acid, (j) palmitoleic acid, (k) stearic acid, (l) DHA/AA, (m) EPA/AA, (n) n-3/n-6, and
(o) Total PUFA. All results are normalized by the concentration of total fatty acids in the sample

cohort, which may be due in part to the increased con-
centrations of EPA and DHA. These results support the
link [26, 27] between dietary seafood intake and increased
levels of EPA and DHA.

Discussion
The results presented herein suggest that the measured
erythrocyte fatty acids are not predictive of ASD status.

A strength of this study is a larger sample size than most
other studies, with a control group matched for age and
gender. A limitation is the wide age range of groups; a
narrower age range, or a younger age range, may find
smaller differences. Although these results may seem to
contrast those found from some of the previous studies
presented in Table 1, most of the apparent discrepancy
can be explained by the evaluation of results. Other than
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Table 3 Univariate tests for group mean/median differences between ASD and NEU cohorts

Measurement Statistical test Mean/Median values [95% CI] p-value C-statistic

ASD NEU

AA Welch’s test 20.05 [17.04, 22.76] 20.16 [18.12, 22.03] 0.68 0.51

DGLA Student’s t-test 2.045 [1.39, 2.80] 2.226 [1.548, 3.110] 0.03 0.62

DHA Mann-Whitney U test 3.707 [2.05, 7.11] 3.816 [2.721, 5.347] 1.00 0.50

EPA Mann-Whitney U test 0.349 [0.158, 0.828] 0.344 [0.225, 0.569] 1.00 0.51

Elaidic acid Mann-Whitney U test 0.177 [0.136, 0.274] 0.176 [0.120, 0.253] 0.37 0.55

Linoleic acid Welch’s test 14.18 [11.17, 17.26] 14.00 [12.43. 15.61] 0.45 0.53

Oleic acid Mann-Whitney U test 13.90 [12.36, 16.31] 13.94 [11.86, 15.55] 0.94 0.52

Palmitelaidic acid Student’s t-test 0.0198 [0.0110, 0.0286] 0.0201 [0.0105, 0.0282] 0.76 0.52

Palmitic acid Mann-Whitney U test 25.50 [24.14, 26.87] 25.44 [24.04, 27.15] 0.93 0.50

Palmitoleic acid Mann-Whitney U test 0.229 [0.124, 0.389] 0.205 [0.0147, 0.306] 0.30 0.56

Stearic acid Welch’s testa 19.27 [18.23, 20.41] 19.51 [18.24, 20.49] 0.06 0.62

DHA/AA Mann-Whitney U test 0.190 [0.116, 0.350] 0.182 [0.140, 0.280] 0.91 0.51

EPA/AA Mann-Whitney U test 0.0165 [0.0073, 0.0462] 0.0168 [0.0110, 0.0292] 0.95 0.51

n-3/n-6 Mann-Whitney U test 0.111 [0.0707, 0.224] 0.113 [0.0850, 0.163] 0.94 0.50

Total PUFA Student’s t-test 26.54 [23.35, 29.90] 26.65 [24.34, 29.11] 0.69 0.52

aindicates that Welch’s test was used after the distributions were found to not be of the same shape
Median values are provided if the Mann-Whitney U test was used for comparison; otherwise, mean values are provided. Brackets indicate 95% confidence intervals (CIs)
obtained from the estimated PDFs

[13], previous studies do not evaluate red blood cell fatty
acid biomarkers on an individual level, but rather focus
on differences in mean metabolite levels over the entire
population. This population-level assessment of biomark-
ers only accounts for differences in the center of the
distribution and does not account for the width of the dis-
tributions, an effect that is appropriately accounted for in
an individual-level assessment. For example, Fig. 3 com-
pares results for AA from this study with those extracted
from [14, 24]. Despite the statistically significant lower
AA in the ASD population when compared with the NEU
population reported in [14, 24], the PDFs indicate that
there is only slight separation between these groups at
the individual level (C-statistic = 0.62 and 0.75, respec-
tively, on the extracted data). The reported values for AA
are different between studies due to disparate methods for

Fig. 2 Probability distributions of fitted FDA scores. All fatty acid
measurements were included

quantifying fatty acid profiles; however, the data suggests
that the AA concentration in erythrocyte membranes is
not useful as a biomarker for predicting ASD status. The
exact same effect can be seen for DHA measurements in
Fig. 4: a statistically significant difference in mean DHA
levels does not indicate its usefulness as a biomarker for

Table 4 Regression of red blood cell fatty acids onto seafood
consumption per month for each listed group

Red blood cell Correlation coefficient

Fatty acids ASD NEU ASD + NEU

AA − 0.204 − 0.107 − 0.183

DGLA − 0.033 − 0.002 − 0.039

DHA 0.347 0.477 0.374

EPA 0.400 0.320 0.393

Elaidic acid 0.021 0.154 0.062

Linoleic acid − 0.022 0.120 0.008

Oleic acid − 0.108 0.017 − 0.066

Palmitelaidic acid 0.135 − 0.061 0.074

Palmitic acid 0.040 − 0.076 − 0.002

Palmitoleic acid 0.117 0.041 0.112

Stearic acid − 0.173 − 0.498 − 0.263

DHA/AA 0.369 0.477 0.392

EPA/AA 0.391 0.316 0.386

n-3/n-6 0.363 0.466 0.385

Total PUFA 0.150 0.241 0.164
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a b

c d

e

Fig. 3 Comparison of distributions of AA. Comparison of (a, b) the
results presented in Brigandi et al. [14], (c, d) the results presented in
Yui et al. [24], and (e) the results presented in this work

ASD status. This effect is also seen in the results from
this paper, with a statistically significant lower population
mean for DGLA (p = 0.03), but a C-statistic of only 0.62.
These results highlight a common challenge in biomarker
research where significant differences at the population
level should not be equated with significant classification
at the individual level.
There are other methods beyond calculation of the

C-statistic that can provide similar insights into the bio-
logical relevance of the hypothesis under investigation.
In particular calculation of effect sizes and CIs usu-
ally provide more insight into the underlying biological
hypothesis than null hypothesis significance testing and
many fields, including clinical trial research, are begin-
ning to move toward these approaches for reporting
research findings [28, 29]. In particular, these approaches
can include information on the spread of the distribu-
tions under investigation, which is usually as, if not more,
important than the sample means in biological classifi-
cation problems. The null hypothesis significance testing
conducted in this work is used mainly to illustrate that

a b

c

Fig. 4 Comparison of distributions of DHA. Comparison of (a, b) the
results presented in Brigandi et al. [14] and (c) the results presented in
this work

these methods can lead to inappropriate conclusions that
can be rectified by using CIs or the C-statistic to quantify
differences between two populations.
Biomarkers represent the “holy grail” of precision

medicine [30] in that they quantify changes in sin-
gle molecules or even entire molecular pathways and
quantitatively link clinical outcomes with physiology in
health and disease [31]. Despite their promise, translating
biomarker research into clinical practice is poor with a less
than one percent success rate [32, 33]. Many of these failed
biomarkers persist in the literature due to a lack of access
to raw data (hence, the reliance on data extraction from
published figures in this paper) and a culture that does not
credit negative results [31]. Biomarker research in ASD
would benefit from improving data access, embracing
negative results, and focusing on individual-level classifi-
cation (with a validation strategy such as cross-validation)
[31, 33] to more quickly reach diagnostics and treatments
that positively impact those with ASD.
It is important to note that this study did not inves-

tigate the therapeutic effects of fatty acid supplementa-
tion. Recent meta-analyses reach conflicting conclusions
[11, 34, 35], some of which may be attributed to small
sample sizes, low doses, and inadequate lengths of sup-
plementation and observational time frames. However,
this study indicates that there are no differences between
fatty acid levels in ASD and NEU cohorts; therefore, fatty
acid therapeutics would need to achieve a different fatty
acid profile than the average NEU profile for possible
therapeutic benefit.
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Conclusion
The results of this study suggest that fatty acid profiles are
similar between individuals with ASD and NEU controls;
therefore, fatty acid profiles are not promising biomark-
ers for classifying ASD and NEU children. A repository
of individual-level measurements in biomarker studies for
ASD, including those reporting negative results, would
greatly help the field iterate toward more promising
biomarkers for classifying ASD.

Additional file

Additional file 1: Individual level fatty acid measurements. Deidentified
individual-level data analyzed in this work. (CSV 11 kb)
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