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Accidental lead in contaminated pipe-borne 
water and dietary furan intake perturbs rats’ 
hepatorenal function altering oxidative, 
inflammatory, and apoptotic balance
Solomon E. Owumi1*, Uche O. Arunsi2, Omolola M. Oyewumi1 and Ahmad Altayyar2 

Abstract 

Inadvertent exposure to furan and Pb is associated with hepatorenal abnormalities in humans and animals. It is 
perceived that these two chemical species may work in synergy to orchestrate liver and kidney damage. Against 
this background, we investigated the combined effect of furan and incremental lead (Pb) exposure on hepatorenal 
dysfunction. Wistar rats (n = 30; 150 g) were treated for 28 days accordingly: Control; FUR (8 mg/kg), PbAc (100 µg/L), 
FUR +  PbAc1 (8 mg/kg FUR + 1 µg/L PbAc); FUR +  PbAc1 (8 mg/kg FUR + 10 µg/L PbAc), and FUR +  PbAc1 (8 mg/kg 
FUR + 100 µg/L PbAc). Biomarkers of hepatorenal function, oxidative stress, inflammation, DNA damage, and apopto-
sis were examined. Furan and incrementally Pb exposure increased the levels of hepatorenal biomarkers and oxidative 
and pro-inflammatory mediators, including lipid peroxidation, reactive oxygen and nitrogen species, and interleukin-1 
beta. Increased DNA damage, caspases- 9 and -3, and atypical histoarchitecture of the hepatorenal tissues exemplified 
furan and Pb treatment-related perturbations. Furthermore, the levels of antioxidants and IL-10 were also suppressed. 
Furan and Pb dose-dependently exacerbated hepatorenal derangements by altering the redox and inflammatory 
rheostats, worsened DNA damage, and related apoptotic onset that may potentiate hepatorenal disorders in humans 
and animals. The findings validate the synergistic effect of furan and Pb in the pathophysiology of kidney and liver 
disorders.
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Practical application
Failed public service and regulatory institutions in several 
countries worsen the sub-optimal public health oversight 
necessities. To date, corroded Pb-water pipes transport 
water to many homes, while food safety and drug regula-
tory agencies function nominally. Exposure ramifications 
exist in under-developed and developed countries, where 

highly processed furan-contamination food is consumed. 
We examined the inadvertent, albeit innocuous chronic 
exposure to furan from dietary sources and Pb contami-
nated water. Overall, exposure to furan and Pb adversely 
impacted rats’ hepatorenal functionality and integrity. 
Also, Furan and Pb exacerbated DNA damage, oxidative 
stress, and inflammatory responses, known to drive dis-
ease pathophysiology. The findings x-ray the danger of 
accidental exposure of Pb and furan to humans and ani-
mals. Based on this, we recommend that policy maker 
take heed and arrest an already untenable situation from 
becoming more problems that can become synony-
mous with the arsenic poisoning in Bangladesh a couple 
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of decades ago. This combination of innocuously toxic 
exposure may be significant in the overall health condi-
tion of a susceptible population.

Introduction
Anthropogenic activities are associated with the release 
of toxic chemicals into the environment. Some of these 
chemicals are easily biodegraded into less harmful 
metabolites and removed from the body through bile and 
urine. However, recalcitrant chemicals may accumulate 
in the body of animals and humans and orchestrate local 
and systemic toxicities over time [1–5]. In developing 
countries with no effective policies against the indiscrim-
inate release of recalcitrant chemicals into the ecosystem, 
phytoplanktons, zooplanktons, and mammals are prone 
to heavy metal toxicities [2, 6, 7]. In recent years, ther-
mal processing of food products has been observed to 
affect the structure and integrity of bioorganic molecules 
such as lipids, protein, carbohydrates, and nucleic acids 
present in foods, forming unpleasant compounds such as 
furan. Some literature pointed out that the thermal pro-
cessing of foods could improve their antioxidant activity 
and total phenolic content [8]. However, recent observa-
tions revealed that elevated levels of degradative products 
such as furan in the body of animals and humans could 
potentiate systemic toxicities if not controlled [9–12].

Heavy metal such as lead (Pb) enters the food chain 
through anthropogenic activities such as gasoline mining, 
ore processing, lead-battery recycling, pipeline vandali-
sation, electric wastes, and vehicle exhausts [13, 14]. In 
the environment, Pb accumulates in phytoplankton [15]. 
When zooplanktons and mammals ingest phytoplankton, 
Pb bioavailability and bioaccumulation tend to increase 
systemically and could orchestrate severe toxicities if not 
prevented. Pb toxicities could be acute or chronic. Dur-
ing acute toxicity, Pb bioaccumulates in the bloodstream 
and is distributed into the liver, kidney, brain, and deep 
tissues, including the bones and cartilages in chronic tox-
icity [12, 16, 17]. From a toxicologist’s perspective, there 
are no permissible limits for Pb. At low or high concen-
trations, this heavy metal is known to trigger systemic or 
local toxicities [11, 18] through the inhibition of phase-I 
and phase-II enzyme activities [19], mediation of oxida-
tive and nitrosative stress and inflammation [20–23].

Furan is formed during the Maillard reaction, a non-
enzymatic reaction of amino acids, peptides, and pro-
teins with reducing sugars and vitamin C [24]. It is also a 
byproduct of the thermal degradation of carbohydrates, 
unsaturated fatty acids, amino acids, ascorbic acid, and 
carotenoids found in various foods such as coffee and 
canned and jarred foods [24–26]. Although Furan was 
regarded as a harmless food metabolite, recent assess-
ments by the European Food Safety Authority (EFSA) 

correlated a high level of Furan to some human health 
abnormalities [27]. The knowledge of furan as a potent 
toxicant was further reinforced by the documentaries 
from the US Food and Drug Administration (US FDA), 
EFSA, National Toxicology Program (NTP), and Inter-
national Agency for Research on Cancer (IARC). These 
Agencies highlighted evidence that exposure to Furan 
could orchestrate carcinogenesis in humans [24]. Furan 
toxicity is directly related to cytochrome P450 2E1 
(CYP2E1) activities. ADMETically, Furan is acted upon 
by CYP2E1 into cis-but-ene-1,4-dialdehyde-a very reac-
tive intermediate that interacts with amino acids, pro-
teins, and DNA to induce toxicities in the liver and 
kidney [12]. In under-developed countries with no strin-
gent regulations against heavy metal contamination and 
the degree of thermal processing of foods, Pb and Furan 
can be unintentionally ingested by humans and farm ani-
mals. Such accidental ingestion of Pb and furan could 
predispose victims to local and systemic toxicities. Based 
on this hypothesis, we put forward the following research 
question: can unfettered exposure of experimental rats to 
Pb and furan trigger oxidative, inflammatory, and apop-
totic responses in the hepatorenal system, leading to their 
derangements? To answer these questions, adult male, 
Wistar Albino rats were exposed to lead acetate (PbAc) 
and furan for 28 d. Subsequently, the biomarkers of 
hepatorenal damage, oxidative stress, inflammation and 
apoptotic, oxidative DNA damage, and histological struc-
tural alteration in rats’ hepatic and renal tissues were 
evaluated.

Materials and methods
Chemicals, reagents and kits
The chemicals, reagents and kits used to determine the 
hepatorenal, redox, inflammatory and apoptotic bio-
markers in the liver and kidney of rats following suba-
cute exposure of rats to PbAc and Furan were purchased 
from recognised chemical companies. Specifically, Lead 
Acetate, Furan, TBA: thiobarbituric acid, DCFH-DA: 
2’, 7’-dichlorodihydrofluorescin diacetate, DTNB: 5’, 
5’-dithiobis-2-nitrobenzoic acid, CDNB: 1-chloro-2,4-di-
nitrobenzene,  H2O2: hydrogen peroxide, KCl: potassium 
chloride, TCA: trichloroacetic acid, sodium azide, GSH: 
glutathione, epinephrine, sulphosalicylic acid, xanthine, 
Griess reagent, and O-dianisidine were purchased from 
Sigma-Aldrich Chemical (MO, USA); ALT: Alanine ami-
notransferase, AST: Aspartate aminotransferase, ALP: 
Alkaline phosphatase, urea, and creatinine were bought 
from Randox™ Laboratories Limited, (Crumlin, UK); and 
IL-1β: Interleukin 1-beta, IL-10: interleukin-10, 8-OHdG: 
8-hydroxydeoxyguanosine, caspase-9 and caspase-3 
were bought from Elabscience Biotechnology Company 
(Wuhan, China).
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Animal care, sample size, and experimental design
The current study was conducted according to animal use 
guidelines in Life Sciences. The standard protocols for 
animal care and welfare (The 3Rs- replacement, reduc-
tion, and refinement) were adopted in this study as previ-
ously reported by Owumi et al. [28]. G* Power software 
version 3.1.9.4 [29] was used to estimate the sample size 
of 125 at an effect size of 0.40 and a 0.05 alpha error of 
probability for one-way analysis of variance (ANOVA). 
Out of 125 estimated experimental animals, 30 (consist-
ing of n = 5 rats, i = 6) male Wistar Albino rats were sam-
pled and used for the study. Rats weighing approximately 
177 g per body weight (b.w.) were bought from the ani-
mal farms of the Faculty of Veterinary Medicine, Univer-
sity of Ibadan, Nigeria. The rats were carefully transferred 
to the animal house of the Department of Biochemistry, 
Faculty of Basic Medical Sciences, University of Ibadan, 
Nigeria, and maintained under a natural photoperiod 
of a daily 12  h darkness/light cycle. Experimental rats 
were fed with rat chows and clean water ad  libitum and 
allowed to acclimate for 7 d before the execution of the 
experimental treatments. Rats were randomised into 
six experimental groups and subjected to 28 d succes-
sive treatments. Stock solutions for dosing experimental 
rats, Furan (8  mg/kg) and PbAc (0.1  mg/mL) were pre-
pared daily. The doses of Furan and PbAc utilised in the 
present study were established from previously avail-
able data [6, 11]. Briefly, furan stock solution (8  mg/kg) 
was prepared by dissolving 213μL Furan in corn oil to 
make a total volume of 20 mL and then administered to 

rats per os (po) according to their body weight (with an 
average volume of 0.6 mL). PbAc stock solution (0.1 mg/
ml) was prepared by dissolving 50  mg PbAc in 50  mL 
of distilled water. From this stock, 1.0, 10 and 100 μg/L 
were prepared by adding 0.02, 0.2 and 2  mL of PbAc 
and making up to 2L with distilled water. The volume 
of water was refilled daily to ensure a daily volume of 
300 mL, and daily water intake was estimated after that. 
Rats in the group designated as the control received corn 
oil, Furan alone received 8  mg/kg body weight (b.w.) of 
Furan p.o, PbAc alone received 100  μg/kg bw of PbAc 
p.o., Furan +  PbAc1 received 8 mg/kg bw furan and 1 μg/
kg b.w. PbAc, Furan +  PbAc2 received 8 mg/kg b.w. furan 
and 10  μg/kg b.w. PbAc, and Furan +  PbAc3 received 
8  mg/kg b.w. furan and 100  μg/kg b.w. PbAc (Fig.  1). 
The study was carried out following the approval of the 
study proposal by the University of Ibadan Animal Care 
and Use Research Ethics Committee (ACUREC), with 
approval number UI-ACUREC/032–0525/27.

Organ harvest, tissues processing, and experimental 
endpoints
At the end of the experiment, rats were starved for 24 h 
before animal sacrifice and experimental tissue and 
organ collection. Whole blood was collected from rats 
into plane tubes via retro-orbital venous plexus, and the 
rats were sacrificed by cervical displacement [30, 31]. 
Upon collection, whole blood was allowed to clot and 
centrifuged for 10  min at 3,000  rpm to obtain a clear 
serum needed to estimate the biomarkers of liver and 

Fig. 1 Experimental protocol of Lead and Furan-induced hepatorenal toxicities in rats for 28 consecutive days
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kidney function tests. The liver and kidney were excised, 
weighed (USS-DBS16 Analytical Balance, Cleveland, OH, 
USA), and processed for biochemical and histological 
analyses. The relative organ weights of the liver and kid-
ney were calculated according to the formula:

Portions of the liver and kidney were used for bio-
chemical and histological investigations. Samples for bio-
chemical estimations were prepared by homogenising in 
a phosphate buffer (0.1 M, pH 7.4). The liver homogenate 
was prepared by homogenising 2  g of the liver in 8  mL 
of phosphate buffer, while the kidney homogenate was 
prepared by homogenising 1.12 g left or right kidney in 
4  mL of phosphate buffer using a glass-Teflon homog-
eniser. The resultant homogenates were centrifuged at 
12,000 rpm at  40C for 15 min to get a clear mitochondrial 
fraction. The supernatants were collected in aliquots and 
frozen before quantifying oxidative, inflammatory, and 
apoptotic biomarkers.

Determination of biomarkers of hepatorenal function 
biomarkers and of oxidative stress, inflammation, and DNA 
perturbation
The homogenate from the liver and kidney of the control, 
PbAc, and Furan-treated rats were subjected to biochem-
ical analyses. The total protein concentrations of the liver 
and kidney were determined following the method of 
Bradford [32]. The liver and kidney function enzymes, 
including ALT, AST, ALP, creatinine and urea, were 
measured using commercial kits as previously reported 
by Owumi et  al. [33]. Hepatic and renal concentrations 
of superoxide dismutase (SOD) were assayed by the 
methods described by Misra and Fridovich [34]; hepatic 
and renal levels of catalase (CAT) were assessed by the 
protocols of Clairborne [35] using  H2O2 as a substrate; 
hepatic and renal levels of Glutathione-S-transferase 
(GST) and glutathione peroxidase (GPx) were measured 
by the procedures of Habig [36] and Rotruck et al., [37], 
respectively; hepatic and renal concentrations of glu-
tathione (GSH) and total sulfhydryl group (TSH) were 
determined by the method of Jollow et  al. [38] and Ell-
man [39], hepatic and renal concentrations of xanthine 
oxidase (XO) were measured by the procedures of Berg-
meyer et al. [40]; hepatic and renal levels of malondialde-
hyde (MDA), otherwise termed lipid peroxidation (LPO) 
were assessed by the method described by Okhawa [41]; 
hepatic and renal levels of reactive oxygen and nitrogen 
species (RONS) were assayed by the protocols of Owumi 
and Dim [42]; hepatic and renal nitric oxide (NO) level 
and myeloperoxidase (MPO) activity were quantified by 

Relative organweight =
Weight of organ g

Weight of the body g
x100

the protocols of Green et  al. [43] and Granell et  al. [44, 
45], respectively; and hepatic and renal levels of IL-1β, 
IL-10, caspase-9 & -3 activities and 8-hydroxydeoxy-
guanosine were assayed using ELISA kits as previously 
reported by Owumi et  al. [46]. All measurements were 
carried out using a Spectra Max™ plate reader.

Examination of the histological sections of the liver 
and kidney
The portions of the liver and kidney kept for histological 
assessment were fixed in neutral buffered formalin (10%) 
before the histological section and staining preparation. 
With the aid of the standard paraffin-wax method, the 
liver and kidney tissues were processed for histopatho-
logical examination in line with the description of Ban-
croft and Gamble [47]. Approximately 5  μm thickness 
of the portion of the liver and kidney were dyed with 
haematoxylin and eosin and processed for light micros-
copy. All prepared slides were coded and probed with a 
Carl Zeiss Axio light microscope (Gottingen, Germany). 
On inspection, images were taken using a Zeiss Axiocam 
512 camera (Gottingen, Germany) attached to the micro-
scope by a pathologist unaware of the various treatment 
cohorts from which the slides were prepared.

Statistical analysis of results
At the end of the experiments, data were generated, quan-
tified, and subjected to statistical analyses using quantita-
tive measures such as mean and standard deviation. The 
results were expressed as the mean ± SD of replicates. A 
test of statistical inferences was performed by student 
t-test to compare the significance between the IBW and 
FBW of rats, and a one-way analysis of variance (ANOVA) 
followed by a post-hoc test (Tukey’s test) set at a 95% 
probability level was used to test the significance differ-
ence across the four experimental groups using GraphPad 
Prism, version 8.3.0 for Mac (www. graph pad. com; Graph-
Pad, CA, USA).

Results
Effects of combined exposure of Pb and Furan on rat’s 
body weight indices and hepatorenal biomarkers
The effects of Pb and Furan on rats’ body weight indices 
and hepatorenal biomarkers were examined in this study, 
and the results are presented in Table 1 and Figs. 1B and 
2. In all cohorts of rats, the final body weights were sig-
nificantly increased compared to the initial body weight. 
However, the mean body weight for cohorts of rats 
treated with PbAc and Furan decreased non-significantly 
compared to the control in the order Furan +  PbAc3  
< Furan  +  PbAc2  < Fur an +  PbAc 1 <  PbAc <  furan < con-
trol (Fig.   2 ).  Furthermore, the liver and kidney’s mean 
and relative organ weights were slightl y a lte r ed  fol lowing 

http://www.graphpad.com
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treatment in cohorts of rats treated with Pb and Furan 
compared to the control (Table 1). Biomarkers of hepatic 
toxicity -ALT, ALP, AST, and GGT; and kidney dysfunc-
tion -creatinine and urea- were significantly increased in 
rat cohorts treated with PbAc and Furan compared to the 
control (p < 0.0001). As the concentration of PbAc was 
raised, the activities of these enzymes were significantly 
elevated: ALT (p = 0.0205 in Furan +  PbAc1 cohort), ALP 
(p = 0.0003 in Furan +  PbAc3 cohort), AST (p = 0.0229 
and p < 0.0001 in Furan +  PbAc2 and Furan +  PbAc3 
cohorts, respectively), GGT (p = 0.0004 and p < 0.0001 in 
Furan +  PbAc2 and Furan +  PbAc3 cohorts, respectively), 
creatinine (p = 0.0197 in Furan +  PbAc1 cohort, respec-
tively), and urea (p < 0.0001 in Furan +  PbAc3 cohort) 
(Fig. 3).

Effects of combined treatment of Pb and Furan on redox 
balance in the liver and kidney of rats
The effects of combined Pb and Furan treatment on anti-
oxidant and oxidative biomarkers in rat liver and kidney 
were probed in this study, as presented in Figs. 3 and 4. 
Exposure to Pb and Furan separately to rats significantly 
waned the tissue concentrations of SOD, CAT, GPx, GST, 
GSH, and TSH in the liver and kidney of rats compared to 
the control (p < 0.0001) (Figs. 4 and 5). Interestingly, the 
decline the levels of these antioxidant biomarkers were 
further significantly enhanced when the concentrations 
of PbAc was raised, while maintaining the amount of 
furan in cohorts of rats treated with PbAc and furan: SOD 
(p = 0.0406 in the liver of Furan +  PbAc3 treated cohort; 
p = 0.0001 and p < 0.0001 in the kidney of Furan +  PbAc2 
and Furan +  PbAc3 treated cohorts, respectively), CAT 
(p = 0.0007 in the liver of Furan +  PbAc3 treated cohort; 
p = 0.0001 in the kidney of Furan +  PbAc3 treated 
cohort), GPx (p = 0.0013 and p = 0.0477 in the liver 
of Furan +  PbAc1 and Furan +  PbAc3 treated cohorts, 
respectively; p = 0.005 and p < 0.0001 in the kidney of 
Furan +  PbAc1 and Furan +  PbAc3 treated cohorts, 

respectively) (Fig.  4), GST (p = 0.0014 in the liver of 
Furan +  PbAc1 treated cohort; p = 0.0027 in the kidney 
of Furan +  PbAc3 treated cohort), GSH (p = 0.0153 in 
the liver of Furan +  PbAc1 treated cohort; p = 0.0155 in 
the kidney of Furan +  PbAc1 treated cohort), and TSH 
(p = 0.0009 and p < 0.0001 in the liver of Furan +  PbAc2 
and Furan +  PbAc3 treated cohorts, respectively; 
p = 0.0183 in the kidney of Furan +  PbAc3 treated cohort) 
(Fig.  5). The results further reveal that the exposure to 
PbAc and Furan significantly elevated the hepatic and 
renal levels of LPO and RONS (p < 0.0001) in a cohort of 
rats compared to the untreated group. However, as the 
concentration of PbAc was increased, the levels of LPO 
and RONS significantly elevated in cohorts of rats treated 
with PbAc and furan: LPO (p < 0.0001 and p = 0.0062 
in the liver of Furan +  PbAc1 and Furan +  PbAc2 
treated cohorts, respectively; p < 0.0001 in the kidney 
of Furan +  PbAc2 and Furan +  PbAc3 treated cohorts), 
and RONS (p = 0.0177 and p = 0.0005 in the liver of 
Furan +  PbAc1 and Furan +  PbAc3 treated cohorts, 
respectively; p < 0.0001 in the kidney of Furan +  PbAc2 
and Furan +  PbAc3 treated cohorts) (Fig. 6).

Effect of combined treatment of Pb and Furan 
on the inflammatory response, oxidative DNA damage 
and apoptosis in the liver and kidney of rats
The study also probed the abrogative roles of the com-
bined treatment of Pb and Furan on rats’ inflammatory 
and apoptotic responses and oxidative DNA damage. 
The results are presented in Figs.  6 and 7. Administra-
tion of separate doses of PbAc and Furan to cohorts of 
rats significantly elevated the hepatic and renal levels of 
proinflammatory mediators such as MPO, XO, and NO 
(p < 0.0001). As the concentration of PbAc was raised at 
a constant concentration of furan, the hepatic and renal 
levels of these pro-inflammatory molecules were sig-
nificantly elevated in cohorts of rats treated with PbAc 
and furan: MPO (p = 0.0362 and p = 0.0006 in the liver 
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Table 1 Effect of the co-administration of furan and lead acetate on the body weight, organ weight and relative organ weight of 
experimental rats

FUR (8 mg/kg), PbAc (100 µg/kg b.w.),  PbAc1 (1 µg/kg b.w.),  PbAc2 (10 µg/kg b.w.),  PbAc3 (100 µg/kg b.w.); n = 5. Data are expressed as mean ± SD

Fur Furan, IBW Initial body weight, FBW Final Body weight, RLW Relative liver weight, RKW Relative kidney weight

(IBW versus FBW: #p < 0.05)

(Control versus Furan or PbAc: *p < 0.05)

Control Furan PbAc Fur + PbAc1 Fur + PbAc2 Fur + PbAc3

IBW (g) 152.60 ± 11.24 189.00 ± 10.34 193.60 ± 11.15 180.40 ± 9.71 169.80 ± 4.15 174.60 ± 3.58

FBW (g) 231.75 ± 18.80# 257.00 ± 7.00# 265.80 ± 8.53# 249.40 ± 15.47# 229.00 ± 14.78# 233.50 ± 12.50#

Weight gain (g) 79.20 ± 12.50 71.00 ± 6.60 69.20 ± 5.50 69.00 ± 7.91 59.20 ± 16.18 57.40 ± 14.05

Liver weight (g) 6.84 ± 1.00 7.72 ± 1.24* 7.68 ± 0.64 8.38 ± 0.77 8.72 ± 1.35 7.40 ± 0.93

Kidney Weight (g) 1.38 ± 0.15 1.40 ± 0.21* 1.60 ± 0.25 1.60 ± 0.13 1.44 ± 0.17 1.56 ± 0.22

RLW (%) 3.04 ± 0.19 3.73 ± 0.54 2.89 ± 0.21 3.36 ± 0.14 3.80 ± 0.51 3.21 ± 0.53

RKW (%) 0.62 ± 0.06 0.54 ± 0.09 0.60 ± 0.09 0.64 ± 0.02 0.63 ± 0.10 0.67 ± 0.09
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of Furan +  PbAc1 and Furan +  PbAc2 treated cohorts, 
respectively; p < 0.0001 in the kidney of Furan +  PbAc1, 
Furan +  PbAc2, and Furan +  PbAc3 treated cohorts), 
XO (p < 0.0001 in the liver of Furan +  PbAc1 and 
Furan +  PbAc3 treated cohorts; p = 0.0094 and p = 0.0001 
in the kidney of Furan +  PbAc2 and Furan +  PbAc3 
treated cohorts, respectively), and NO (p < 0.0001 
and p = 0.0002 in the liver of Furan +  PbAc1 and 
Furan +  PbAc3 treated cohorts, respectively; p = 0.0158 
in the kidney of Furan +  PbAc3 treated cohort) (Fig.  7). 
Similarly, treatments with Pb and Furan alter the levels 
of pro-inflammatory and anti-inflammatory molecules 
in the liver and kidney of cohorts of rats. In contrast to 
the control, PbAc and furan significantly increased the 
hepatic and renal levels of IL-1β. Still, they decreased the 
hepatic and renal levels of IL-10, indicating an alteration 
in the basal inflammatory responses: IL-1β (p < 0.0001 
in the liver of Furan +  PbAc1 treated cohort; p = 0.0261 

in the kidney of Furan +  PbAc1 treated cohort) and 
IL-10 (p = 0.0012, p = 0.0089, and p = 0.0015 in the liver 
of Furan +  PbAc1, Furan +  PbAc2 and Furan +  PbAc3 
treated cohorts, respectively; p = 0.0028 in the kidney 
of Furan +  PbAc1 treated cohort) (Fig.  8). In experi-
mental animals, increased oxidative and inflammatory 
responses can result in oxidative DNA damage and 
apoptosis. We further probed Pb and Furan’s effect on 
8-OHdG and caspase-9 and caspase-3 levels, as pre-
sented in Fig.  9. Treatments with Pb and Furan signifi-
cantly increased the hepatic and renal levels of 8-OHdG 
and the activities of caspase -9 and -3 in cohorts of rats 
treated with different doses of PbAc and Furan rela-
tive to the control. Intriguingly, as the dosage of PbAc 
raised at constant dosage of furan, the level of 8-OHdG 
and activities of caspase-9 and -3 in the liver and kid-
ney of rats markedly increased, an indication of oxida-
tive DNA damage and apoptosis: 8-OHdG (p = 0.0004, 
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Fig. 4 Effect of accidental co-exposure of experimental rats’ models to Lead and Furan in diet and water respectively on the hepatic and 
renal activities of SOD, CAT and GPx in rats. Furan, 8 mg/kg; Lead, 100 μg/; Furan +  PbAc1, (8 mg/kg + 1.0 μg/L) mg/kg; Furan + PbAc2, (8 mg/
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p = 0.0126, and p = 0.057 in the liver of Furan +  PbAc1, 
Furan +  PbAc2 and Furan +  PbAc3 treated cohorts 
respectively; p < 0.0001 and p = 0.0006 in the kidney 
of Furan +  PbAc1 and Furan +  PbAc2 treated cohorts, 
respectively), caspase-3 (p < 0.0001 and p = 0.0017 in 
the liver of Furan +  PbAc1 and Furan +  PbAc2 treated 
cohorts respectively; p < 0.0001 and p < 0.0001 in the kid-
ney of Furan +  PbAc1 and Furan +  PbAc2 treated cohorts, 
respectively), and caspase-3 (p = 0.0005 and p = 0.0017 
in the liver of Furan +  PbAc1 and Furan +  PbAc2 treated 
cohorts respectively; p = 0.0005 and p = 0.0014 in the 
kidney of Furan +  PbAc1 and Furan +  PbAc2 treated 
cohorts, respectively) (Fig. 9).

Effect of combined treatment of Pb and Furan 
on histological features of rat’s liver and kidney
Finally, we investigated the effect of the combined treat-
ment of Pb and Furan on the histological features of the 

liver and kidney of rats after 28 days (Fig. 10). Unlike the 
control cohort, which shows normal histoarchitectural 
features such as typical liver sinusoids, and renal tubules 
with basal levels of inflammatory cells, the liver and kid-
ney of rats treated with Furan appear normal. The renal 
cortex showed normal glomeruli, mesangial cells and 
capsular spaces (red arrow). Also, the renal tubules (black 
arrow) and the interstitial spaces seemed normal (slender 
arrow). At the same time, the cohort of rats treated with 
PbAc alone manifested spongy and balloon-like cyto-
plasm (red arrow) in hepatic Zone 3, while other cells 
appeared normal (black arrow) in the liver. The kidney 
tissues with the renal cortex depict normal glomeruli, 
mesangial cells and capsular spaces (black arrowheads), 
and collapsed renal tubules (red arrow). The interstitial 
spaces show a focal area accumulated with eosinophilic 
fluid (slender red arrow). At higher doses of PbAc and 
a constant dose of Furan, the histoarchitectural fea-
tures of the liver and kidney deviated from the normal 
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Fig. 5 Effect of accidental co-exposure of experimental rats’ models to Lead and Furan in diet and water respectively on the hepatic and renal 
levels of GPx, GSH and TSH in rats. Furan, 8 mg/kg; Lead, 100 μg/; Furan +  PbAc1, (8 mg/kg + 1.0 μg/L) mg/kg; Furan + PbAc2, (8 mg/kg + 10 μg/L) 
mg/kg; Furan +  PbAc3, (8 mg/kg + 100 μg/L) mg/kg. Values are expressed as mean ± SD for five rats per treatment cohort. The connecting lines 
indicate groups compared to one another, and the significance level was set at (p < 0.05); p < 0.05: indicates the level of significance; p > 0.05: Not 
significant. GST: Glutathione S-transferase, GSH: reduced Glutathione, TSH: Total sulfhydryl group



Page 9 of 17Owumi et al. BMC Pharmacology and Toxicology           (2022) 23:76  

features seen in the control cohort. Liver histoarchitec-
ture of Furan at  PbAc1-3 manifested progressive conges-
tion around the portal vein (black arrow), although the 
morphology of the sinusoids appears normal without any 
significant infiltration by inflammatory cells. The kidney 
histoarchitecture remains intact, and the renal cortex 
shows normal glomeruli with normal mesangial cells and 

capsular spaces (black arrow). The renal tubules and the 
interstitial spaces appear normal (red arrow).

Discussion
In this study, we investigated whether the exposure 
of rats to PbAc and Furan could perturb redox bal-
ance and orchestrate oxidative DNA damage and 
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pro-inflammatory and apoptotic responses after 28 d. 
Our results reveal that exposure of the experimental rats 
to PbAc and Furan altered redox balance in the hepato-
renal system. Loss of redox homeostasis resulted in oxi-
dative DNA damage and triggered pro-inflammatory and 
apoptotic responses. The manifestation of hepatorenal 
derangements is validated by increased liver and kidney 
function biomarkers and loss of typical histoarchitec-
tural features in rat liver and kidney. These findings sup-
port previous works that the administration of PbAc and 
Furan to experimental animals could upset the balance 
between antioxidants and pro-oxidants, trigger inflam-
mation and apoptosis, and alter the basal level of hepatic 
and renal functional enzymes and typical histological fea-
tures in the liver and kidney of rats [12, 48, 49].

Our observations that exposure to Pb and Furan is 
associated with hepatorenal toxicities indicate the exist-
ence of multiple mechanistic routes for Pb and furan-
mediated toxicities, including induction of oxidative 

stress, oxidative DNA damage, chronic inflammation, 
and apoptosis. Oxidative stress (OS) occurs when there 
is a disparity between antioxidants and pro-oxidants in 
favour of pro-oxidant production [50]. OS is triggered 
following exposure to pathogens and toxic chemicals. 
OS assists pathogen clearance at the basal level and 
regulates essential biochemical and physiological pro-
cesses. However, it becomes harmful to healthy cells 
and tissues when in excess, as observed in the cur-
rent study. The OS state begins with the release of free 
radicals, especially superoxide ion radical  (O2.−), dur-
ing phase 1 of the biotransformation of xenobiotics 
[51, 52]. An increase in hepatic and renal levels of this 
radical triggers the expression of an endogenous anti-
oxidant, SOD, which is known to mediate the dismuta-
tion of  (O2.−) into a less toxic free radical—hydrogen 
peroxide  (H2O2) [53]. Excess  H2O2 in the hepatocytes 
and nephrons has been shown to trigger the expres-
sion of GPx and CAT, known to break down excess 
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Fig. 7 Effect of accidental co-exposure of experimental rats’ models to Lead and Furan in diet and water, respectively, on the hepatic and renal 
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 H2O2 into molecular water. However, repression in the 
expression of these innate antioxidant molecules can 
predispose the liver and kidney to severe toxicities [54, 
55], as observed in the current study. When the expres-
sions of endogenous antioxidant enzymes decrease, 

non-enzymatic antioxidants, including GSH and TSH, 
can scavenge the excess free radicals.

Consequently, switching the redox state towards a 
reducing condition helps scavenge reactive hydroxyl 
radicals, oxygen-centred radicals, and radical centres 
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Fig. 8 Effect of accidental co-exposure of experimental rats’ models to Lead and Furan in diet and water respectively on the hepatic and renal 
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on DNA. GSH can either serve as a co-substrate of 
GPx and permit the reduction of peroxides (hydrogen 
and lipid peroxides) or conjugate with electrophilic 
endogenous compounds (xenobiotics and their phase 
I metabolites) in GST-mediated reaction for easy 
excretion [56, 57]. However, depletion in the hepatic 
and renal levels of GST indicates an influx in ROS in 
target tissues, leading to cellular and tissue toxicities, 
as seen in the current study. Due to reduced antioxi-
dants,  H2O2 may accumulate in the hepatocytes and 
nephrons, triggering the formation of hydroxyl radical 
 (OH−) in the presence of iron or copper [58]. These 
radicals and many others can react with membrane 
lipids, proteins, and nucleic acids, triggering lipid per-
oxidation and disrupting cellular integrity. The current 
data shows that a high MDA (LPO) and other RONS 
with significant diminution in the antioxidant buffer-
ing system indicate hepatorenal derangement [46, 59].

The pro-inflammatory response is another route of Fe 
and Furan-mediated liver and kidney toxicities [60, 61]. 
Several mediators drive inflammation, including MPO, 
XO, NO, IL-1β, and IL-10. Significant alterations in 
hepatic and renal levels of these molecules may trigger 
the onset of inflammation, as observed in cohorts of rats 
treated with PbAc and Furan. MPO is a member of haem 
peroxidase expressed on neutrophils and monocytes 
[62] and is known to catalyse the conjugation of  H2O2 
and chloride, to yield hypochlorous acid (HOCl) [63]. 
On decomposition, HOCl evolves harmful free radicals 
such as singlet oxygen (1O2)  and.OH [64]. These free radi-
cals bind to biological molecules, including lipids, pro-
teins, and nucleic acids in the hepatocytes and nephrons 
and form lipid peroxides, protein crosslinks and DNA 
adducts [65]. Excess breakdown of nucleic acid may 
release free purine bases, which activate the expression 
of XO. XO then catalyses the breakdown of hypoxanthine 
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Fig. 9 Effect of accidental co-exposure of experimental rats’ models to Lead and Furan in diet and water respectively on the hepatic and renal 
levels of 8-OHdG, Casp-9 and Casp-3 in rats. Furan, 8 mg/kg; Lead, 100 μg/; Furan +  PbAc1, (8 mg/kg + 1.0 μg/L) mg/kg; Furan + PbAc2, (8 mg/
kg + 10 μg/L) mg/kg; Furan +  PbAc3, (8 mg/kg + 100 μg/L) mg/kg. Values are expressed as mean ± SD for five rats per treatment cohort. 
The connecting lines indicate groups compared to one another, and the significance level was set at (p < 0.05); p < 0.05: indicates the level of 
significance; p > 0.05: Not significant. 8-OHdG: 8-hydroxydeoxyguanosine, Casp: Caspase
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and xanthine with the evolution of urea acid and  O2−. 
 O2− produced in this reaction sequence further provokes 
the hepatorenal system’s redox balance. At the same time, 
uric acid may serve as a buffer to render temporary anti-
oxidant protection [66], as a dangerous signal to activate 
many inflammasome pathways or drive the expression 
of several inflammatory cytokines in the hepatocytes 
and nephrons of the experimental rats [67, 68]. Another 
marker of pro-inflammation is NO, depending on its cel-
lular and tissue concentrations.

NO mediates essential biochemical and physiological 
effects at a normal concentration, such as vasodilation, 
neurotransmission, and immune system function [69]. 
However, in toxin-ridden cells and tissues, as observed in 
our study, alteration in redox balance triggers increased 
expression of nitric oxide synthase (NOS). This enzyme 
catalyses the conversion of L-arginine into L-ornithine 
and NO in the presence of reduced nicotinamide adenine 
dinucleotide phosphate (NADPH) and molecular  O2 
as co-factors [70]. An increase in NOS expression level 
will, in turn, drive the production of NO beyond its basal 
level. NO can promote the oxidative state in hepatic and 
renal systems by conjugating with  O2− to form peroxyni-
trite  (ONOO−). An increase in the activities of these free 
radicals can trigger the activation of several innate cells of 
the immune system, thereby increasing the pro-inflam-
matory milieu needed to enhance hepatic and renal dam-
age [46, 71], as seen in the present study. As the activities 

of these pro-inflammatory mediators increase, they trig-
ger the generation of several danger signals, which 
interact with cells of the immune system resident in the 
hepatic and renal tissues, notably the Kupffer cells and 
intraglomerular mesangial cells, respectively. This inter-
action may activate NF-κB, which exits the cytoplasm 
and translocates into the nucleus. This reaction sequence 
will facilitate the transcription of cytokines genes, includ-
ing IL-1β and other pro-inflammatory cytokines. IL-1β, 
in collaboration with TNF-α, IL-6 and IL-8, participate 
in the acute phase response and triggers severe hepatic 
and renal damage, as observed in the present study. As 
a resolvin, IL-10—an anti-inflammatory cytokine- sup-
presses pro-inflammatory responses [72]. Still, where the 
expression of IL-10 is dampened, as seen in this study, the 
hepatic and renal tissue is exposed to more inflammatory 
insults, leading to hepatorenal derangements [73]. The 
involvement of Pb and Furan in mediating inflammation 
and oxidative stress in rats’ liver and kidneys have been 
previously studied in rats [12, 48, 49].

Furan and Pb-mediated oxidative stress and inflam-
mation can trigger oxidative DNA damage, leading 
to the formation of DNA adducts such as 8-OHdG, as 
observed in the study. Increases in hepatorenal 8-OHdG 
levels can trigger the transcriptional activation of p53—
the genome guardian. Activated p53 can stall the cell 
cycle and induce DNA repair pathways. Cell cycle arrest 
is necessary to remove damaged nucleotides or initiate 

Fig. 10 Photomicrograph of tissue _liver and kidney section stained with H and E and a magnification: × 400; depicting alterations in the tissue 
of rats exposed to environmentally relevant concentrations of lead (PbAC3) and furan for 28 consecutive days. Column 1: Control: Liver and kidney 
tissue histoarchitecture were typical without unusual characteristics. The liver sinusoids appear normal and not infiltrated. However, there is a 
significant presence of inflammatory cells in the kidney. Column 2: Furan alone: Liver and kidney sections appear normal, with the renal cortex 
showing normal glomeruli, mesangial cells and capsular spaces (red arrow). Also, the renal tubules appear normal (black arrow), and the interstitial 
spaces appear normal (slender arrow). Column 3: Lead alone: Liver: the morphology of the hepatocytes at zone 3 shows spongy and balloon-like 
cytoplasm (red arrow), while other liver cells appear normal (black arrow). The hepatic sinusoids appear normal and without infiltration of any cell 
type. The kidney showed poor architecture at a lower magnification (× 100) image not shown, and the renal cortex showed normal glomeruli 
with normal mesangial cells and capsular spaces (black arrowheads) with collapsed renal tubules (red arrow). The interstitial spaces show the focal 
area of accumulated eosinophilic fluid (slender red arrow). Column 4–6: Furan and Pb with varying doses (1–3): Liver histoarchitecture of Pb1-3: 
progressive congestion around the portal vein (black arrow) was observed in the liver of the experimental rats, while the morphology of the 
sinusoids appears normal without any significant infiltration by inflammatory cells. The kidney histoarchitecture remains intact, and the renal cortex 
shows normal glomeruli with normal mesangial cells and capsular spaces (black arrow). The renal tubules and the interstitial spaces appear normal 
(red arrow)
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programmed cell death when DNA repair is not feasible 
[74, 75]. Precisely, p53 activates PUMA, which activates 
Bax while inhibiting Bcl-2 [76]. Bax then translocates 
into the hepatocytes and nephrons’ mitochondria and 
triggers the release of cytochrome C, which binds to 
apoptotic peptidase activating factor 1 (APAF-1) and 
pro-caspase-9 to form apoptosome. This complex medi-
ates the activation of caspase-9, the initiator of apop-
tosis, and caspase-9, in turn, activates caspase-3—the 
executioner of apoptosis. As this study reveals, increased 
caspase-9 and -3 activities imply programmed cell death 
in the liver and kidney of rats. These observations agree 
with the findings from previous studies that xenobiotics 
can mediate apoptosis following redox imbalance and 
increase pro-inflammatory mediators [46, 77, 78].

Unabated increase in the level of ROS, pro-inflamma-
tory mediators, and caspases with concurrent wane in 
the expression of phase 1 and phase 11 antioxidants, and 
anti-inflammatory cytokine, the liver and kidney can pre-
dispose the liver to severe toxicities, including distortion 
of the hepatic and renal membrane lipids and proteins, 
and loss of function and integrity of proteins and nucleic 
acids in the liver and kidney of rats. These changes can 
result in hepatic and renal damage, as observed in the pre-
sent study. One way to clinically elucidate that the liver 
and kidney are prone to disease following treatment with 
PbAc and Furan is by evaluating the serum concentra-
tions of liver and kidney functional biomarkers such as 
ALT, AST, ALP, GGT, urea and creatinine. The levels of 
these molecules in the serum are stringently regulated. In 

Fig. 11 Proposed mechanisms of accidental co-exposure of experimental rats’ models to Lead and Furan in diet and water, respectively. Furan 
is converted to cis-but-ene-1,4-dialdehyde. This intermediate induces oxidative stress and inflammation by activating xanthine oxidase and 
myeloperoxidase to generate abundant ROS, including  O2

−,  H2O2, and HOCl. On the other hand, Pb triggers the Fenton and Haber–Weiss reaction 
to generate abundant  OH−. These intermediates activate iNOS which mediate the generation of NO and other pro-inflammatory cytokines such 
as IL-1β. Unresolved oxidative stress and inflammation will trigger oxidative DNA damage and increase the tissue level of 8-OHdG. Increases in 
the 8-OHdG DNA adduct will trigger the activation of p53, instructing PUMA to activate Bax while repressing the activity of Bcl-2. Bax enters 
the mitochondria of the hepatocytes and nephrons and causes the evolution of cytochrome C, which binds to apaf to form apoptosome with 
concurrent activation of caspase-9. Active caspase-9 then activates caspase-3 – the executioner of programmed cell death
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a normal liver, ALT, AST, ALP and GGT are localised in 
specific cellular compartments, including the cytoplasm 
and mitochondria. However, these enzymes are released 
into the circulation in a disease state, indicating hepatic 
damage, as observed in the present study. In addition, 
creatinine, and urea – the biomarkers of renal function, 
are produced from creatinine phosphate and the break-
down of proteins, respectively. Following kidney injury, 
these metabolites accumulate in the bloodstream due to 
impaired excretion, and if this is not remedied, it can trig-
ger renal failure. The implications of ALT, AST, ALP, GGT, 
urea, and creatinine in acute/chronic liver and kidney dis-
eases have been reported previously [11, 48, 65, 73].

Another clinically accepted protocol for ascertaining 
xenobiotics’ toxicities is evaluating a target organ’s histo-
architectural features. In this study, treatments with PbAc 
and Furan abrogated the normal histology of the liver and 
kidney, and this may be attributed to the increase in the gen-
eration of ROS, proinflammatory cytokines, DNA adducts, 
and a host of other danger-associated molecular patterns 
(DAMPs) [46, 63, 73]. These molecules are known to trig-
ger the activation and differentiation of pro-inflammatory 
cells in the hepatic and renal tissues, leading to the activa-
tion of inflammasomes [79, 80] and the formation of lesions 
capable of deranging the liver and kidney of rats. These 
parameters are relevant in clinical diagnosis. However, some 
non-invasive measures exist, such as body weight and orga-
nosomatic indices, for validating the impact of chemical 
toxicants on experimental models [81]. In this study, expo-
sure to PbAc and Furan did not significantly alter the orga-
nosomatic indices of rats after 28 days. However, we infer 
that long-term exposure may trigger a decrease in the body 
weight of rats and the weight of the liver and kidneys. Based 
on these indices, we revalidate the health impact of Pb and 
furan exposure on animals and confirm that these xenobiot-
ics could trigger oxidative stress, chronic inflammation, oxi-
dative DNA damage, and apoptosis at the test doses.

Conclusion
The present study reveals that exposure to PbAc and furan 
in rats abrogated the balance in rats’ redox system, altered 
basal inflammatory response, triggered oxidative DNA 
damage, and orchestrated programmed cell death. These 
findings were further reinforced by lesions manifested 
in the forms of altered histoarchitectural features of the 
liver and kidney with likely impaired hepatorenal func-
tions. Probable mechanisms for the observed biochemical 
changes may be through the upregulation of the activities 
of cytochrome P450 (CYP) 1A2, 2C19, 2C9, 2D6, and 3A4, 
the expression of NF-kB, p53, PUMA, Bax, caspase-9 and 
caspase-3, while inhibiting Bcl-2, Nrf-2, NQO1, and HO-1 
(Fig. 11). Our observations recapitulate the harmful effects 

of the exposure to Pb and Furan on animals and warrant 
further molecular studies to exhaustively elucidate mecha-
nisms of Pb and Furan toxicities in the hepatorenal system. 
Based on these findings, we call on different regulatory 
bodies in Africa to make policies against indiscriminate use 
of compounds containing Pb to circumvent contamination 
and monitor the methods for processing and preservation 
of food products to prevent contamination by Furan.
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