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Abstract

Background: The emergence and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in
thelate 2019 has caused a devastating global pandemic of the severe pneumonia-like disease coronavirus disease
2019 (COVID-19). Although vaccines have been and are being developed, they are not accessible to everyone and
not everyone can receive these vaccines. Also, it typically takes more than 10 years until a new therapeutic agent is
approved for usage. Therefore, repurposing of known drugs can lend itself well as a key approach for significantly
expediting the development of new therapies for COVID-19.

Methods: We have incorporated machine learning-based computational tools and in silico models into the drug
discovery process to predict Adsorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profiles of 90
potential drugs for COVID-19 treatment identified from two independent studies mainly with the purpose of
mitigating late-phase failures because of inferior pharmacokinetics and toxicity.

Results: Here, we summarize the cardiotoxicity and general toxicity profiles of 90 potential drugs for COVID-19
treatment and outline the risks of repurposing and propose a stratification of patients accordingly. We shortlist a
total of five compounds based on their non-toxic properties.

Conclusion: In summary, this manuscript aims to provide a potentially useful source of essential knowledge on
toxicity assessment of 90 compounds for healthcare practitioners and researchers to find off-label alternatives for
the treatment for COVID-19. The majority of the molecules discussed in this manuscript have already moved into
clinical trials and thus their known pharmacological and human safety profiles are expected to facilitate a fast track
preclinical and clinical assessment for treating COVID-19.
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Background

Since December 2019, much of the world has suffered
from the outbreak of coronavirus disease 2019 (COVID-
19), the disease caused by a novel human coronavirus,
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1]. The WHO (World Health Organization)
proclaimed the outbreak of coronavirus disease-2019
(COVID-19) to be a Public Health Emergency of Inter-
national Concern (PHEIC), which was the highest level
of epidemic prevention in the world, suggesting its grav-
ity [2]. As of now, nearly 189 million people worldwide
have been infected with SARS-CoV2, with almost 4.1
million fatalities by July 14, 2021. SARS-CoV-2 genome
is an enveloped, non-segmented positive-sense RNA -
coronavirus, associated with the viruses that originated
the SARS and MERS (Middle East respiratory syndrome)
outbreaks since early 2000s and 2012, respectively. One
of the crucial threats of COVID-19 is the combination
of respiratory failure and cardiovascular complications
combined with widespread endothelial dysfunction and
severe inflammation. It appears that an overproduction of
pro-inflammatory cytokines (known as “cytokine storm”)
that can be detected with interleukins and tumor necrosis
biomarkers, is observed in the lungs of severely ill
COVID-19 patients [3]. Coronaviruses have spherical or
pleiomorphic shape with size approximately 80 to 160 nm
in diameter. Coronaviruses free their nucleocapsid into
the host cell by fusing their envelope with the host cell
membrane. The spike glycoprotein (S) arbitrates the en-
trance of the virus and is the major factor of cell tropism
and pathogenesis. SARS-CoV-2 spike proteins bind to
ACE2 receptor proteins on the host cell surface, perceived
as angiotensin converting enzyme 2 (ACE2).

The high morbidity and mortality rates were ascribed
to the lack of effective drug treatment. COVID-19, for
which SARS-CoV-2 is the etiological agent, poses a ser-
ious threat to human life during the continuation of the
global outbreak. Although vaccines have been developed
recently, they are not accessible to everyone and not
everyone can receive these vaccines. Also, with new vari-
ants of COVID emerging, vaccines may not offer 100%
protection. Emergence of new strains of SARS-COV-2 is
another hurdle on the way of the vaccines and tailoring
of available vaccines narrowly to the new mutants might
be needed to adopt and make them effective. Therefore,
the search for efficacious therapeutic agents to treat
COVID-19 patients is vital and urgent. Novel ap-
proaches to drug design and discovery are being utilized
to explore therapeutic drug candidates for COVID-19.
Identification of effective therapeutics/pharmacological
treatments with very little time available for the new
drug discovery is a unique challenge for health profes-
sionals to tackle the unprecedent spread of SARS-CoV-2
disease. Currently, specific therapeutic agents or antiviral
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compounds are still being investigated for treatment
against SARS-CoV-2.

Developing a new prescription medicine that warrants
marketing approval may take more than 10 to 15 years
and cost close to a billion dollars with a success rate of
only 2%. It is, therefore, more time- and cost-effective to
develop new therapies by at least initially probing the
existing antiviral and other drug databases against
SARS-CoV2 molecular targets [4, 5]. Hence, reassessing
the efficacy and safety of licensed and experimental
drugs has become the primary alternative recommended
by the WHO and other health agencies to tackle emer-
ging health crises. In the past, repurposing strategy has
been beneficial for identifying potential therapeutic com-
pounds against numerous viral diseases with high risk of
death such as Zika, Ebola and hepatitis C viral infections
to name a few [6-8].

A potential drug candidate should have unobjection-
able pharmacokinetic and pharmacodynamic profiles,
along with a high safety margin with low risks of toxicity
and side effects. The purpose of this paper is to compu-
tationally assess the toxicity risks associated with a selec-
tion of approved drugs having demonstrated activity
against the COVID-19 virus based on two previously
published independent studies and our intention is to
rank the risks of repurposing these drugs and to recom-
mend a stratification of patients according to these risks
[9, 10]. The first study includes 21 chemical substances
(antibacterial, antimalarial and antiparasitic agents, and
other drugs) that have been deemed applicable for ex-
perimental therapies, mainly for symptomatic treatment,
even though they were originally selected to primarily
target the underlying cause [9]. The second study in-
volves 69 drugs (FDA-approved drugs, drugs in clinical
trials and/or preclinical compounds) that have been
identified by combining a systematic chemoinformatic
drug search and a pathway-centric analysis that targets
parts of the resulting network [10]. Patients with a spe-
cific medical history and at high risk of medication er-
rors could potentially benefit from this study.

In the last few decades, machine learning (ML)-based
computational tools and in silico models to predict
ADMET (Adsorption, Distribution, Metabolism, Excre-
tion, and Toxicity) profiles of molecules have been in-
creasingly integrated into the drug discovery process in
order to mitigate late-stage failures caused by poor
pharmacokinetics and toxicity. Especially, Quantitative
Structure Activity Relationships (QSAR) methods can be
used to predict the toxicity quantitatively. “ADMET de-
sign” is a paradigm where ADMET properties and bio-
logical efficacy have an equally important value in initial
phases of drug discovery. In silico approaches can be
used as a multidimensional search and optimization tool
for incorporating multiple variables and for using the
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relevant experimental data in the most effective manner.
ML approaches, including such as ANNs (Artificial
Neural Networks) [11] or SVMs (Support Vector Ma-
chines) [12] to QSAR/QSPR modeling [13] can be used
to calculate ADMET properties. For QSAR/QSPR mod-
eling, the inputs to mathematical prognostic models
comprise the chemical structures that are encoded by
calculated values of molecular descriptors. ANN models
need an extensive experimental database to be trained
and have become more commonly employed in drug
discovery starting in the late 1990s and are currently
considered to be better predictors compared to other
models [14]. To improve the accuracy of these compu-
tational predictions, ANN Ensemble (ANNE) or SVM
Ensemble (SVME) approaches may be employed by
training several ANNs or SVMs and using the ensemble
average of their outputs [15].

In the following sections, we cover a large range of
toxicities including cardiotoxicity, hepatotoxicity, endo-
crine, carcinogenicity and sensitivity paving the way to
to optimize the choice of a medication that may cur-
rently be approved, for example, a patient with a specific
risk factor such as heart disease should avoid the drugs
that cause cardiotoxicities. We also used models for me-
tabolite prediction to have a better understanding of
drug toxicities and adverse drug interactions.

Materials and methods

Materials

We used selected potential antiviral molecules from two
different studies as follows.

69 compounds

We adopted 69 existing FDA-approved drugs, drugs in
clinical trials and/or preclinical compounds, which are
currently being evaluated for efficacy in live SARS-CoV-
2 infection assays, as reported in [10]. These molecules
are derived with expert analysis of human protein inter-
actors of SARS-CoV-2 and reagents and drugs that
modulate them; and they are not currently available in
the chemoinformatically-searchable literature. In their
study, the authors performed cloning, tagging, and ex-
pressing of 26 of the 29 viral proteins in human cells
and were able to identify the human proteins that are
physically associated with these vital proteins using affin-
ity purification mass spectrometry (AP-MS) assays,
which identified 332 high confidence SARS-CoV-2-hu-
man PPIs (protein-protein interactions). The authors
identified 67 druggable human proteins or host factors
targeted by 69 existing FDA-approved drugs, drugs in
clinical trials and/or preclinical compounds. Identifying
the host dependency factors facilitating virus infection
may reveal important and deeper understanding of ef-
fective molecular targets to develop antiviral
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therapeutics that broadly act against SARS-CoV-2 and
other deadly coronavirus strains.

21 compounds

We used 21 known drugs that have been shown [9] to
exhibit dose—response relationships out of 100 mole-
cules inhibiting viral replication of SARS-CoV-2. One
hundred molecules were selected from nearly 12,000
drugs that are either in clinical-stages of development or
FDA-approved small molecules to identify candidate
therapeutic drugs for COVID-19. Thirteen of these 21
drugs exhibit effective concentrations equivalent to
probable achievable therapeutic doses in patients, such
as PIKfyve kinase inhibitor apilimod [16] and the cyst-
eine protease inhibitors MDL-28170, Z LVG CHN2,
VBY-825 and ONO 5334. It is found that MDL-28170,
ONO 5334 and apilimod antagonize viral replication in
human pneumocyte-like cells derived from induced
pluripotent stem cells. It has also been observed that
apilimod showed antiviral efficacy in a primary human
lung explant model.

Methods

We used two different methods in our calculations: (1)
in silico ADMET modeling employing ADMET pre-
dictor (Simulation Plus) software to calculate ADMET
properties, toxicity and risks of the compounds under
study, and (2) QSAR machine learning (ML) based mod-
eling using a software written by our group to predict
drug blockade of the hERG1 channel.

In silico ADMET modeling using ADMET Predictor
software and models

ADMET Predictor (https://www.simulations-plus.com/
software/admetpredictor/) is used to construct ANN and
SVM classification QSAR models to predict ADMET pa-
rameters of compounds. In general, in silico models can
be described in terms of how a particular biological end-
point being predicted is defined, the kind of descriptors
used to characterize the molecular structure, and the
mathematical formulation used to associate the descrip-
tors to the model output. ADMET Predictor accepts 2D/
3D-dimensional SDF files of the structures of the com-
pounds as input. Then, compounds can be mathematic-
ally codified to more than 350 molecular descriptors.
Molecular descriptors are used to create prediction
models using statistical approaches or machine learning
techniques such as support vector machine (SVM) and
the artificial neural network (ANN). Consequently, the
generated model is used to predict the corresponding
properties of new compounds. ADMET Predictor’s Tox-
icity Module is a statistical model which relies on mo-
lecular descriptors. Statistical models are typically better
able to provide a more quantitative indication of how
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reliable a particular prediction will be, ie., of how
confident one can be in it [17]. The ‘bottom-up’ ap-
proach taken in ADMET Predictor creates a separate
model for each of the ten constituent assays, then
combines the results into an overall toxicity risk. The
default behavior is to flag a compound as probably ie.
mutagenic/metabolic/toxic in the aggregated output.
Various toxicity properties of the compounds includ-
ing cardiac, hepatotoxicity, endocrine, carcinogenicity
and sensitivity can be predicted in silico using the
toxicity module of ADMET Predictor (version 9.5,
Simulation Plus, Lancaster, CA, USA) software (see
Fig. 1) [18, 19].

In silico methods and software that is commonly
used to predict a compound’s properties comes with
two qualitative estimations rather than being limited
to the absolute terms: (1) an estimate of the reliability
of that prediction (2) an indication of how that com-
pound plausibly resembles the compounds that are
used to train the model. Details about training set
sizes, data sources, plots of predicted versus observed
values are thoroughly presented in the manual docu-
mentation provided for ADMET Predictor users [20].
A compound is considered ‘out of scope’ if it falls out-
side of the model’s ‘applicability domain.” Predictions
for out-of-scope compounds are flagged in ADMET
Predictor’s output. In our analysis none of the selected
compounds were flagged as out of scope which shows
that the applicability domains of the training and test
data sets overlap. Classification confidence estimate
for different models for our selected compounds was
mostly above 90%. For a more detailed description of
predictive certainty of ADMET Predictor’s toxicity
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and metabolism modules, we refer the reader to an ex-
cellent publication by RD. Clarck [21].

In the following sections, we discuss in detail the tox-
icity and risk models related to toxicity models of
ADMET Predictor software.

Allergic skin and respiratory sensitization

A compound or substance that stimulates dermal aller-
gic reactions is referred to as a skin sensitizer. TOX_
SKIN model employed the murine local lymph node
assay (LLNA) which has been established to be a suc-
cessful tool in evaluating the relative potency of com-
pounds as skin sensitizers for assessing the associated
risks (https://ntp.niehs.nih.gov/whatwestudy/niceatm/
index.html). Recently, this model has been endorsed for
calculating the relative effectiveness of skin sensitizing
chemicals. We also report here the results of the TOX_
RESP model [19, 20], which indicate respiratory
sensitization (see Table 1).

Reproductive toxicity

Reproductive toxicity is an essential regulatory endpoint
that is categorized as developmental toxicity. Reproduct-
ive toxicity refers to any parameter that disrupts organ-
isms’ reproductive means, such as unfavorable effects on
sexual organs, performance, ease of conception, as well
as any developmental toxicity experienced by the off-
spring. ADMET predictor used the data from the FDA/
TETRIS database, which was collected originally from
the literature. The qualitative evaluation of the repro-
ductive toxicity (TOX_REPR) model [20] is presented in
Table 1. Compounds are classified as either toxic “T,
red” or nontoxic “NT, green” (see Table 1).

Cardiac
hERG channel blocking

Sensitization
Skin and respiratory

Hepatotoxicity

Phospholipidosis

Blood level elevation of
alkaline phosphatase,

Fig. 1 Models in ADMET Predictor’s Toxicity Module

MRTD ADMET Toxicity
Endocrine
Estrogen and Androgen
receptors

AST. ALT, LDH, or GGT

Carcinogenicity
Rat and mouse TD50
Chromosomal aberrations
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Table 1 Predicted toxicities and toxicity risk for 90 compounds performed by ADMET Predictor software. ADMET Predictor identifier
of each toxicity is mentioned in the parenthesis (see abbreviation list). In particular, Tox_hERG_Filter is a qualitative estimation of the
affinity to the hERG potassium channel in human and Tox_hERG is the affinity to the hERG potassium channel in human expressed
as plC50 in mol/L. Compounds with an IC50 less than or equal to 10 umol/L were labeled Toxic (T, red), while those greater than
10 umol/L are considered non-toxic (NT, green). Human liver adverse effect (the likelihood of causing elevation in the levels of
AlkPhos, GGT, LDH, AST amd ALT enzymes) is also summarized in the hepatotoxicity section and color coded as EL (Elevated, red),
NL (Normal, green). Other toxicity assessments are mentioned as Skin sensitivity, Respiratory sensitivity, Reproductive toxicity,
Phospholipidosis, Chromosome aberration, Estrogen and AndrogenToxicity and Max_RTD (Maximum Recommended Therapeutic
Dose). The abbreviations used are Nonsensitive (NS, green), Sensitive (S, red), EL (Elevated, red), NL (Normal, green), T (Toxic) and

NT (Nontoxic). Toxicity risk (possible range 0-7) is the risk connected with predicted toxicity problems a compound might have.
Toxicity risk less than 2 is considered as safe (green). Check rules and abbreviations for TOX_Risk and ToX_Code in the risk section
for the codes. MV stands for MISSING_VALUE in ADMET predictor and color coded in yellow

an = Cardiotoxicity Hepatotoxicity .é ~ ‘g, Toxicity I
s z = s | = < gl 2 =
-1 S o @ B = 8 | o
46 |CB5083 @NS |[Ds QT @No 5.24 (@NL @NL QEL @NL @NL [@NT [ONT |@NT |[@NT |Below_3.16 |0 MV
47 |DBeQ @s |@s QT @D Yes 5.66 (@QEL QEL @NL QEL QEL |@NT |@NT |ONT |@ONT |[Above_ 3.16 |@3.05 |hERG; Xr; Xm; MUT
48 |ML240 @s |@s OT D Yes 5.8 @QEL @NL@NL @NL QEL |[@NT|DT @NT [@NT |Above_3.16 [@2.61 [hERG; Xm; MUT
49 |Chloroquine @S |@ONS |[@ONT [DYes 6.09 @NL @NL @NL @NL @NL [@T |@NT [|ONT |OT Above_ 3.16 |[@2 |hERG; MUT
50 |Pevonedistat @Ns |@s oT @No 5 @ONL @NL @NL @NL @NL |@NT [@NT [@NT |@NT ([Below_3.16 |@1 |Xr
51 |AC-55541 @s |@s oT @No 4.71 @QEL @EL @NL QEL QEL |@ONT |@NT [@NT |@NT [Above 3.16 (@2 [Xr; Xm
52 |GB110 @s [@s ONT |@No 4.75 @ONL ONL @ONL ONL ONL |[OT |@ONT |ONT |[ONT |Above 3.16 (@1 Xr
53 |Midostaurin @Ns |@s oT @ Yes 5.77 @NL @NL @NL @EL @QEL |@NT |@T @NT [@NT [Below_3.16 |@2.56 |hERG; rat; Xi; MUT
54 |Bafilomycin_A1 @s |@s oT @No 4.16 (@EL @EL @NL QEL QEL |@NT |@NT [@NT |@NT [Below 3.16 |@1 |Xr
55 |Apicidin @NS [@NS @T @No 4.32 (QEL @ONLONL QEL QEL [@NT |[@NT |@NT |[@NT |Above 3.16 (@2 rat; Xr
56 |TMCB @s |ONs @NT |@No 4.27 (DEL @NLQEL ONL QEL |[@NT |[@NT |@NT |[@NT |Above 3.16 |0 MV
57 |Metformin @s |@NS [@NT |@No 355 @NL @NL QEL @NL @NL |@NT [@NT [@NT |@NT (Above 3.16 (@2  [Xm; MUT
58 |Valproic_Acid @NS |@NS [@NT |@No 3.91 @QEL @NLOEL QEL @QEL |@NT |@NT |@NT |@NT [Above 3.16 [@1  |HEPX
59 [IHVR-19029 @Ns |ONs  [@T @No 4.67 QEL @NL@NL @NL @NL |@NT |@NT |@NT |@NT |[Below_3.16 [(0.03 |Xr
60 |Mz1 @Ns |@s oT @No 453 @QEL @EL @QEL @QEL @ONL |@T |@ONT [@NT |[@NT [Above 3.16 (@2 [Xr; Xm
61 |PS3061 @ONS [ONs  |OT @No 4.38 QEL ONLONL QEL QEL |[@ONT|OT @ONT [@ONT |Above 3.16 |@2 rat; Xr
62 |Rapamycin @s |@Ns |@T @No 3.73 @EL @EL @NL QEL @QEL |@NT |@NT [@NT |@T Below_3.16 (@1 [xr
63 |Sanglifehrin_A @s |@s oT @No 3.81 (QEL QEL @ONL QEL QEL |@NT |@NT |ONT |ONT [Below_3.16 @2 rat; Xr
64 |FK-506_ Tacrolimus |@NS |[@NS |[DT @No 3.69 QEL @ONLONL QEL QEL |@NT|@NT |[ONT |OT Below_3.16 |@2 [rat; Xr
65 |Ternatin_4 @NS [@Ns  |OT @No 3.86 (@EL @NL@NL @ONL QEL |@ONT [@T @NT [@NT |Above_3.16 |@1 MUT
66 |WDB002 @s |@Ns |OT @No 4.26 @EL @QEL @NL @EL QEL |@ONT|@NT |OT |OT Below_3.16 |@2 |rat; Xr
67 |compound2 @s |@Ns |OT No 4809 [DEL @EL @NL QEL QEL |@NT |[@NT |[@NT |@NT [Above 3.16 [@1 |Xr
68 |compound10 @Ns |@s @NT |No 4849 [DEL @NL@ONL ONL @ONL (@NT |ONT |@NT |@NT |Below_3.16 |@0.5 |Xm-
69 |dBET6 @s |[ONs |OT No 4.568 (QEL QEL @EL ONL QEL |OT |@ONT |ONT |ONT [|Above 3.16 (@1 Xr+; Xm+

70 S'Z'Fhl"“’s‘y'y] @s |@s |@NT |@No 476 |@EL @EL @NL @EL @QEL |@NT|@T  |@NT [@NT [Below 316 |00 [mv
catfeine

71 |AMG-2674 @s |ONs QT @ Yes 5.73 (QEL QEL @QEL QEL QEL |ONT |@NT |OT |ONT [Below_3.16 |@3.46 |hERG; rat; Xr; HEPX

72 |Apilimod @s |ONs |OT @No 5.62 (QEL @QEL ONL QEL QEL |ONT|@NT |ONT |[ONT |Below_3.16 (@2 Xm; MUT

73 |Astemizole @ONS |ONS  [ONT [DYes 7.42 @NL @NL@ONL @NL @NL |@T |@NT [ONT |@T  [Below 3.16 [@15 [hERG; Xm

74 |Clofazimine Ds |@s oT DYes 7.19 OEL QEL OEL QOEL QEL |OT |OT ONT [OT Above_3.16 |D4 ::[II{TG Xm; HEPX;

75 |DS-6930 @s |@s oT @No 5.17 @QEL @EL @QEL QEL QEL |@ONT |[@NT [@NT |@NT (Above 3.16 (@2  [Xm; HEPX

76 |Elopiprazole @s |@s oT @D Yes 6.33 (@ONL ONL ONL OQEL QEL |@NT |[@NT QT |OT Below_3.16 |[@2.02 |hERG; rat; Xr

77 ?;‘;:i‘;‘i::;"A @s [@ns [@T |Oves 586 [OFL @FL @EL ONL @EL [OT |@NT [@T [@T |[Below 3.16 |@0.74 |hERG; rat

78 |KW 8232 @ONS [ONs  |OT DYes 6.71 OQOEL ONLOEL OEL QEL |[OT |ONT [OT |OT Below_3.16 |@2 hERG; HEPX

79 |MDL 28170 @Ns |ONs  [@T @No 485 OQEL OEL @NL @ONL QEL |ONT |[ONT [ONT |ONT [Above 3.16 [@1 |Xr

80 |MLN-3897 @s |@s oT @ Yes 6.86 @ONL QEL @QEL @ONL QEL |@T |@ONT [@T |OT Below_3.16 |[@1.18 |hERG; rat
N-tert-

81 |Butylisoquine @ONs |@s ONT  |DYes 6.26 @NL @NL @NL @NL ONL |OT |OT @NT [@T [Above 3.16 (@2 |hERG; MUT
GSK369796

82 |ONO 5334 @Ns [@s @ONT |@No 4.02 (QEL ONL@ONL ONL @ONL [ONT |ONT [@ONT [@NT [Above 3.16 [@2  |Xm; MUT

83 |R 82913 @ONs |@s T @No 5.86 @EL ONLOEL OQEL QEL |ONT (OT o1 (OT Below_3.16 [@2 |HEPX; MUT

84 |Remdesivir @ONS |[ONs  |OT @No 4.31 QEL ONL ONL ONL QEL |[ONT|OT @ONT [@NT |Below_3.16 |@1 Xr

85 |SB-616234-A @s |[ONs |OT DYes 6.24 ONL QEL @EL ONL QEL |[@T |@ONT |[ONT [ONT |[Below_3.16 |@2.85 |hERG; Xr; Xm

86 |SDZ-62-434 @s |O@s ONT  [DYes 7.12 @ONL @NL@ONL @NL @NL [@T |@NT |OT |OT Above_3.16 [@1.79 |hERG; Xm

87 |SL-11128 @s |@s @NT |@No 4.02 @ONL OEL @NL QEL QEL |@T |@NT [ONT |@NT (Above 3.16 |[@1.98 [Xm; MUT

88 |VBY-825 @Ns |@s oT @No 3.76 @EL @NL@NL @NL @ONL |ONT |[@NT [@NT |@NT ([Below 3.16 |@2 |rat; Xr

89 |YH-1238 @s |@s @)y @D Yes 5.87 QEL ONLONL QEL QEL |@ONT |@NT |[ONT [@ONT [Above 3.16 [@1.74 |hERG; Xm

Above_3.16
90 |z1ve can2 @Ns [@s (@7  |@No 4626 [@FEL @EL ONL ONL @EL |ONT |ONT [@NT |ooxic (%;‘;e* @2 |xgmuUT
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Cardiac toxicity (affinity for hERG-encoded potassium
channels)

Cardiovascular diseases continue to be a leading cause
of morbidity and mortality. Medicines can significantly
contribute to the high burden of cardiovascular risk fac-
tors and thus deserve special attention. The human
Ether-a-go-go Related Gene (hERG) is a gene that en-
codes potassium channels, which mediate repolarization
of the ion current in the cardiac action potential. Block-
ade of the transmembrane influx of K* ions, and inhib-
ition of channel trafficking in heart cells caused by drugs
can lead to life-threatening ventricular arrhythmias [22—
24]. The ADMET toxicity module uses two neural net-
work models to assess Covid-19 drugs that may induce
distinct cardiovascular toxicity by blocking the hERG
channel, TOX_hERG_Filter, and TOX_hERG [20]. The
first one can be considered as a classification model
which determines if the compound is expected to have
an affinity for the hERG K' channel. The results for
TOX_hERG Filter are presented in Table 1. Compounds
with their IC50 values below 10 uM are shown as “T,
red” (Toxic), while those greater than 10 uM are labeled
“NT, green” (Nontoxic). If a compound is predicted to
be “T”, it will likely block the hERG channel. The IC50
value of the compound is predicted in molar units and
shown as pIC50 (-log(IC50 [M]). The model’s perform-
ance is shown in Table 1.

As we discussed above, ADMET Predictor uses two
ANNS, a classification model, and a regression model to
evaluate the probability of blocking the hERG channel
by a given compound. In this paper, we also used the
QSAR/ML model that we recently developed to assess
the possibility of blocking the hERG channel by the
compounds under study (see Tables 1 and 4).

Hepatotoxicity (human liver adverse effects)
It has been over three decades since reports on adverse
effects of drugs on human livers have been accumulated
by the US FDA CDER (Center for Drug Evaluation and
Research). Two databases developed using this work, the
Spontaneous Reporting System (SRS) and the Adverse
Event Reporting System (AERS), are used by a software
package called ADMET Predictor to model hepatotox-
icity of many popular pharmaceuticals. Using this pro-
cedure, five separate models that correspond to
individual liver enzymes used in hepatotoxicity diagnos-
tics are obtained:

alkaline phosphatase (Ser_AlkPhos) increase, gamma-
glutamyltransferase (Ser_GGT) increase, lactate de-
hydrogenase (Ser_LDH) increase, aspartate aminotrans-
ferase (Ser_AST) increase, and alanine aminotransferase
(Ser_ALT) increase [20]. Compounds classified as ele-
vated enzymes level “EL, red” and normal enzymes level
“NL, green” are shown in Table 1.
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Phospholipidosis

In individuals, lysosomal storage disorders can cause the
accumulation of phospholipids in the tissue and body in-
stead of regular metabolism by lysosomes. Lysosomes
are defined as cellular organelles carrying specific en-
zymes that metabolize waste materials to promote their
elimination. The origin of metabolic disorders can be ei-
ther hereditary or drug-induced, as the latter manifests
in phospholipidosis. Phospholipidosis is regarded to have
a significant role in the nervous system. When present,
phospholipids may cause disorder in neuronal cell sig-
naling leading to various genetic diseases, e.g. Niemann-
Pick disease. In drug discovery, the process of drug de-
velopment may be delayed or halted due to the identifi-
cation or as a result of extra testing if needed to satisfy
the obligations of regulators. ADMET Predictor develops
a classification model named TOX_PHOS [20] by utiliz-
ing a data set of chemicals with a known phospholipido-
sis profile obtained from the literature. Overall, electron
microscopy was used to identify all non-inducers and
some inducers while information about the presence of
foamy macrophages or vacuolations was used to detect
the rest of the inducers. In Table 1, non-inducers are la-
beled as Nontoxic “NT, green”, whereas inducers are la-
beled as Toxic “T, red”.

Chromosomal aberrations

An ANN ensemble model named TOX_CABR provided
by ADMET Predictor [20] is used to assess the geno-
toxic potential of chemicals and drugs. A training data
set with observed CA results that exhibit a very balanced
distribution of Toxic “T” and Nontoxic “NT” is used for
this ANN ensemble model. Compounds classified as
toxic “T, red” and nontoxic “NT, green” are shown in
Table 1.

Acute rat toxicity

The acute rat toxicity model, referred as TOX_RAT
[20], is built on the amount of an orally administered
chemical substance (in mg per kg of body weight) that
resulted in lethality of half of the rats in a given study.
The grand challenge to build a QSAR model is the per-
manence of such a diverse dataset. ADMET predictor
utilizes the data from the following resources: Registry
of Toxic Effects of Chemical Substances data set, re-
ferred as RTECS, (the version associated with the CDC’s
NIOSH), and the ChemIDplus database. The unit used
for LD50 in TOX_RAT model is mg/kg. Compounds
with the predicted toxicities given by LD50 (mg/kg) are
shown in Supplementary Table 1. According to the risk
criteria in risks section, (acute toxicity in rats, ra: TOX_
RAT <300) is considered as high risk. Supplementary
Table 1 is presented in a color-coded fashion such that
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the most dangerous drugs are shown as red, while safe
drugs are shown in green (see Supplementary Table 1).

Endocrine toxicity

Drug compounds compete with sex hormones to inhibit
and interact with the estrogen and/or androgen recep-
tors, which can drive disruptions in endocrine system
signaling, such as blocking the passage of standard hor-
monal signals and causing toxicity. Androgens, for in-
stance, play a significant role in developing and
maintaining the male phenotype and the pathology and
treatment of prostate cancer.

ADMET Predictor uses two models for predicting
endocrine toxicity by qualitatively assessing estrogen re-
ceptor toxicity in rats (TOX_ER_Filter) and androgen re-
ceptor toxicity in rats (TOX_AR_Filter) [20]. Qualitative
estimation of androgen and estrogen receptor toxicity in
rats is shown in Table 1 as NT ‘Nontoxic’ and T “Toxic’
(see Table 1).

Maximum recommended therapeutic dose

US FDA’s CDER has collected a maximum recom-
mended therapeutic dose (MRTD) database to shed light
on the relationship between structure, toxicity, and no-
effect level (NOEL) of chemicals in humans to assess the
health-related effects. ADMET Predictor utilizes ANN
Ensemble models to predict the MRTD for compounds
in mg/kg-BodyWeight/day units. When the prediction is
higher than 3.16 mg/kg-BW/day, it is indicative of an
“inactive” (green color-coded) compound with improb-
able side effects, and estimations less than 3.16 are la-
beled with red color with significant potential for side
effects. The relevant results for MRTD are presented in
Table 1.

Chronic carcinogenicity and mutagenicity

ADMET Predictor adopted Carcinogenic Potency Data-
base (CPDB) is made available by the EPA’s DSSTox
program to develop two quantitative chronic carcino-
genicity and mutagenicity models: Rat TD50 and
Mouse_TD50. Rat_TD50 predicts the TD50 value of a
selected compound. The TD50 is the dose of a substance
given to rats orally throughout their lifetimes resulting
in half of the population experiencing tumors. Further-
more, Mouse_TD50 predicts the TD50 value in mice.
Both models predict TD50 values in units of mg/kg/day.
According to the risk criteria in section 2.1.12.1 (car-
cinogenicity in chronic mouse studies, Xm: Mouse_
TD50 < 25) and (carcinogenicity in chronic rat studies,
Xr: Rat_TD50 < 4) are considered as high risk. Table S1.
is color-coded as most dangerous drugs are shown in
red, while safe drugs are shown in green, respectively
(see Supplementary Table 1).
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The outcome of 10 models estimating Ames Mutage-
nicity in five different strains of Salmonella with or with-
out metabolic activation (m labeled) is summarized in
Table S1. Developed by Ames et al. using strains of the
Salmonella typhimurium as a time and cost-effective op-
tion for testing in rodents, the Ames Mutagenicity mea-
sures the mutagenic potential of chemical compounds.
The 10 ANN Ensembles featured with TOX_MUT* are
qualitative models that are used to predict the mutage-

nicity of chemical compounds either as “+” (i.e., muta-
genic) or “-” (otherwise).
Risks

Mutagenicity risk ADMET Predictor summarizes the
output of mutagenicity models employing ADMET Risk
and ADMET Code for mutagenicity in S. typhimurium
(MUT_Risk and MUT_Code), depicting the results of
“virtual Ames testing.” There are ten TOX_MUT
models, which individually take part in the assessment
of the mutagenicity anticipated for five strains of Sal-
monella typhimurium with and without microsomal ac-
tivation (e.g., TOX_MUT_102 and TOX_MUT_m102).
Risk code and criteria for mutagenicity are listed as
below:

S1: (TOX_MUT_97 + 1537 =“+”)

ml: (TOX_MUT_m97 + 1537 = “+” AND NOT
TOX_MUT_97 + 1537 = “+”)

S2: (TOX_MUT_98 = “+”)

m2: (TOX_MUT_m98 = “+” AND NOT
TOX_MUT_98 = “+”)

S3: (TOX_MUT_100 = “+”)

m3: (TOX_MUT_m100 = “+” AND NOT
TOX_MUT_100 = “+7)

S4: (TOX_MUT_102 + wp2 = “+”)

m4: (TOX_MUT_m102 + wp2 = “+” AND NOT
TOX_MUT_102 + wp2 = “+”)

S5: (TOX_MUT_1535 = “+")

mb5: (TOX_MUT_m1535 = “+” AND NOT
TOX_MUT_1535=“+")

SU: (TOX_MUT_97 + 1537 = Undecided OR
TOX_MUT_98 = Undecided OR TOX_MUT_100 =
Undecided OR TOX_MUT_102 + wp2 = Undecided OR
TOX_MUT_1535 = Undecided (weight = 0.5))
mU: (TOX_MUT_m97 + 1537 = Undecided OR
TOX_MUT_m98 = Undecided OR
TOX_MUT_m100 = Undecided OR
TOX_MUT_m102 + wp2 = Undecided OR
TOX_MUT_m1535 = Undecided (weight = 0.5))

MUT Risk rule codes for mutagenicity from Table 3
are as follows: Risk of positive Ames test results with
(m*) or without (S*) microsomal activation for
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Salmonella typhimurium strains, where *=TA97 or
TA1537; TA98; TA100; TA102 or WP2 uvrA strain of
E. coli; TA1535, respectively. NIHS panel predictions are
not separated with respect to S9 activation or lack
thereof.

The results related to the mutagenicity risk are pre-
sented in Table 2. We highlighted all the compounds
with MUT_Risk 2 or higher as red.

Toxicity risk ADMET Risk and ADMET Code for toxic
liability are TOX_Risk and TOX_Code, respectively. The
TOX_Risk model includes seven rules, each of which
has an associated weight of one. Risk code and criteria
for potential hERG liability, acute toxicity in rats, car-
cinogenicity in chronic rat studies, carcinogenicity in
chronic mouse studies, hepatotoxicity and SGOT and
SGPT elevation are as follows respectively:

hERG = (TOX_hERG > 6)

ra = (TOX_RAT < 300)

Xr = (Rat_TD50 < 4)

Xm = (Mouse_TD50 < 25)

Hepatotoxicity = (Hp: (TOX_AlkPhos = Toxic OR
TOX_GGT = Toxic OR TOX_LDH = Toxic) AND
(TOX_SGOT = Toxic OR TOX_SGPT = Toxic))
SGOT and SGPT elevation = (SG: TOX_SGOT = Toxic
AND TOX_SGPT = Toxic)

Mu = (TOX_MUT_Risk > 2)

The possible value range for TOX_MUT_Risk is 0-11
and it is 0-7 for TOX_Risk.

The results related to the toxicity risk are presented in
Table 2. We highlighted all the compounds with TOX_
Risk 2 or higher as red.

Metabolism risk Metabolism module of ADMET pre-
dictor featured CYP_Risk model encompasses seven
rules, each with a weight of 1.“Substr” stands for the ex-
pectation of being substrate for certain isoenzyme.
“Clint” means intrinsic clearance constant for this isoen-
zyme. Ki_Mid and Ki_tes are inhibition constants for
Midazolam and testosterone, (see List of Abbreviations
and Table 3). The code and criteria (being excessive
CYP_(1A2, 2C19, 2C9, 2D6, 3A4 clearance) as well as
Ki_Mid and Ki_tes for metabolism risk is presented in
the following paragraph.

1A2 = (CYP_1A2_Substr = Yes AND MET_1A2_ClLint
> 30)

2C19 = (CYP_2C19_Substr = Yes AND
MET_2C19_CLint > 30)

2C9 = (CYP_2C9_Substr = Yes AND
MET_2C9_ClLint > 30)
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2D6 = (CYP_2D6_Substr = Yes AND
MET_2D6_CLint > 30)

3A4 = (CYP_3A4_Substr = Yes AND
MET_3A4_CLint > 30)

Mi=(MET_3A4_Ki_Mid < 1.5 AND
(MET_3A4 1 _mid=Yes OR MET_3A4 Inh = Yes))
Ti= (MET_3A4_Ki_tes < 1.0 AND (MET_3A4_I_tes =
Yes OR MET_3A4_Inh = Yes))

CYP_Risk is 2 or greater for a little over 10% of the
compounds in the focused World Drug Index (WDI).
We highlighted all compounds with CYP_Risk 2 or
higher as red.

ADMET global risk Eventually, the ADMET predictor
recapitulates the main outcomes and generates a global

classification (ADMET_Risk). The global ADMET_
Risk itself combines the rules from S + Absn_Risk, CYP_
Risk, TOX_Risk and additional two rules for low fraction
unbound in plasma and high steady-state volume of dis-
tribution. Codes and criteria for the additional rules are
as follows, respectively.

fu= (S + PrUnbnd < 3.5%)
Vd=(S+Vd>5.5)

There are then 24 different rules that contribute to the
ADMET_Risk model. Full ADMET Risk rule codes are
mentioned in abbreviations section (see Table 2). We
highlighted all the compounds with ADMET _Risk 3 or
higher as red.

Cytochrome P450 enzymes (CYPs) model

ADMET Predictor engages different classification
models such as substrate, SoM, and kinetic predictions
for different isoforms of CYP to predict the metabolites
that are more probable to occur. Finally, ADMET can
estimate the contribution each will make to CYP metab-
olism in vivo. ADMET Predictor built nine classification
QSAR models from literature data for the following
UGT isozymes responsible for Phase II drug metabolism:
UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1AS,
UGT1A9, UGT1A10, UGT2B7, and UGT2B15. These
models predict whether a compound will be metabolized
by one or more of these enzymes.

QSAR machine learning (ML) model to predict drug
blockade of hERG1 channel

This model is based on the eXtreme gradient boosting
(XGBoost) algorithm [25]. Briefly, molecular and phar-
macophoric descriptors (float, integer and binary values)
were generated from each compound’s SMILES string
using RDKit open source toolkit for chemoinformatics
[26]. These descriptors were used as input for the
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Table 2 ADMET Risk and ADMET Code for toxic liability, mutagenicity in S. typhimurium liability, metabolic liability, and the global
ADMET Risk and ADMET Code summarizing all other ADMET Risk/Code models. TOX_Risk (possible range 0-7) and TOX_MUT_Risk
(possible range 0-11). Check codes, rules and abbreviations for in risk section. The high risk values were highlighted with red
(TOX_Risk> 2, CYP_Risk > 2, MUT_Risk > 2 and ADMET_Risk > 3), while the acceptable values are highlighted with green. MV stands
for MISSING_VALUE in ADMET predictor and color coded with yellow

c B Toxicity Risk Metabolic Risk Mutagenicity Risk ADMET Global Risk
# p name
TOX_Risk _TOX_Code |CYP_Risk _CYP_Code [MUT Risk  MUT_Code | ADMET_Risk ADMET_Code
1 [Migalastat 192 HEPX; MUT 0 MV @12 S_97; NIHS (@3.31 HBD; Peff; HEPX; MUT
;Xr; Xm; HEPX ;5_97;5_98; S1 JHBD; ch; Peff; Xr; X
2 |Ribavirin @4 o 0 MV @24 5978 " |9ees e tell T Am
MUT $102; NIHS HEPX; MUT
/5_97; 5_98; $100
3 |Ent. 1 MUT 021 2C9 24 - 15 h; MUT; 2C9
ntacapone ] = @ x102; NIHS ] o
4 |Mycophenolic_acid |0 MV 0 MV 0 MV @1 Peff
5 |AZz8s38 oo MV @047 209 00 MV @0.47 209
6 [xra13 @118 X MUT 101 2D6 @12 $102; NIHS @128 Xt; MUT; 2D6
7 |Indomethacin @1 rat 0 MV 0 MV @1 rat
;5_97; S_98; 5100 ;Size; HBD; HBA; ch
D. bici 1 MUT 0 MV 24 5 7
g |oumorbian © . $102; NIHS » Peff; Vd; MUT
9 |ZINC4511851 @1 Xm 1@1.22 1A2; CL Do0.6 S_98; m100 (@3.22 Sw; Xm; 1A2; CL
10 |RVX-208 0 MV @1 1A2 @0.3 5_98 @1 1A2
11 |ZINC4326719 1 1.06 Xr; Xm @116 1A2; CL @o0.6 S_98; m100 @2.23 Xr; Xm; 1A2; CL
12 |Silmitasertib 1®1.29 Xm; MUT @1 2C9 @12 m_97; $102 @2.29 Xm; MUT; 2C9
;5_97; 5_98; 5102 ;Size; Kow; Sw; rat; MUT
ZINC1775962367  |@1.69  rat; MUT @1 mi @21 PSITS @485 1ze; Row; Sw; ral
13 NIHS mi
;Size; RotB; HBA; ch; Peff
Merimepodib @053 xr @1 ti 0 MV @3.28 /Size; RotB; HBA; ch; Pe
14 X; ti
15 |Ruxolitinib @156  Xr;Xm @031 3A4CL 0 MV @186 Xr; Xm; 3A4; CL
ZINC95559591 0 MV losgs  PPEAECL |g46 NIHS @5.22 iSize; RotB; Kow; 2D6
16 ti 3A4; CL; ti
17 |PD-144418 @056  Xm @019 3A4 @o.6 NIHS @141 Kow; Xm; 3A4
18 |CCT_365623 0 MV @054 2C9 @06 597 @0.94 Peff; 2C9
19 |Loratadine 1® 1.61 hERG; rat |@0.49 3A4; CL 0 MV (@31 Kow; hERG; rat; 3A4; CL
;Size; Kow; Sw; Xm
1 2 Xm; HEPX 063  CL 0.6 102 47
2 JQ ] m, @] @ m @ HEPX; CL
;1A2; 2D6; 3A4 ;m_98; S100; m535 ;Xm; MUT; 1A2; 2D6; 3A4
E-52862 @2 Xm; MUT 924 @18 - ™ 944 m
21 CL NIHS cL
;Size; Kow; Sw; hER
AZ3451 @2 hERG; rat @252 3A4CLt 0 MV @7.52 iSize; Kow; Sw; hERG
2 rat; 3A4; CL; ti
-Size; Kow; Sw; Xr: CL
UCPH-101 @1 Xr 9231 cLimit @06 s.97 @539 Size; Kow; Sw; Xr; C
23 mi; ti
24 |RS-PPCC |®0.93  hERG @128  2C19;3A4mi [0 MV @221 hERG; 2C19; 3A4; mi
1A2;2C9 ;Size; RotB; Vd; hERG
S-verapamil @1 hERG |@5.59 ;2C19; 2D6 0 MV (@8.51 ;1A2; 2C9; 2C19; 2D6; 3A4
25 3A4; CL; ti CL; ti
;2C19; 2D6; CL ;hERG; MUT; 2C19; 2D6
H-89 192 hERG; MUT  |@3.03 " @1.2 S_97; NIHS (@5.03 R
26 t CL; ti
;Size; Kow; Sw; fu; Vd
Ponatinib 2 Xr; X 208 3A4CLti 0.6 S_97 8.04
7 [ponatini &) r; Xm & i (@ @ Xr; Xm; 3A4; CL; ti
;Kow; fu; Vd; hERG; 2D
PB28 @1 hERG @3 2D6;3A4 CL [0 MV @649 #Kow; fu; Vd; hERG; 2D6
28 3A4; CL
;Kow; Vd; hERG; 2
Haloperidol @1 hERG @122 209;2c19; 206 |0 MV @373 /Kow; Vd; hERG; 2C9
29 2C19; 2D6
30 |Captopril 0 MV 0 MV @06 S102 @0.48 Peff
51 |Chloramphenicol K] Xr; HEPX; MUT @1 2C19 @21 ;&_‘:2 mi02;mE35 oy Xr; HEPX; MUT; 2C19
32 |Linezolid @1 rat 11 1A2 0 MV @2 rat; 1A2
33 |Minoxidil @1 MUT 0 MV @15 m_97; m_98; NIHS |@1.84 Vd; MUT
34 |Tomivosertib 0o MV |@0.6 3A4 @0.6 m_97 @06 3A4
o ;5_97; m_98; 5102
. Sapanisertib 12.89 Xr; Xm; MUT 0 MV @21 NIHS @294 ch; Xr; Xm; MUT
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Table 2 (Continued)
« le N Toxicity Risk Metabolic Risk Risk ADMET Global Risk
name
i TOX_Risk TOX_Code |CYP Risk CYP_Code [MUT Risk MUT_Code |ADMET Risk ADMET_Code
;Kow; Vd; Xr; Xm; HEPX
Verdinexor K Xr; Xm; HEPX  |@15 3A4; ti 0 MV @573 #Kow; Vd; Xr; Xn;
36 3A4; ti
;Size; HBD; HBA; ch
Tigecycli 1 MUT 055  ti 12 $_97; 5102 6.88
3y [EEYmE p of ! ® - @ Peff; Vd; MUT; ti
. Lisinopril (@097 Xr 1 0.98 t 0 MV (D 5.32 RotB; HBD; ch; Peff; Xr; ti
39 [Camostat o1 X 0 MV @06 mi @209 HBA; ch; Peff; Xr
;Size; ch; Kow; Sw; 3A4
ABBV-744 0 MV @208 3A4CL i 0 MV @4.23 1z chy RoW; Sw;
10 CL; ti
4y |pabrafenib 0 MV @201 209 CL; ti 0 MV D 3.87 Size; Kow; Sw; 2C9; CL; ti
;Size; Kow; Peff; Sw;
4E2RCat 9149  ratXm @122 1A2;209; 6 0 MV 943 Size; Kow; Peff; Sw; rat
12 Xm; 1A2; 2C9; ti
43 |cpr-0610 9247  X;;Xm; HEPX |@024 i 1@ 0.6 m_97 193.72 Sw; Xt; Xm; HEPX; ti
Nafamostat 19282 xi;xm;MUT |@1 1A2 @12 S_97;5102 |®@6.67 FHBD; chi; Peff; Vd; Xr
u Xm; MUT; 1A2
45 |Zotatifin 1®0.39 hERG; Xm @1 mi 0 MV 0 3.22 Size; Vd; hRERG; Xm; mi
46 |CBs083 0 MV @154  3A4CL ti 0 MV 1®1.54 3A4; CL; ti
;hERG; X1; X ;2D6; 3A4; CL ;Kow; Sw; hERG; Xr; X
DBeQ |@3.05 Ehal S X VUG @12 m_97; NIHS @ 5.42 OWi SW o Am
47 MUT [ MUT; 2D6; 3A4; CL; ti
;hERG; X ;m_97; ; 5102 ;Kow; hERG; Xm; MUT
ML240 19 2.61 MERGIXm o150 sagcLt @21 im_97;m_98; S102 |\ ¢ o7 #Kow; hERG; Xm; MU
18 MUT NIHS 3A4; CL; ti
;Kow; Vd; hERG; MUT
Chloroquine @2 hERG; MUT  |@0.57 2C19; CL @15 S_97;5100; m102  |D4.19 Kow; Vd; G; MU
19 2C19; CL
50 |Pevonedistat |91 Xr 0 MV 0 MV @235 ch; Peff; Xr
51 |AC-55541 @2 Xr; Xm @136  3A4ti 0 MV 1@ 4.98 Size; Sw; Xr; Xm; 3A4; ti
;Size; RotB; HBD; HBA
GB110 @1 Xi D12 3A4; CL 0 MV D 7.73 e ’ .
52 . ch; Peff; Xr; 3A4; CL
;hERG; rat; X; . ;Size; Kow; Sw; hERG
Midostaurin 19256 R @) CL; ti @15 $_97;m 98 m535 |D7.56 126 ow; Swi itk
53 MUT rat; Xr; MUT; CL; ti
;Size; HBA; ch; Kow; Xt
Bafilomycin_A1 1 X 3 3A4; CL; ti 0 MV 7.5 oo e ’
5y |Pafilomycin.. 1o r o i @ 3A4; CL; ti
;Size; RotB; HBA; ch; rat
Apicidi 2 t; Xi 15 3A4; CL 0 MV 733
55 [Apicidin ] rat; Xr @ © Xr; 3A4; CL
56 |TMCB 0 MV 0 MV 0 MV @085 Size
57 |Metformin 192 Xm; MUT D1 1A2 @12 m_97; m102 D37 HBD; Xm; MUT; 1A2
58 |Valproic_Acid @1 HEPX 0 MV 0 MV @1 HEPX
;Size; RotB; HBD; ch
IHVR-19029 003 Xr @1 3A4 0 MV @57 1ze; 1o ¢
59 Peff; Xr; 3A4
;Size; RotB; HBA; ch
MZ1 |92 Xr; Xm 103.83 3A4; CL; mi; ti 0 MV D 12.77 ;Kow; Peff; Sw; Xr; Xm
60 3A4; CL; mi; ti
;Size; RotB; HBA; ch
PS3061 @2 rat; Xr D 2.97 3A4; CL; mi 0 MV D 10.92 ;Kow; Peff; fu; rat; Xr
61 3A4; CL; mi
;Size; HBA; ch; Kow; Peff
R i 1 X 4 3A4; CL; mi; ti [0 MV 10.84
apamyein o . © mie © Sw; fu; Xr; 3A4; CL; mi; ti
62
;Size; RotB; HBD; HBA
Sanglifehrin_A @2 rat; Xr 1D 3.08 3A4; CL; mi; ti 0 MV D 11.77 ;ch; Kow; Peff; rat; Xr
63 3A4; CL; mi; ti
;Size; HBA; ch; Kow; Peff
(Tacrolimus)FK-506_ |@ 2 rat; Xr 4 3A4; CL;miz ti [D0 MV |@1033 otze ¢ ow; Te
rat; Xr; 3A4; CL; mi; ti
64
65 |Ternatin_4 @1 MUT D1 1A2 @12 m_97; NIHS @2 MUT; 1A2
;Size; HBA; ch; Kow; Sw
DB002 2 ; X 4 A4; CL; mi; ti M .
6 'WDBOO! ] rat; Xr ] 3A4; CL; mi; ti 0 \' |D9.55 rat; Xs; 3A4; CL; mi; ti




Aminpour et al. BMC Pharmacology and Toxicology (2021) 22:61

Table 2 (Continued)
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e - Toxicity Risk Metabolic Risk Mutagenicity Risk ADMET Global Risk
name
i TOX Risk TOX Code |CYP Risk CYP Code |MUT Risk  MUT Code | ADMET Risk ADMET_Code
p compound2 @1 Xr @2 3A4; CL 0 MV D 5.788 Size; HBA; ch; Xr; 3A4; CL
ize; HBA; ch; Peff; fu;
o |ompound10 @05 Xm- 0 0 MV @ 3.652 Size; HBA; ch; Peff; fu;
Size; RotB; HBA; ch;
dBET6 @1 +Xr+; Xm 02 3A4; CL 1@ 0.6 m102 D 10.333 Kow; Peff; Sw; fu; Xr+;
1) Xm¢+; 3A4; CL
-3)-8
0 MV @018 1A2 @0.6 m102 @018 1A2
Chlorostyrylcaffeine
70
ARG sats X ;Size; Kow; Sw; Vd
AMG-2674 @36 o PR @27 sag L 0 MV @106 JhERG; rat; Xr; HEPX; 3A4
7 cLt
72 |Apilimod @2 Xm; MUT D 2.09 3A4; CL; ti @15 S_98; m102; NIHS | 4.09 Xm; MUT; 3A4; CL; ti
12D6; 3A4; CL ;Size; Kow; fu; Vd; hER
Astemizole @15 hERG; Xm 0367 ZDH3ALCL |, MV @545 Size; Kow; fu; Ve; hERG
ti Xm; 2D6; 3A4; CL; ti
73
;Size; Kow; Sw; fu; Vd
- JhERG; Xm
Clofazimine 104 @05 CL @15 $_97,m_98;m102 (D844 ;hERG; Xm; HEPX; MUT
HEPX; MUT
7 cL
;Size; Kow; Sw; X
DS-6930 @2 Xm; HEPX @206 209cLt |@03 S_98 @617 /o1z¢; BOW; Sw; Fm
75 HEPX; 2C9; CL; ti
2Co, 206 3A4 ;Kow; Sw; fu; Vd; hERG
Elopiprazole [@2.02 hERG; rat; Xr  |D3.8 éL t( . @03 S_98 (D 8.65 ;rat; Xr; 2C9; 2D6; 3A4; CL
76 o ti
Hanfanachin A ;Size; ch; Kow; Sw; fu
anfangehin |®074  hERG;rat @265  209;3A4;CL; ti| D0 MV @9.18 ;Vd; hERG; rat; 2C9; 3A4
(Tetrandrine) i
77 CL; ti
;Size; ch; Kow; fu; Vd
KW 8232 @2 hERG; HEPX (@281  CL;mi;ti 0 MV @ 5.67 1ze; chy Bow; fu; Vel
78 hERG; HEPX; CL; mi; ti
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prediction of inhibitory potency for each compound
(pIC50 of inhibition). The model also provides metrics
to assess the compliance with its applicability domain
(AD = True/False) in terms of the Minimum Distance to
Training set (MDT) that is based on the Tanimoto simi-
larity to the compounds used in the training set of the
model. pIC50 has its regular meaning — a large positive
number is equivalent to high affinity blockers. The po-
tentially dangerous compounds are in the range between
5.5 to +infinity. Since it is an ML model, we also report
the applicability domain as measured by the similarity
matrix and distance to the training set. What it means,
is that many compounds have a unique scaffold not
present in the model. We currently use the receptor
map models (SILCS) to obtain somewhat more realistic
estimates. That is, if AD (applicability domain) is “False”,

the confidence in pIC50 prediction is low. This is a well-
known issue with any QSAR/ML models facing un-
known molecular scaffolds.

Results
In silico prediction of toxicity and ADMET properties
Various Toxicity and ADMET-related properties of the
investigated compounds were predicted in silico using
the toxicity module of ADMET Prediction™ (version 9.5,
Simulation Plus, Lancaster, CA, USA) software, where a
broad range of toxicities are covered including cardiac,
hepatotoxicity, endocrine, carcinogenicity and sensitivity
(see Fig. 1) [18, 19].

Several toxicity parameters are used for the evaluation:
1. allergenic skin sensitization (TOX_SKIN), 2. allergenic
respiratory sensitization (TOX_RESP), 3. reproductive
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Table 3 Block1: Substrate Classification Models for Cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4. Block 2: Inhibition models for
cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 (qualitative es-timation), as well as a specific inhibition of the CYP 3A4-mediated
metabolism of midazolam and testosterone. We labeled Y if a given chemical structure is a substrate for P450 isozymes and (N) if it
is not a substrate for P450 isozymes. ADMET Risk and ADMET Code for metabolic liability are CYP_risk and CYP_code, respectively.
Metabolic risk greater than 2 is highlighted with red, while the acceptable values are highlighted with green. Cyp risk rules and
codes are described in the risk section

Substrate Inhibitor CYP_
# Compound |\ p1a2 CYP2C19 CYP2C9 CYP2D6 CYP3A4|CYPIAZ CYP2C19 CYP2CO CYP2D6 CYP3A Cﬁ;: c‘:::::‘l Risk Code
1 [Migalastat @Yy @Y @Y @Y @Y [@y @Y @Y @Y @ON @Y @Y
2 |Ribavirin @Y @Y @Y @Y @Y @Y @Y @Y @Y @Y @Y @Y
3 |Entacapone @Y ®#Y @ON @Y @Y @Y @Y @O@N @Y @Y @N @Y
4 [Mycophenolicacid[@ Y @Y @N @Y @Y [@N @Y @ON @Y @Y ON OY
5 |Azss3s @N @Y @ON @ON QY |[@Y @Y @ON @N OY @Y OY
6 |xLa13 @N @N @N @ON ON |@N @Y @Y @Y ON @Y @Y
7 |Indomethacin @Y ®#N @N @Y O@OY @Y @Y @ON @Y @Y @ON Q@Y
8 |Daunorubicin @Y @Y @Y @Y ON @Y @Y @Y @Y @ON @ON @Y
9 |ZINC4511851 @N @Y @Y @N ON |@N @Y @N @N @Y @Y @Y
10|RVX-208 @N @Y @Y @N ON @Y @Y @N @N @Y @N @Y
11/|ZINC4326719 @N @Y @Y ON ON |[@N @Y @N @Y OY @Y @Y |0L6 1A3CL
12|Silmitasertib @Y @Y @ON @Y @Y |[®@N @Y @Y @Y @O©Y @N QY |01 20
13|ZINC1775962367 |@ Y @ Y @Y @Y @ON [@N @Y ©OY @Y @Y ON OY [@1 mi
14|Merimepodib @Y @Y @Y @Y ON |[@N @O@N @N @Y ON @Y @ON |@1
15 Ruxolitinib @N OY OY OY ON [@N OY OY OY OY OY OY [@031 3Aa4CL
16|ZINC95559591 @Y @Y @Y ON ON [@Y @Y ON OY ON OY OY |038 2D63A4CLE
17|PD-144418 @N @N @N @N @ON @Y @ON @Y @ON OY @Y OY |0019 3A4
18|CCT_365623 @Y @Y @©@N @Y ON |[®@N @N ON @Y @Y @N @N |@05 209
19|Loratadine @Y ®#N @ON @ON ON |[@Y @ON @N @Y ON @ON @Y |9049 3a4CL
20/JQ1 @Y @Y @Y ©Y ON |[@N @Y @N @N ON @N @Y |00e CL
21|E-52862 @N OY @Y @N @ON (@Y @Y QY OY OY ON OY |024 1A22D63A4 CL
22|AZ3451 @Y @Y @Y @Y ON |[@N @Y @Y @Y ON @ON @ON |025 3A4CLti
23|UCPH-101 @Y O©Y @Y @Y @ON [®N @N ON ON @ON ON ON (@231 CLmiti
24|RS-PPCC @Y O©N O©Y @O@N @ON (@Y O Y @Y ON OY ON OY |@128 2C19 3A4 mi
. 1A2; 2C9; 2C19;
25|S-verapamil @N @O©N ON ON ON [@Y ON ON ON ON OY OY |055 2D6; 3A4; CL i
26|H-89 @Y O®N ©O©Y ON @ON [N O Y @Y ©OY ON OY @Y |[@3.03 2C192D6 CL ti
27|Ponatinib @Y ©O©Y ©Y @Y @GN [@Y @N ON ON @ON ON ON [0208 3A4CL ti
28|PB28 @Y @Y @Y @ON ON |[@Y @Y @Y @ON ©OY @Y @Y |@3 2063A4CL
29 |Haloperidol @N @N @N @ON ON |[@Y @N @Y ON OY ON 0OY |[@1.222092C192D6
30|Captopril @Y ®@N @Y OY Q@Y [@Y @Y @Y @Y @Y ON @Y |00 MV
31|Chloramphenicdl |@ Y @ N @Y @N @N [@Y @Y @Y @Y @Y ON @Y |[@1 21
32[Linezolid @N ©Y ©Y ON ON @Y OY OY OY OY OY OY |01 1A2
33|Minoxidil @Y @ Y @Y OY OY |@Y OY @Y @Y @Y @Y @Y 20 MV
34| Tomivosertib @Y @Y @Y ©Y ON |®N O Y QY @Y ON OY OY |@®06 3A4
35|Sapanisertib @N O Y @Y @Y @ON |@Y @Y @Y @Y @N @Y QY (0 MV
36| Verdinexor @Y @ Y @Y @Y ON |®@N @N @Y @Y ON OY ON (015 3A4t
37|Tigecycline @Yy @Y @Y @Y ON [@Y @Y @Y @Y ON @N QY |@055 t
38|Lisinopril @Y @Y @Y @Y @Y [@Y @Y @Y @Y @N @ON Q@Y |@098ti
39|Camostat @Y oY ©OY @Y OY |@Y @Y @O©Y @Y ON @ON Q@Y |00 Mv
40|ABBV-744 @Y @Y @Y @Y ON [@Y @Y @ON @ON @ON @ON @N |0208 3A4CLt
41|Dabrafenib @Y @Y @N @Y @ON [@N @Y @ON @Y OY @Y @ON |@201 20%CLti
42|4E2RCat @®N ON @ON @Y @ON [@Y @Y ON @Y @ON ON ON [@L22 1A2209t
43|CPI-0610 @N @N @Y @Y @ON [@Y @Y @N @ON @ON @ON @Y |@024ti
44|Nafamostat @N @Y @Y ©Y ©Y |@N @Y @Y @ON ON ON 0Y |91 1A2
45|Zotatifin @Y @Y @Y @Y ON |[@Y @Y ON @ON ON @ON ON |01 mi
46|CB5083 @Y @Y @Y @Y @ON [@N @Y @ON @ON @ON ON O@ON |0L54 3A4CLt
47|DBeQ @N @Y @Y ON ON |[@N @Y @ON @N ON @Y ON |0347 2D63A4CL ti
48|ML240 @Y @Y @Y ©Y @ON [@N @Y @Y @ON ON @Y @N |OL5 3A4CLt
49|Chloroquine @N O@N @Y @ON ON |[@N @Y @Y @ON OY @Y @Y |@057 2¢19CL
50|Pevonedistat oY oy ©Yy oy ®ON [@Y @Y ON OY ON OY OY [00 wmv
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Table 3 (Continued)
Substrate Inhibitor CYP_
? Compound |\ p1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4|CYP1AZ CYP2C19 CYP2CO CYP2D6 CYP3A C:EZ’:: C‘i:\oq Risk Code
51|AC-55541 @Y Y @OY O©Y @ON [@N @Y @Y @Y @ON ON ON [0136 3A4t
52|GB110 @Y Y ©Y @Y ON [@Y @Y @Y ©Y ON @ON ON |012 3a4CL
53|Midostaurin @Y OY ©Y @Y ON |®@N OY OY ON ON ON ON (@2 Lt
54|Bafilomycin A1 |@ Y @Y @Y @Y @ON [@Y @Y @Y OY ON OY OY |03 3A4CLt
55| Apicidin @Y @Y ©Y @Y ON [@Y @Y @Y @Y @ON @ON QY |015 3a4CL
56(TMCB @Yy @Yy @Yy OY ON [@Y OY OY OY OY @Y OY |Q0 MV
57|Metformin @N @Y @Y ON QY |[0Y @Y @Y @Y QY @Y QY |01 1A2
58| Valproic_Acid @Y N ON QY Q@Y |[@Y @Y ON @Y @Y @Y @Y |00 MV
59 [IHVR-19029 @Y @Yy @Yy OY ON [@Y OY OY OY OY OY OY |01 344
60|Mz1 @Y @Y @®©Y @Y @N |@N @Y @ON ON ON ON OY [0383 3A4CL mi;ti
61|PS3061 @Y @Y @Y ©Y ON [@Y @Y @Y @Y @ON @ON @Y |@29 3A4CLmi
62|Rapamycin @Y @Y @©Y @Y ON [@Y @Y @Y @Y ON ON @OVY |04 3A4CLmit
63|Sanglifehin A |@ Y @Y @Y @Y @N [@Y @Y @Y @Y @N @ON @N [@308 34 CLmiti
64|FK-506_Tacrolimus @ Y @ Y @Y @Y ON [@Y @Y @Y @Y @ON ON OY |04 3A4CLmit
65| Ternatin_4 @N ON @Y @Y @ON |[@N @Y ON @Y ON @ON QY |91 1A2
66WDB002 @Y @Y OY O©Y ON (@Y ©OY OY OY ON ON OY (@4 3a4CLmit
67|compound2 @N @O@N ON ON OY [N ON ON ON OY ON ON |02 3agC
68|compound10 @N O@N ON ON @Y |[@N ON ON @ON @Y ON @ON |00 MV
69|dBET6 @N ON ON ON @Y |[@N @ON ON ON @Y @GN OGN |02 3Ag4C
70 ::f::emws‘y'yl ®N @N @®ON @Y ON |[@N @Y @Y @Y @Y ON @Y |@o1s 1a2
71|AMG-2674 @Y @Y ©Y @Y ON [@Y @Y @ON @Y ON @ON ON |027 3A4CLt
72|Apilimod @N @Y ©Y @Y @ON |[@Y @Y @ON @ON ON OY @Y |0209 3A4CLti
73| Astemizole @Y @Y @©Y ON ON [@Y @Y @Y @ON ON @Y ON |03.67 2D63A4CL ti
74|Clofazimine @Y @Y ®©Y @Y @ON [@N @Y @Y @N ON @ON @Y |@s5 c
75|DS-6930 @Y @Y @ON @Y @ON |[@N @Y @ON @Y @N @N @N |@206 2C%CL ti
76 |Elopiprazole @N @Y ON @ON ON |[@Y ON ON ON ON ON OY |038 fica,- 2D6; 3A4; CL;
ppfHanfangchinA oy 5y gN @N @ON [@Y @N @ON ON ON ON ON @265 209348 Lt
Tetrandrine
78|KW 8232 @Y @Y @Y @Y ON [@Y @Y @ON @N @ON @ON ON |028 CLmiti
79|MDL 28170 @Y @Y @Y @Y @ON |[@N @Y @N @Y ON @N @Y |@u1 c
80|MLN-3897 @Y @Y @ON @ON @ON [@Y @N @ON @N @N @ON @Y |@266 2C%3A4CL
N-tert-
81|Butylisoquine @N @Y @Y ON OY [@N @Y @Y ON ON @Y @Y |@102 1A22D6
GSK369796
82|ONO 5334 @Y @ Y @Y @Y ON @Y O Y @Y @Y ON OY OY |[@0o7 3a4
83|R 82913 @N O©N @O@N ON ON @Y ON OY OY ON 0O0Y 0OY (@034 mi
84|Remdesivir @Y @Y @©OY @Y ON |[@Y @Y ON @Y @ON @Y @ON |03 3A4mit
85|SB-616234-A @Y @Y @Y @N @N |OY @N ON ON ON ON QY |[@15 3A4CLti
86|SDZ-62-434 @N @Y @©Y ON ON |[@N @ON @OY ON OY @ON OY |@13 2D6mi
87|SL-11128 @Y @Y ®©Y ON @Y |[@N @Y @®©Y @ON ON @Y @Y |@1 206
88(VBY-825 @Yy @Y @Y OY ON [ON ON OY OY ON OY OY (018 3A4CLti
89[YH-1238 @N OY OY ON ON @Y OY OY ON ON 0OY O0OY |[@305 1A%3A4CLti
90|Z LVG CHN2 @Y @Y OY OY ON [@Y OY ON OY ON OY OY |01 3A4

Toxicity (Repro_Tox), 4. cardiotoxicity (TOX_hERG_Fil-
ter), 5.Cardiotoxicity IC50 [mol/L] (TOX_hERG), 6. hep-
atotoxicity (five liver enzymes elevations: Ser_Alkphos,
Ser_GGT, Ser_LDH, Ser_AST, Ser_ALT) 7. phospholipi-
dosis (PLipidosis), 8. chromosome aberration (Chrom.A-
berr),9. acute toxicity in rats (Rat_Acute), 10.
carcinogenicity toxicity in rat (Rat_TD50), 11. carcino-
genicity toxicity in mouse (Mouse_TD50), 12. estrogen
(Estro_Filter) and androgen (Andro_Filter) binding, 13.
maximum recommended therapeutic dose (Max_RTD).
Among the 90 compounds evaluated here, none of the
ligands showed toxicity for the selected parameters
whereas the remaining ligands exhibited toxicity for only
a few parameters (See Table 1). Additional details for
each model and risks are presented in the Materials and
Methods section.

Compounds with the predicted acute toxicity in rats,
LD50 (mg/kg), are shown in Supplementary Table 1. Sup-
plementary Table 1 is presented in a color-coded fashion
such that the most dangerous drugs with (acute toxicity in
rats, ra: TOX_RAT <300) are shown as red, while safe

drugs (acute toxicity in rats, ra: TOX_RAT >300) are
shown in green (see Supplementary Table 1) [20].

The results related to the mutagenicity risk (MUT_
Risk 2 or higher as red), toxicity risk (TOX_Risk 2 or
higher as red), metabolic risk (CYP_Risk is 2 or greater
as red) and Full ADMET Risk (ADMET_Risk 3 or higher
are highlighted as red.) is presented in Table 2. All risk
rule codes are mentioned in the abbreviations section.
MUT _Risk, described in the risk section, predicts overall
mutagenicity by adding instances of “+.” The results re-
lated to mutagenicity are presented in Supplementary
Table 2 [20].

In silico study of cytochrome P450 enzymes (CYPs) to
understand drug-drug interactions (DDI)

In silico tools are broadly used to predict substrates
and inhibitors of metabolic enzymes and sites of me-
tabolism in molecules where the metabolic reaction
occurs. These predictions facilitate the multidimen-
sional drug discovery procedure, paving the way to
fulfill the stability, enhancements of in vivo half-life,
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and circumventing the toxic metabolites. The most
important enzymes in Phase I metabolism belong to
the cytochrome P450s family (CYPs) since they pro-
vide the most first-generation metabolites and have a
high proportion of toxic/reactive metabolites. They
are a family of heme-containing enzymes where at
least 57 CYP isoforms have been authenticated in
humans. Changes in the CYP enzyme activity can in-
fluence the metabolism and clearance of drugs, there-
fore, the inhibition of cytochrome P450 is the most
prominent cause of drug toxicities. Substrate Classifi-
cation Models for Cytochrome P450 1A2, 2C9, 2C19,
2D6, Inhibition models for cytochrome P450 1A2,
2C9, 2C19, 2D6, and 3A4 (qualitative estimation), as
well as a specific inhibition of the CYP 3A4-mediated
metabolism of midazolam and testosterone are pre-
sented in Table 3. We labeled it Y if a given chemical
structure is a substrate for P450 isozymes and (N) if
it is not a substrate for P450 isozymes. ADMET Risk
and ADMET Code for metabolic liability are CYP_
risk and CYP_code, respectively.

The uridine 5’-diphosphate-glucuronosyltransferases
(UGT) enzymes are distributed in various organs in
the human body and abundantly expressed in the
liver as the central metabolic organ. The UGT en-
zymes catalyze in Phase II metabolism through glu-
curonidation, the primary Phase II metabolic pathway,
which leads to a more straightforward clearance of
xenobiotics. UGT enzymes in humans are predomin-
antly created by the liver except UGTs 1A8 and 1A10
produced by the gastrointestinal tract. The probability
of metabolism by human uridine 5’-Diphosphate-Glu-
curonosyltransferases (UGT) is summarized in Supple-
mentary Table 3 [27].

Qualitative and quantitative prediction of drug blockade
of hERG1 channel based on QSAR machine learning (ML)
model

The cardiotoxicity potential of the compounds’ data-
sets listed in Table 4. was assessed using our recently
reported machine learning algorithm for the predic-
tion of drug-induced blockade of hERG channel
(pIC50 of inhibition) [28]. The results of this method
are in agreement with the results of ADMET Pre-
dictor software for cardiotoxicity, except for a few
compounds that are not among the compounds we
selected in the discussion section. For a predictive
classification model, applicability domain (AD) identi-
fies the chemical space where the model’s predictions
are deemed reliable. As can be seen from Table 4, all
compounds used in this study analyzed with QSAR
ML model fit in the applicability domain, which is
represented as ‘TRUE’ under the ‘AD’ column. Details
about the metrics and scores used to estimate the
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model performance of the QSAR model can be found
in Wacker and Noskov’s paper [28].

Discussion

One of the major dangers faced by COVID-19 patients
is respiratory failure accompanied by cardiovascular
complications with extensive endothelial dysfunction
and severe inflammation. ACE-2 receptors are the cell-
entry gateway for SARS-CoV-2. Drugs that passed differ-
ent filters used in the present study, such as (ADMET
Global Risk = <3 & Cardiotoxicity = NT and Respiratory
toxicity = NS) are Entacapone, Indomethacin, Captopril,
Linezolid, Valproic_Acid, AZ8838, Tomivosertib, TMCB,
Ternatin_4, and MDL 28170. Among them only Entaca-
pone, Indomethacin, Captopril, Linezolid, Valproic_Acid
are FDA approved drugs and hence can be used in an
off-label mode with some caution but they appear to ex-
hibit much greater safety profiles than the rest of the
panel. A brief summary of the final compounds is as
follows.

Entacapone

Entacapone [29, 30], a drug commonly used to reduce
the signs and symptoms of Parkinson’s disease (https://
go.drugbank.com/drugs/DB00494). A member of nitro-
catechols class, Entacapone is a selective and reversible
COMT (catechol-O-methyl transferase) inhibitor. In the
management of the motor complications seen in Parkin-
son’s disease, Entacapone is administered with levodopa/
carbidopa in patients with wearing-off symptoms. Even
though Entacapone is related to tolcapone structurally
and pharmacologically, it is not associated with hepato-
toxicity unlike tolcapone. Entacapone is available for ad-
ministration as oral tablets. As of now, there is no
research addressing the possibility of repurposing this
drug for Covid-19.

Indomethacin

Indomethacin [31] is a well-known non-steroidal anti-
inflammatory drug (NSAID) and widely utilized for
treating osteoarthritis, rheumatoid arthritis, ankylosing
spondylitis, acute shoulder pains, and acute gouty arth-
ritis. Indomethacin relieves muscle pain and reduces
fever, swelling, and tenderness by quelling inflammation
in rheumatoid arthritis (https://go.drugbank.com/drugs/
DB00328). Consisting of structurally unrelated agents,
Indomethacin is classified chemically as an indole-acetic
acid derivative with the chemical name 1- (p-chloroben-
zoyl)25-methoxy-2-methylindole-3-acetic acid [32]. First
approved by the FDA for use in the U.S. in the mid-
1960’s, Indomethacin has been extensively investigated
in clinical trials as an effective NSAID for blocking pros-
taglandin synthesis as well as for treating headaches and
migraine. Indomethacin is available as oral capsules and
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Table 4 Predicted affinity to the hERG potassium channel in human expressed as plC50 in mol/L using our ML model.
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(Abbreviations: AD: Applicability domain, MST: Similarity matrix and MDT: Minimum Distance to Training). NA stands for not available

# Compounds pIC50 AD MST MDT
1 Migalastat @ 258 True 0.20 0.80
2 Ribavirin @ 3.08 True 1.00 0.00
3 Entacapone @ 3.46 True 0.24 0.76
4 Mycophenolic_acid @ 410 True 0.21 0.79
5 AZ8838 @ 416 True 0.29 0.71
6 XL413 @ 4.36 True 0.27 0.73
7 Indomethacin @ 425 True 1.00 0.00
8 Daunorubicin @ 438 True 0.21 0.79
9 ZINC4511851 @ 450 True 0.31 0.69
10  RVX-208 @ 456 True 0.23 0.77
11 ZINC4326719 @ 459 True 0.30 0.70
12 Silmitasertib D 469 True 0.29 0.71
13 ZINC1775962367 @ 478 True 0.21 0.79
14  Merimepodib O 484 True 0.27 0.73
15  Ruxolitinib D@ 489 True 0.20 0.80
16  ZINC95559591 @ 493 True 0.26 0.74
17  PD-144418 @ s5.01 True 0.21 0.79
18 CCT_365623 @ 5.24 True 0.22 0.78
19  Loratadine @ 5.37 True 1.00 0.00
20 JO1 @ 5.44 True 0.23 0.77
21  E-52862 @ 5.60 True 0.33 0.67
22 AZ3451 @ s5.61 True 0.24 0.76
23  UCPH-101 @ s5.62 True 0.21 0.79
24  RS-PPCC @ 5.78 True 0.37 0.63
25  S-verapamil @ 5.81 True 1.00 0.00
26 H-89 @ 5.88 True 0.19 0.81
27  Ponatinib @ 5.92 True 0.28 0.72
28  PB28 @ 6.00 True 0.26 0.74
29  Haloperidol D 618 True 1.00 0.00
30  Captopril @ 287 True 0.22 0.78
31 Chloramphenicol @ 317 True 0.25 0.75
32 Linezolid @ 3.49 True 1.00 0.00
33  Minoxidil @ 3.77 True 0.22 0.78
34  Tomivosertib @ 418 True 0.20 0.80
35  Sapanisertib @ 427 True 0.19 0.81
36  Verdinexor @ 434 True 0.27 0.73
37  Tigecycline O 437 True 0.19 0.81
38  Lisinopril Q am True 0.29 0.71
39  Camostat @ 451 True 0.23 0.77
40 ABBV-744 O 4.68 True 0.24 0.76
41  Dabrafenib @ 5.05 True 0.20 0.80
42 4E2RCat O 514 True 0.24 0.76
43 CPI-0610 @ 5.16 True 0.26 0.74
44  Nafamostat @ 5.19 True 0.24 0.76
45  Zotatifin @ 5.27 True 0.23 0.77
46  CB5083 @ 534 True 0.28 0.72
47  DBeQ @ 5.43 True 0.23 0.77
48  ML240 @ 545 True 0.28 0.72
49  Chloroquine @ 5.54 True 1.00 0.00
50  Pevonedistat @ 5.63 True 0.23 0.77
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Table 4 (Continued)
# Compounds pIC50 AD MST MDT
51  AC-55541 @ s5.01 False 0.23 0.77
52 GB110 D 6.28 False 0.28 0.72
53 Midostaurin D 6.23 False 0.22 0.78
54  Bafilomycin_A1l @ 6.10 False 0.19 0.81
55  Apicidin @ 5.55 False 0.26 0.74
56 TMCB @ 4.65 False 0.17 0.83
57  Metformin O 342 False 0.14 0.86
58 Valproic_Acid @ 3.41 False 0.24 0.76
59  IHVR-19029 D 4.69 False 0.27 0.73
60 MzZ1 D 6.38 False 0.20 0.80
61  PS3061 @ 6.03 False 0.23 0.77
62  Rapamycin @ 6.00 False 0.18 0.82
63  Sanglifehrin_A @ 5.88 False 0.16 0.84
64  FK-506_(Tacrolimus) @ 5.88 False 0.18 0.82
65  Ternatin_4 @ 4.20 True 0.23 0.77
66  WDB002 @ 5.53 False 0.20 0.80
67  compound2 @ 6.04 TRUE 0.20 0.80
68  compound10 @ 5.07 TRUE 0.26 0.74
69  dBET6 @ 6.06 FALSE 0.24 0.76
70  8-(3-Chlorostyryl)caffeine @ 420 True 0.37 0.63
71  AMG-2674 @ 5.55 True 0.26 0.74
72 Apilimod @ 5.34 True 0.29 0.71
73  Astemizole Q 732 True 1.00 0.00
74  DS-6930 NA NA NA NA
75 Clofazimine @ 557 True 0.26 0.74
76 Elopiprazole D 6.88 True 0.26 0.74
77  Hanfangchin-A-(Tetrandrine) @ 611 False 0.28 0.72
78  KW-8232 @ 6.06 False 0.25 0.75
79  MDL-28170 @ 5.10 True 0.24 0.76
80  MLN-3897 @ 5.79 True 0.25 0.75
81  N-tert-Butylisoquine(GSK369796) @ 5.06 True 0.38 0.62
82  ONO-5334 O 482 True 0.22 0.78
83  R-82913 @ 499 True 0.22 0.78
84  Remdesivir @ 5.40 True 0.23 0.77
85  SB-616234-A @ 5.78 True 0.33 0.67
86  SDZ-62-434 D 6.08 True 0.27 0.73
87  SL-11128 @ 5.86 False 0.23 0.78
88  VBY-825 @ 5.63 True 0.30 0.70
89  YH-1238 @ 5.80 True 0.28 0.72
90  Z-LVG-CHN2 @ 5.24 True 0.21 0.79

other administration methods, including rectal and
intravenous procedures. The pharmacological effect of
indomethacin is not completely clear; however, it is be-
lieved that it can cooperate through nonselective inhib-
ition of the enzyme cyclooxygenase (COX), the primary
enzyme in charge of the catalysis of the conversion of
arachidonic acid in prostaglandin and thromboxane
biosynthesis.

A pre-print published recently in Medrxiv has pro-
moted the case to use Indomethacin for relieving the
symptoms in COVID-19 patients and preventing pro-
gression of pneumonia. The broad spectrum of anti-viral
activity of Indomethacin, including on the SARS-Cov-2
virus, has been shown in the laboratory. It was

recognized that the patients that were treated with Indo-
methacin progressed in recovery quantized by being
afebrile sooner, and there was a nearly 50% reduction in
cough and myalgia in comparison with the paracetamol
set. According to this study, only one out of 72 patients
with mild and moderate symptoms needed supplemen-
tary oxygen, and none of the patients with severe symp-
toms worsened to the degree of requiring mechanical
ventilation. It was indicated that there was no proof of
adverse reaction to Indomethacin, nor there was proof
of renal failure or liver dysfunction [33].

In another study [34], after their preliminary results
showed that cyclopentenone COX metabolites are active
against a number of RNA viruses, the researchers further
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examined the effect of the COX inhibitor indomethacin
on replication of the coronavirus. It was shown that
Indomethacin is an effective inhibitor of coronavirus
replication. It was recommended based on the results
that since Indomethacin exhibits both anti-inflammatory
and antiviral activity, it could be helpful to treat
COVID-19. Interestingly, the coronavirus binding or
entry into host cells are not affected by Indomethacin.
Instead, the main effect of Indomethacin is preventing
viral RNA synthesis at cytoprotective doses, which is in-
dependent of COX inhibition. The effectiveness of Indo-
methacin’s antiviral activity (more than a thousand fold
reduction in the viral yield) was validated in vivo in dogs
infected with CCoV.

Captopril

Captopril [35] is a drug that is commonly used for treat-
ing hypertension (essential or renovascular) as well as
for protecting kidney function. Therefore, Captopril can
be used in patients with cystinuria and other comorbidi-
ties. Captopril is regarded as a competitive inhibitor of
the angiotensin-converting enzyme (ACE), which is in
charge of the conversion of angiotensin I (ATI) to ATII,
which is a critical element of the renin-angiotensin-
aldosterone system (RAAS) that regulates blood
pressure. The RAAS is a homeostatic mechanism for
regulating hemodynamics, water, and electrolyte stabi-
lizers (https://go.drugbank.com/drugs/DB01197). Capto-
pril can be used orally in the form of tablets. Captopril is
the first ACE inhibitor in the market. It is also the only
ACE inhibitor with a sulfhydryl ligand that chemically
bonds with cysteine, which makes it more soluble. The
main connection between renin—angiotensin system
(RAS) and COVID-19 is ACE2. ACE2 improves the tis-
sue anti-inflammatory response, however it also medi-
ates as the entry receptor for the virus [36]. The use of
ACE inhibitors has been shown to deteriorate symptoms
in COVID-19 patients, an observation that has become
controversial [37]. It was reported by Guan et al. that
most of the patients admitted with COVID-19 infection
had hypertension and diabetes; nevertheless, treatment
with ACE inhibitors was not examined separately [38].
In another recent study, Captopril was used as an ACE
inhibitor drug to inhibit the levels of Spike protein-
induced cells. They proposed that Captopril increases
ACE2 levels and boosts the anti-inflammatory RAS axis
in the lung. In addition, other mechanisms, such as
drug-induced inhibition of ADAMI17 activity, may pre-
vent plausible up-regulation of viral entry by the drug-
induced enhancement in the expression of ACE2 [35].
However, there is no clinical trial evidence of effective-
ness, and little attention has been given to the possibility
of toxicity caused by the use of such interventions or in
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what ways the balance of potential advantages and
harms may differ among individuals [39].

Linezolid

In addition to causing the disease itself, viral infections
also open the way for secondary bacterial infections.
These bacterial infections can be even more invasive and
life-threatening than the viral infection itself. As a syn-
thetic antibiotic, Linezolid [40, 41] is used for treating
infections caused by multi-resistant bacteria including
streptococcus and methicillin-resistant Staphylococcus
aureus (MRSA). Linezolid is the first of the oxazolidi-
none class and it works by inhibiting bacterial protein
synthesis initiation. Linezolid is absorbed quickly
through oral dosing (https://go.drugbank.com/drugs/
DB00601). Linezolid has been recommended as a ther-
apy against COVID-19 [42] and is effective for treating
pneumonia in COVID-19 patients according to clinical
trials [43].

Valproic acid (VPA)

As a widely-known HDAC?2 inhibitor, VPA is proved to
be safe for treating central nervous system diseases such
as epilepsy as well as cancer and it has been in use for
more than 50years [44-46]. In humans, VPA is
absorbed by endothelium, which plays a central role in
inflammation, thrombosis and cardiovascular complica-
tions, almost instantly (within a minute) of intravenous
injection. It is also offered as a delayed-release oral tablet
with a T, of 4h [47]. The SARS-CoV-2 virus is known
to use ACE-2 receptors as an entry door to infect host
cells, which are mainly expressed in endothelial cells [48,
49]. Altogether, this information indicates that VPA and
endothelium play a major role in COVID-19 infections
Singh et al. [50].

This is an important piece of information carrying sig-
nificant clinical relevance for COVID-19 as ACE-2 can
be considered as a cell “entry door” for SARS-CoV-2
and because it has been demonstrated that SARS-CoV-2
infection can be intensified due to over-expression [51]
and depreciated due to inhibition of ACE-2 [52-54].
Their investigation revealed that VPA can be utilized as
a preventative strategy for tackling COVID-19 as it in-
hibits the rate of infection of SARS-CoV-2 by decreasing
its receptor ACE-2 expression level. Moreover, they
showed that the expression of IL-6 is declined in VPA-
treated endothelial cells. This is an important finding for
COVID-19 since inflammation and thrombosis, as one
of the significant causes of death in COVID-19, is caused
by the so-called “cytokine storm” of interleukins such as
pro-inflammatory IL-6 in COVID-19 patients’ lungs [3].
Specifically, the IL-6 level can be used to predict respira-
tory failure in COVID-19 patients and severe lung dam-
age can be caused by IL-6 inhibitors [55]. Endothelial
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cells can produce pro-inflammatory cytokines that “acti-
vate” the ECs to secrete tissue factor that controls
thrombosis [56]. Remarkably, VPA also considerably re-
duced ICAM-1 expression, which is a marker for endo-
thelial “activation” [57], demonstrating decrease in
endothelial activation. This is an important finding as it
may help develop a strategy for treating COVID-19 since
inflammation and blood clotting are linked to regulatory
molecules IL-6 and ICAM-1 induced by VPA. In a re-
cent communication, Unal et al. proposed that VPA can
potentially be used as a COVID-19 treatment drug [58].

In addition, recently, many drugs such as hydroxy-
chloroquine, remdesivir, favipirapir, tocilizumab, iver-
mectin, dexamethasone have been reported as a
potential treatment. However, most of these drugs have
not been included in our study since they were not iden-
tified by the earlier work that was used by us in the tox-
icity prediction computations. However, according to
our calculations, remedisivir, which is among the data-
base of drugs that we studied as a potential treatment
for COVID-19, has a very high ADMET risk value
(about 10). Consequently, great caution should be exer-
cised as using this drug as an off-label medication for
COVID-19.

Conclusions

This paper reports the results of using the ADMET Pre-
dictor software package to predict the toxicities associ-
ated with the aforementioned 90 compounds considered
for potential off-label use to treat COVID-19. Such com-
putational consensus models can offer enhanced predic-
tion performance thereby providing a wuseful and
effective tool for toxicity screening of molecules with re-
duced cost, time, and animal testing. The main molecu-
lar descriptor values were calculated using the 3D
structures of top ligand hits. Then, the ranges of toxicity
properties were predicted using mathematical models
that utilize these descriptor values. Based on their non-
toxic properties, five compounds were shortlisted. We
suggest that these five drugs may provide therapeutic or
preventative benefit to COVID-19 patients with pre-
existing diseases, and offer personalized treatment in
those COVID-19 patients who otherwise would be at a
serious risk of life-threatening side effects. This manu-
script will provide a potentially useful source of essential
knowledge on toxicity assessment of 90 compounds for
health care practitioners and researchers to find off-label
alternatives for the treatment for COVID-19. The re-
quired drug approval time will be reduced for such use
of drugs approved by FDA that demonstrated protective
characteristics against COVID-19 and thus they can be
tested against COVID-19 in considerably shorter time
periods.
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One of the strengths of this work is the choice of the
compounds considered to be studied. The drugs that we
studied in this manuscript are selected from an extensive
set of compounds and laboratory testing methods for
their efficacy but not for their potential toxicity, which is
the purpose of this paper. These compounds are promis-
ing, but they may have many serious side effects, which
could pose a health risk and hence require caution in
prescribing them. There are limitations to this study that
need to be acknowledged, potentially due to the limita-
tions of the QSAR methodology of computational pre-
diction, such as the volume of data or the applicability
domains of different methods. To overcome these limi-
tations, we can increase or incorporate the data volume
of different QSAR models to generate a more inclusive
prediction model. Also, we can utilize a consensus ap-
proach by integrating different modeling methods and
then execute related predictions. If a combined model
can predict the properties well, it then can be used as a
consensus approach to improving ADMET prediction
accuracy [59, 60].

We suggest that demonstrating the antiviral and im-
munomodulatory effects of these drugs with the lowest
side effects would encourage clinicians to develop further
clinical studies.
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