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Abstract

Background: Living organisms are frequently exposed to more than one xenobiotic at a time either by ingestion of
contaminated food/fodder or due to house-hold practices, occupational hazards or through environment. These
xenobiotics interact individually or in combination with biological systems and act as carcinogen or produce other toxic
effects including reproductive and degenerative diseases. Present study was aimed to investigate the cyto-genotoxic
effects of flubendiamide and copper and ameliorative potential of certain natural phyotconstituent antioxidants.

Method: In vitro cytogenotoxic effects were evaluated by employing battery of assays including Propidium iodide
staining, Tunel assay, Micronuclei, DNA fragmentation and Comet assay on isolated splenocytes and their prevention
by resveratrol (5 and 10 μM), catechin (10 and 20 μM), curcumin (5 and 10 μM) and α-tocopherol (5, 10 and 20 μM). In
vivo study was also undertaken daily oral administration of flubendiamide (200mg/kg) or copper (33 mg/kg) and both
these in combination, and also all these concurrently with of α-tocopherol to Wistar rats for 90 days.

Results: Flubendiamide and copper produced concentration-dependent cytotoxic effects on splenocytes and at median
lethal concentrations, flubendiamide (40 μM) and copper (40 μM) respectively produced 71 and 81% nonviable cells, higher
number of Tunel+ve apoptotic cells, 7.86 and 9.16% micronucleus and 22.90 and 29.59 comets/100 cells and DNA
fragmentation. In vivo study revealed significant (P< 0.05) increase in level of lipid peroxidation (LPO) and decrease in
glutathione peroxidase (GPx), glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities in groups exposed to
flubendiamide or copper alone or both these in combination. Histopathological examination of rat spleens revealed
depletion of lymphoid tissue, separation of splenocytes and rarification in splenic parenchyma of xenobiotic(s) treated
groups.
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Conclusion: Flubendiamide and copper induce oxidative stress and produce cytogenotoxic effects along with
histoarchitectural changes in spleen. All four tested natural antioxidants (resveratrol, catechin, curcumin and α-tocopherol)
reduced flubendiamide and copper-induced cytotoxic effects in rat splenocytes. Rat splenocytes are very sensitive to
flubendiamide and copper-induced cytogenotoxicity, therefore, these can be effectively employed for screening of
compounds for their cytogenotoxic potential. α-tocopherol was effective in restoring alterations in oxidative stress
biomarkers and preventing histoarchitectural lesions in spleen.
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Background
Last few decades toxicological research has revealed that
immune system is the potential target for xenobiotics-
induced adverse effects due to exposure to environmental
pollutants, indiscriminate use of agrochemicals, metals,
drugs, other chemicals and their metabolites. Therefore,
the present study was undertaken to investigate the cyto-
genotoxic potential of flubendiamide and copper in rat
splenocytes primary cell culture following in vitro expos-
ure. In vivo effect of these xenobiotics on oxidative stress
biomarkers and histopathological changes in rat spleen
were also studied. Ameliorative potential of α-tocopherol
and other plants-based antioxidants against the adverse ef-
fects of these xenobiotics was also evaluated. For in vivo
study, Wistar rats were orally exposed to flubendiamide or
copper alone, both these in combination, and also along
with α-tocopherol for 90 days.
Flubendiamide is a comparatively new insecticide and se-

lectively acts on insects ryanodine receptors (RyR). It pos-
sesses favourable toxicological profile due to its higher (>
2000mg/kg) oral and dermal LD50 values in rats. Being com-
paratively safe, it is being widely used on large number of
crops which include fruits, vegetable crops and nuts
to control insects. Therefore, human beings and ani-
mals are also being indiscriminately exposed to flu-
bendiamide through direct and indirect routes.
Genotoxicity is the primary risk factor associated with
long-term exposure to environmental pollutants in-
cluding insecticides and metals. Flubendiamide does
not have genotoxic effects on bone marrow cells [1–
6]. But there are reports that exposure to certain xe-
nobiotics, either individually or in combination, may
result in gene mutation, chromosomal aberrations and
DNA damage [7–9].
Copper, being a micronutrient, is essential for life of

humans and animals and is required in minute concen-
trations for functioning of several metalloenzymes [10–
12]. It also possesses fungicidal, molluscicidal and weedi-
cidal activities and is employed for control of bacterial
and fungal diseases of fruits, vegetables, nuts and field
crops, algae in domestic lakes and ponds and in garden-
ing as powder and spray [13, 14]. In India, copper also
enters in human body through drinking water, and

inhalation of copper dust and fumes [15]. But it is toxic
when present in the body in excess [10].
Environmental pollutants increase oxidative stress [16]

and dietary antioxidants prevent free radicals induced tis-
sue damage by preventing formation of radicals, scaven-
ging them, or by promoting their decomposition [17–19].
Several natural food-derived components have received
great attention in recent years as nutraceuticals due to
their promising biological activities. α-tocopherol (α-
TOH) is the major lipid soluble natural form of vitamin E
and possesses antioxidant property. It protects cellular
membrane and lipoproteins from peroxidation by reacting
with lipid radicals produced in lipid peroxidation chain re-
action [20–22]. Green tea is very rich in phenolic com-
pounds including catechin and epigallocatechin gallate
(EGCG) [23]. These are powerful antioxidant, inhibit
apoptosis by inhibiting caspase 3 activity thereby prevent-
ing expression of proapoptotic (Bax, Bad and Mdm2) and
antiapoptotic genes (Bcl-2, Bcl-w and Bcl-xL) to protect
SH-SY5Y cells from 6-OHDA-induced apoptosis [24–26]
and EGCG is cancer chemopreventive also [27]. Curcumin
is the main coloring agent of turmeric, used as a spice in
India, and possesses number of promising pharmaco-
logical activities including antioxidant [28–31] and DNA
protective effect against arsenic, fluoride and chlorpyri-
phos [32–34]. Phytoallexin resveratrol, found in the skin
of grapes, possesses the potential to inhibit cancer initi-
ation, promotion and progression, and inhibits TNFα-
induced reactive oxygen intermediate generation [35–37].
In view of the sparse information on in vitro cyto-

genotoxicity potential and in vivo adverse effects of fluben-
diamide in mammals, and conflicting reports on genotoxic
effects of copper, the present study was undertaken. We
also evaluated the ameliorative potential of certain natural
phyotconstituent antioxidants against these xenobiotics to
explore their therapeutic and prophylactic use.

Methods
Experimental animals and chemicals
Present study was undertaken on Wistar rats, which
were procured from Laboratory Animal Resource Sec-
tion, Indian Veterinary Research Institute, Izatnagar,
India and maintained under standard managemental
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conditions in the Departmental Experimental Animal
House. Animals had free access to pelleted feed (Ashir-
wad Industries, Chandigarh) and clean and deionized
drinking water. Daily light and dark cycle of 12 h was en-
sured. Before start of the experiment, an acclimatization
period of 15 days was allowed. Whole study was carried
out in two phases: Phase I - in vitro apoptosis studies
while Phase II included only in vivo studies.
The study was approved by the Institutional Animal

Ethics Committee (IAEC; 79 IAEC/13). Flubendiamide,
dexamethasone, resveratrol, catechin, curcumin, and α-
tocopherol were procured from Sigma-Aldrich (USA)
while copper sulphate from Sd Fine Chemical Ltd.

Phase I- in vitro study
Twenty adult male Wistar rats weighing 80–100 g were
used for in vitro cyto-genotoxicity study on primary cell
culture of isolated rat splenocytes.

Isolation of splenocytes
Rats were sacrificed by cervical dislocation and spleen
was aseptically removed and quickly disintegrated into
many pieces. Vigorous pipetting of meshed tissue was
done with the help of 10 ml glass pipette to break the
minced tissue and these cells were transferred to 15
ml test tubes containing chilled PBS and allowed to
stand on ice for 15 min. Top 12 ml of suspension was
collected into another centrifuge tube and cells were
pelleted by centrifugation at 1500 rpm for 10 min.
Cells pellet was re-suspended in PBS and centrifuged
again at 1500 rpm for 10 min. The supernatant was
discarded and pellet was treated with 5 ml of RBC
lysis buffer (4.15 g NH4Cl; 0.5 g NaHCO3; 0.0186 g
Na2-EDTA; 200 ml DW) and kept for 10 min in ice
and centrifuged at 1500 rpm for 10 min. Then the pel-
let was given two washings with PBS at 1500 rpm for
10 min. The pellet was re-suspended in 1 ml of Ros-
well Park Memorial Institute (RPMI-1640; Sigma-
Aldrich) medium with 10% foetal calf serum (Sigma-
Aldrich). Viability count was done using 0.1% trypan
blue exclusion test and the cells density was adjusted
to obtain 106 cells/ml [38].

Median lethal concentrations
Isolated splenocytes were seeded in 24 well culture
plates containing 106 cells/ml in 10% RPMI with
foetal calf serum. Different concentrations of fluben-
diamide and copper i.e. 1.0, 2.5, 5, 7.5, 10, 15, 20, 40,
60, 80 and 100 μM were used. Culture plates were in-
cubated for 12 h in CO2 incubator (New Brunswick
Scientific, USA) at 37 °C with 5% CO2. After incuba-
tion, samples were collected in 1.5 ml eppendorf tubes
and centrifuged at 3200 rpm for 10 min. Supernatant
was discarded and the pellet was dissolved in 0.5 ml

PBS. Propidium iodide (Sigma) was added at 1 μg/ml
concentration to cells and incubated for another 15
min in dark at room temperature. Cells were ob-
served under fluorescent microscope (Microscan 20
PFM, Nitco) under green filter to determine the ap-
proximate concentrations of test xenobiotics at which
almost 50% dead splenocytes were observed. Calcula-
tion of the LC50 value of flubendiamide and copper
was done by subjecting the data (concentrations used
versus % cell dead) of Table 1 to “Probit Analysis
method” using “Graph Pad Prism software” and by
plotting the log values of the concentrations of xeno-
biotics used against log values of the per cent cells
dead. Further we interpolated the respective log
values of the xenobiotics (copper and flubendiamide)
at which 50% of the cells are expected to be dead,
and then the antilog values of these log values were
calculated. It is apparent that the interpolated LC50
value for copper was 38.90 μM and for flubendiamide,
it was 37.23 μM. Both these values are very close to
40 μM and considered as median lethal concentration
of flubendiamide and copper and used for further
studies.

Viability of splenocytes
Freshly collected splenocytes (106 cells/ml) were exposed
to median lethal concentrations of flubendiamide and
copper alone, and also along with the antioxidants- resver-
atrol (5 and 10 μM), curcumin (5 and 10 μM), catechin
(10 and 20 μM) and α-tocopherol (5, 10 and 20 μM). Solu-
tions of resveratrol, catechin, curcumin, α-tocopherol, flu-
bendiamide, copper sulphate and dexamethasone were
prepared in dimethyl sulphoxide (DMSO). Culture plates
were incubated for 12 h in CO2 incubator at 37 °C with
5% CO2 and further processed as described above to de-
termine the number of nonviable cells.

TUNEL assay
After exposure of splenocytes to median lethal concen-
trations of flubendiamide (40 μM) and copper (40 μM)
for 12 h, these samples were further processed for deter-
mination of apoptosis as per the protocol described in
TUNEL Assay Kit (Invitrogen, USA; Ref. No. A35126).
Apoptotic cells, which underwent extensive DNA deg-
radation during late stages of apoptosis, were examined
under blue filter of fluorescent microscope. Cells which
fluoresced brightly were considered as apoptotic.

Genotoxicity assays (micronucleus, DNA fragmentation
and comet)
Micronucleus assay
Flubendiamide and copper genotoxicity potential was
assessed by micronuclei assay by using the isolated
splenocytes [39]. 106 cells/ml were incubated with
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flubendiamide (40 μM) and copper (40 μM) alone and
with different μM concentrations of resveratrol, cat-
echin, curcumin and α-tocopherol and incubated for
12 h in CO2 incubator. After incubation, samples were
collected in 1.5 ml eppendorf tubes and centrifuged at
3200 rpm for 10 min. Supernatants were discarded
and the pellets were dissolved in 1.0 ml of Hank’s bal-
anced salt solution (HBSS) having pH 7.2 and centri-
fuged again for 10 min at 3200 rpm. Supernatant was
removed and cells in suspension were mixed carefully
in 100 μl of HBSS. A drop of cell suspension was
taken on grease-free clean glass slide and smeared.
The smear was air-dried and fixed with absolute
methanol (100%) for 5 min and stained with acridine
orange for 1min at room temperature. The slide was
rinsed in Sorensen’s buffer (pH 6.8) and kept for at least 3
min and this step was repeated three times. Slides were
examined on the same day and 1000 cells (both mono-
nuclear and binucleated) per slide were scored under
green filter of the fluorescent microscope to determine
the frequency of micronuclei formation.

DNA fragmentation assay
DNA ladder assay was performed according to phenol-
chloroform-DNA isolation protocol [40]. After incubation of
5 X106 cells each with flubendiamide or copper alone and
with antioxidants, as mentioned in micronuclei assay
method, the cells were collected in 1.5ml of eppendorf tubes
and centrifuged at 3200 rpm for 10min at 4 °C. The cells
pellet was washed with PBS having pH 7.2, mixed with DNA
extraction buffer (500 μl/tube) and kept in water bath for 1.0
h at 37 °C. 10% SDS was added (20 μl/ml) to the cell suspen-
sion and tubes were gently mixed by inverting the tubes.
Contents of the tubes appearing viscous indicated lysis of
splenocytes. Proteinase K (15 μl of 20mg Proteinase K/ml of
buffer) was added to each tube in two pulses i.e. half the re-
quirement was added to tube in the 1st pulse and mixed
gently and kept in water bath at 50 °C. After 3–4 h, a second
pulse of the remaining amount of proteinase K was added.
Tubes were incubated at 50 °C overnight. Next day morning,
equal amount of equilibrated phenol (Tris saturated phenol
pH> 7.8) was added to each tube and mixed by gently
inverting the tubes for 15min till light coffee coloured uni-
form solution was formed and centrifuged at 3400 rpm for
15min. The upper aqueous phase containing DNA was
transferred into fresh 1.5ml clean eppendorf tube. Similar
extraction was done (as in the above step) once with equal
volume of phenol: chloroform: isoamyl alcohol (25:24:1) and
with chloroform: isoamyl alcohol (24:1). To obtain the final
aqueous phase, double the volume of chilled (− 20 °C) etha-
nol was added. Tubes were mixed gently by inversion and
kept at room temperature to allow precipitation of DNA.
DNA pellet was washed twice with 500 μl of 70% ethanol
and eppendorf tube was centrifuged at 10000 rpm for 10
min at room temperature. Finally 70% ethanol was discarded
and DNA pellet was air dried by inverting tube on blotting
paper so that last traces of ethanol were removed. However,
it was ensured that pellet did not over-dry so to enable an
easy dissolution in the following step. Approximately 50 μl of
tris-EDTA buffer (TE) was added and kept in water bath at
60 °C for 2 h to inactivate DNAse and other enzymes.
Eppendorf was stored at 4 °C for a week so that DNA was
dissolved. DNA concentration and its purity was determined
spectrophotmetrically by Biophotometer plus (Eppendorf) at
260 and 280 OD. Integrity of the DNA was examined in
agarose gel (1.0%) electrophoresis and visualized under UV
light in gel documentation system after staining with eth-
idium bromide.

Comet assay
Single splenocyte cells were isolated from spleen after
cervical dislocation and viability checked by Trypan blue
exclusion test. 5X106 cells/well were kept for culturing
and treated with flubendiamide and copper (40 μM/well)
alone and with different micromolar concentrations of
resveratrol, catechin, curcumin and α-tocopherol. After

Table 1 Effect of different concentrations of flubendiamide and
copper on per cent viability of rat splenocytes following their
in vitro exposure to these xenobiotics

Treatment % Dead Splenocytes

Control 4.93 ± 0.67

Vehicle control (DMSO) 50 μl 7.46 ± 0.83

1.0 μM Flubendiamide 12.98 ± 1.92

2.5 μM Flubendiamide 15.13 ± 1.87

5.0 μM Flubendiamide 22.18 ± 1.67

7.5 μM Flubendiamide 24.28 ± 2.24

10 μM Flubendiamide 28.09 ± 1.33

15 μM Flubendiamide 29.76 ± 1.55

20 μM Flubendiamide 32.32 ± 1.32

40 μM Flubendiamide 45.42 ± 2.50

60 μM Flubendiamide 67.89 ± 3.14

80 μM Flubendiamide 88.81 ± 5.62

1.0 μM Copper 6.45 ± 3.04

2.5 μM Copper 10.34 ± 1.63

5.0 μM Copper 13.88 ± 1.39

7.5 μM Copper 16.66 ± 1.92

10 μM Copper 26.08 ± 4.73

15 μM Copper 28.39 ± 1.74

20 μM Copper 34.95 ± 5.87

40 μM Copper 51.09 ± 2.01

60 μM Copper 61.11 ± 2.03

80 μM Copper 76.68 ± 1.71

Data presented are Mean ± SEM of three observations
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incubation of 12 h in CO2 incubator, cells were collected
in 1.5 ml eppendorf tubes and centrifuged at 3200 rpm
for 10min at 4 °C. Supernatant was discarded and the
pellet was washed with PBS (pH 7.2). Comet assay was
performed using the standard method with normal
(NMA) and low melting agarsoe (LMPA) [41].
Briefly, slides were dipped in methanol and heated

over blue flame to remove the grease, dust and oil. 1.5%
NMA (Sigma-Aldrich) and 0.5% LMPA (Sigma–Aldrich)
were prepared in PBS. LMP agarose was kept in water
bath at 40 °C to cool and stabilize while NMA agarose
was kept at 100 °C. First layer of agarose on the slides
was prepared by dipping conventional pre-cleaned slide
for few seconds in 100 ml wide mouth beaker containing
1.5% NMA up to one-third area and gently removed.
Underside of the slide was wiped to remove excess agar-
ose and allowed to dry in a tray. Slides were generally
prepared a day earlier. Splenocyte cell pellets were uni-
formly mixed with 100 μl of 0.5% LMPA and poured
carefully on the first agarose layer and immediately cov-
ered with a full length cover slip. Slides were kept on
ice-pack for 15–20 min to allow for the 2nd agarose
layer to solidify. After solidification, the cover slip was
removed and the slide was kept in a coupling jar con-
taining freshly prepared lysis solution (1 ml-Triton X-
100 and 10 ml DMSO was added to 89 ml stock lysing
solution containing NaCl-36.52 g; EDTA disodium salt-
9.3 g; Trizma-0.3 g; NaOH-2 g- For 250 ml) at 4 °C over-
night. Next day, the slide was removed from lysis solu-
tion and kept for 30 min in freshly prepared
electrophoretic buffer so as to cause unwinding of DNA
and expression of alkali-labile sites. Slide was run in
horizontal electrophoresis (Bio Rad) chamber with the
same electrophoresis buffer (pH > 13) at 25 V and 300
mA for 1 h. After running in electrophoresis chamber,
the slide was gently removed and placed horizontally in
a tray and covered with neutralizing buffer for 5 min and
then decanted it; the same step was repeated three times
to remove alkali and detergent. This step was critical to
bring down the pH from 13 to 7.5. After neutralization,
slides were stained by placing 3–4 drops of 100 μl work-
ing ethidium bromide solution at equal distance and im-
mediately covered with cover slip. Slides were examined
under fluorescent microscope, individual cell/comets
were observed and images were captured at 40X magni-
fication using green filter and duplicate slides per treat-
ment were observed. At least 50 cells from each slide
were scored and a total of 100 cells/treatment was
scored to get the reproducible data.

Phase II-in vivo chronic toxicity study
Fifty four adult male Wistar rats weighing between 130
and 150 g were divided in nine groups of six animals
each. Animals of six groups (IV to IX) were orally

treated on daily basis with copper (33 mg/kg; group IV),
flubendiamide (200 mg/kg; group V) or combination of
both these (group VI), and α-tocopherol (100 mg/kg)
along with these xenobiotics singly (group VII and VIII)
or both these in combination (group IX) for 90 days.
Groups I and II served as negative and vehicle controls
(corn oil), respectively while rats of group III were ad-
ministered only α-tocopherol (100mg/kg). Solutions of
copper sulphate and flubendiamide (FAME®, Bayer) were
prepared in deionized water while α-tocopherol was dis-
solved in corn oil. Doses of flubendiamide and copper
were 1/10th of the LD50. At the end of exposure period,
rats were humanely sacrificed by cervical dislocation and
their spleen was collected and blotted with tissue paper.
It was then used to determine its levels of different oxi-
dative stress related parameters such as lipid peroxida-
tion (LPO), reduced glutathione (GSH), catalase (CAT),
superoxide dismutase (SOD), glutathione-S-transferase
(GST) and glutathione peroxidase (GPx), along with
total protein content in splenic tissue using UV- VIS
spectrophotometeric methods [42–48]. 200 mg of the
spleen sample was weighed and transferred in 2ml of
chilled saline. The same weight of the spleen sample was
separately taken in 2ml of 0.02M EDTA for GSH esti-
mation. Tissue homogenates were prepared by using tis-
sue homogenizer (Heidolph) under cold conditions and
centrifuged for 10 min at 3000 rpm. The supernatant
was used for estimation of different oxidative stress bio-
markers. Lipid peroxidation (LPO) and reduced glutathi-
one (GSH) were assayed immediately after tissue
collection.
A small piece of the spleen tissue was collected in 10%

formaldehyde saline solution and processed for prepar-
ation of paraffin blocks as per the method described by
[49]. Tissue sections of 5–6 μm thickness were cut using
a microtome (Leica, Germany) and stained with haema-
toxylin and eosin. Microscopic slides were examined
under light microscope to observe the histoarchitecture
changes in spleen.

Statistical analysis of data
Data of the in vitro study has been presented as
Mean ± SEM of the three observations in each treat-
ment group in Tables 1 and 2. Table 3 presents the
Mean ± SEM data of in vivo study. Effects of different
in vitro treatments were compared between the con-
trol and xenobiotics alone-treated groups, and also
between the xenobiotics alone and those treated con-
currently with antioxidants. Statistically significant dif-
ferences between the different treatment groups
observed in in vivo study were determined using one-
way ANOVA followed by Tukey’s multiple post-hoc
test with the help of SPSS® 16 software. Significant
difference was considered at P < 0.05.
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Results
Phase I- in vitro study
Median lethal concentrations
Data on in vitro effect of different concentrations of flu-
bendiamide (1.0–80 μM) and copper (1.0–80 μM) on
rats splenocytes revealed concentration-dependent lethal
effect of these xenobiotics. There was dose-dependent
increase in percentage of the nonviable splenocytes and
nearly 50 % nonviable splenocytes were observed be-
tween 40 μM and 60 μM concentrations of these xenobi-
otics (Table 1). Therefore, 40 μM was considered the
approximate median lethal concentration both for flu-
bendiamide and copper.

Viability of splenocytes
Fluorescent microscopic examination of flubendiamide
(40 μM) and copper (40 μM) alone-treated splenocytes re-
spectively showed 71.88 and 81.11% nonviable cells com-
pared to 5.41% in control and 8.59% in DMSO-treated
cells (Table 2). Following concomitant in vitro treatment
of splenocytes with xenobiotics and antioxidants-

resveratrol, catechin, curcumin and α-tocopherol, the per-
centage of the nonviable splenocytes was found to de-
crease and effect of all these four antioxidants was
concentration-dependent (Table 2). Out of these tested
antioxidants, based on their comparative efficacy on equi-
molar concentration basis (10 μM), resveratrol was found
to be the most effective against flubendiamide in reducing
the percentage of nonviable splenocytes, and the order of
ameliorative potential of these antioxidants was: resvera-
trol > curcumin ≈ α-tocopherol > catechin (Table 2).
Similarly, resveratrol was also found to be the most effect-
ive against copper-induced viability losses in splenocytes;
and the order of ameliorative potential against copper
was: resveratrol > α-tocopherol > curcumin > catechin.

Tunel assay
Splenocytes exposed to 40 μM flubendiamide or copper
showed higher number of Tunel-positive (Tunel+ve)
cells compared to those in negative or vehicle control
(DMSO) groups as shown in Figs. 1 and 2, respectively.
Compared to flubendiamide, copper was more potent in

Table 2 Effect of median lethal concentrations of flubendiamide and copper alone and in the presence of different concentrations
of resveratrol, catechin, curcumin and α-tocopherol on viability, micronuclei and comet formation in rat splenocytes following their
in vitro exposure

Treatments aNonviable cells (%) aMicronuclei (%) No. of Comet/ 100 cells (%)

Control 5.41 ± 0.33 0.96 ± 0.08 3.09 ± 0.31

DMSO (50 μl) 8.59 ± 0.88 1.36 ± 0.08 4.58 ± 0.28

Dexamethasone (20 μM) – 7.60 ± 0.20 27.69 ± 0.87

Flubendiamide (40 μM) 71.88 ± 2.90 7.86 ± 0.17 22.90 ± 0.90

Resveratrol (5 μM) + Flubendiamide (40 μM) 50.00 ± 1.85 1.20 ± 0.17 20.15 ± 1.91

Resveratrol (10 μM) + Flubendiamide (40 μM) 24.36 ± 0.88 1.10 ± 0.05 15.44 ± 1.47

Catechin (10 μM) + Flubendiamide (40 μM) 53.66 ± 1.76 1.43 ± 0.24 14.80 ± 1.25

Catechin (20 μM) + Flubendiamide (40 μM) 52.46 ± 2.33 1.33 ± 0.08 12.64 ± 0.57

Curcumin (5 μM) + Flubendiamide (40 μM) 56.25 ± 3.05 3.13 ± 0.12 7.58 ± 0.89

Curcumin (10 μM) + Flubendiamide (40 μM) 38.24 ± 3.18 1.40 ± 0.15 7.20 ± 0.32

α-tocopherol (5 μM) + Flubendiamide (40 μM) 55.00 ± 0.33 2.10 ± 0.40 11.56 ± 0.33

α-tocopherol (10 μM) + Flubendiamide (40 μM) 40.26 ± 2.02 1.93 ± 0.29 6.96 ± 0.30

α-tocopherol (20 μM) + Flubendiamide (40 μM) 17.65 ± 0.57 3.30 ± 0.26 4.89 ± 0.33

Copper (40 μM) 81.11 ± 6.06 9.16 ± 0.21 29.59 ± 1.76

Resveratrol (5 μM) + Copper (40 μM) 76.54 ± 4.84 4.80 ± 0.20 25.33 ± 0.47

Resveratrol (10 μM) + Copper (40 μM) 30.43 ± 4.04 1.90 ± 0.32 9.69 ± 0.66

Catechin (10 μM) + Copper (40 μM) 72.13 ± 3.71 5.20 ± 0.20 15.12 ± 0.32

Catechin (20 μM) + Copper (40 μM) 65.82 ± 1.41 2.10 ± 0.36 12.41 ± 1.20

Curcumin (5 μM) + Copper (40 μM) 64.18 ± 3.84 3.47 ± 0.14 16.80 ± 0.87

Curcumin (10 μM) + Copper (40 μM) 59.68 ± 4.33 2.63 ± 0.21 12.71 ± 1.32

α-tocopherol (5 μM) + Copper (40 μM) 59.72 ± 5.0 3.33 ± 0.24 10.33 ± 1.20

α-tocopherol(10 μM) + Copper (40 μM) 54.73 ± 4.91 1.93 ± 0.18 15.20 ± 1.45

α- tocopherol (20 μM) + Copper (40 μM) 51.06 ± 4.18 3.16 ± 0.26 10.61 ± 0.66
aData presented are Mean + SEM of three observations
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producing Tunel+ve splenocytes, and compared to the flu-
bendiamide or copper-alone treated splenocytes, marked
reduction in Tunel+ve cells was observed in the spleno-
cytes treated concurrently with either of the xenobiotic
(flubendiamide or copper) and different antioxidants (res-
veratrol 5 and 10 μM, catechin 10 and 20 μM, curcumin 5
and 10 μM or α-tocopherol 5, 10 and 20 μM) as shown in
Figs. 1 and 2. However, based on the efficacy of different
antioxidants at equimolar concentration basis i.e. 10 μM,
resveratrol was most effective in reducing the number of
Tunel+ve cells induced by flubendiamide (Fig. 1) and the
overall order of efficacy of different antioxidants was res-
veratrol > curcumin >α-tocopherol > catechin. Just like
their efficacy against flubendiamide, all these were effect-
ive in reducing copper-induced increase in number of
Tunel+ve cells and the overall order of efficacy of different

antioxidants was curcumin > catechin ≥ α-tocopherol ≥
resveratrol (Fig. 2). However, contrary to resveratrol, cur-
cumin was most effective against copper.

Micronuclei formation
Flubendiamide and copper alone treated splenocytes
showed micronuclei formation in 7.86 and 9.16% cells re-
spectively compared to 0.96% in negative control and
1.36% in DMSO-treated splenocytes (Table 2; Fig. 3).
Dexamethasone-induced micronuclei formation (7.6%) was
much higher compared to that in negative control and
DMSO-treated splenocytes. Almost a similar percentage of
micronuclei were observed in splenocytes treated with flu-
bendiamide (7.86%) or copper (9.16%) as summarized in
Table 2. Ameliorative efficacy studies with resveratrol, cat-
echin, curcumin and α-tocopherol against flubendiamide

Fig. 1 Representative photographs of rat splenocytes showing TUNEL + ve cells (40 X) following in vitro exposure to median lethal concentration
of flubendiamide alone (40 μM) and in the presence of different concentrations of natural antioxidants-resveratrol, catechin, curcumin
and α-tocopherol
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or copper-induced micronuclei formation revealed marked
reduction in micronuclei formation by all four test antioxi-
dants. The order of ameliorative efficacy of these antioxi-
dants on equimolar basis (10 μM) against flubendiamide
was resveratrol > curcumin ≈ catechin > α-tocopherol
while resveratrol ≈ α-tocopherol > curcumin > catechin
against copper-induced micronuclei formation (Table 2).

DNA fragmentation
DNA of the flubendiamide, copper and dexamethasone
treated splenocytes showed more shearing compared to
the DNA of untreated splenocytes. DNA of the spleno-
cytes treated concurrently with flubendiamide and equi-
molar concentration (10 μM) of resveratrol, catechin or
α-tocopherol also showed almost similar pattern of
DNA shearing as observed in the DNA of flubendiamide

alone treated splenocytes (Fig. 4). But DNA samples
from curcumin (10 μM) + flubendiamide treated spleno-
cytes showed less shearing compared to those treated with
resveratrol + flubendiamide, catechin + flubendiamide or
α-tocopherol + flubendiamide. Just like flubendiamide and
curcumin treated splenocytes, DNA samples from copper
+ curcumin treated splenocytes also showed compara-
tively less shearing than in the DNA from splenocytes
treated with copper and other antioxidants (resveratrol,
catechin, α-tocopherol) as shown in Fig. 5.

Comet formation
Comet formation data in splenocytes following their
exposure to flubendiamide (40 μM), copper (40 μM)
and dexamethasone (20 μM) alone revealed 22.90,
29.59 and 27.69% comets formation compared to

Fig. 2 Representative photographs of rat splenocytes showing TUNEL + ve cells (40 X) following in vitro exposure to median lethal concentration
of copper alone (40 μM) and in the presence of different concentrations of natural antioxidants-resveratrol, catechin, curcumin and α-tocopherol
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3.09% in negative control and 4.58% in DMSO-treated
splenocytes (Table 2; Fig. 6). Resveratrol, catechin,
curcumin and α-tocopherol (10 μM each) were found
to reduce the percentage of comets formed in

flubendiamide and copper-treated splenocytes and the
effect of all these agents was concentration-dependent
(Table 2). Further, the ameliorative efficacy potential
of these antioxidants on equimolar basis against

Fig. 3 Representative photographs of rat splenocytes showing micronuclei formation (100 X) following in vitro exposure to median lethal
concentrations of flubendiamide and copper alone (40 μM) and in the presence of dimethyl sulphoxide (DMSO) and dexamethasone

Fig. 4 In vitro effect of median lethal concentration of flubendiamide and natural antioxidants at different concentrations on DNA fragmentation
pattern in rat splenocytes. RV: Resveratrol (5 and 10 μM), Cath: Catechin (10 and 20 μM), A-T: α-tocopherol (5, 10 and 20 μM), Cur: Curcumin (5 and
10 μM), Flb: Flubendiamide, Dexa: Dexamethasone,Cont: Control
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Fig. 5 In vitro effect of median lethal concentration of copper and natural antioxidants at different concentrations on DNA fragmentation pattern
in rat splenocytes. RV: Resveratrol (5 and 10 μM), Cath: Catechin (10 and 20 μM), A-T: α-tocopherol (5, 10 and 20 μM). Cur: Curcumin (5 and 10 μM),
Cu: Copper, Dexa: Dexamethasone, Cont: Control

Fig. 6 Representative photographs of rat splenocytes showing comet formation following their in vitro exposure to median lethal concentrations
of flubendiamide and copper
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flubendiamide was α-tocopherol ≈ curcumin > cat-
echin > resveratrol while resveratrol > curcumin >
catechin > α-tocopherol against copper (Table 2).

Phase II-in vivo chronic toxicity study
Oxidative stress biomarkers data of rat spleens after 90
days of daily oral exposure to copper and flubendiamide
alone and both these in combination (copper + fluben-
diamide) and those treated simultaneously with α-
tocopherol and test xenobiotics are presented in Table 3.
Lipid peroxidation levels in rats of the groups exposed
to flubendiamide or copper alone and copper + fluben-
diamide were significantly (P < 0.05) higher, while re-
duced glutathione (GSH) levels in flubendiamide and
copper alone and copper + flubendiamide treated groups
were moderately decreased when compared with the
control group. Similarly, glutathione peroxidase (GPx)
activity was found to be significantly (P < 0.05) decreased
in rat groups exposed to copper, flubendiamide and cop-
per + flubendiamide compared to group I rats.
Glutathione-S-transferase (GST) activity in flubendia-
mide alone group was significantly (P < 0.05) lower
(0.61 ± 0.12 μM of CDNB-GSH conjugate min-1 mg-1

protein) than in rest of the groups (Table 3). Further sig-
nificant (P < 0.05) decrease in SOD activity was also ob-
served in copper alone exposed group. Total protein
content and catalase activity did not differ significantly
between the control and any of the xenobiotics-treated
groups. On simultaneous exposure of rats to xenobiotics
and α-tocopherol, decrease in lipid peroxidation level
and improvement in antioxidants (SOD, GST, GPx, cata-
lase and GSH) cellular defense in splenic tissue of rats
were observed compared to the rats exposed to xenobi-
otics alone.

Rat spleens from the control groups (I, II and III) ex-
hibited normal histoarchitecture characterized by nor-
mal red and white pulps (Fig. 7). Spleen sections of
copper sulphate group (IV) rats showed mild depletion
of the lymphoid tissue from the white pulp (Fig. 8). Flu-
bendiamide alone (V) group spleen showed separation of
splenocytes and rearification in splenic parenchyma
(Fig. 9). But spleen sections of copper + flubendiamide
treatment group (VI) exhibited separation of splenocytes
and rearification in splenic parenchyma (Fig. 10). Con-
current treatment of the rats of groups VII, VIII and IX
with α-tocopherol and copper sulphate, α-tocopherol
and flubendiamide, and α-tocopherol and combination
of flubendiamide and copper, respectively, showed al-
most normal histoarchitecture of spleens as shown in
Figs. 11, 12 and 13, respectively.

Fig. 7 Section of spleen of rat from control group showing healthy
histoarchitecture with red (arrow head) and white pulp (arrow) in
splenic parenchyma (10X H&E stain)

Fig. 8 Spleen section of copper sulphate (33 mg/kg) exposed group
(IV) showing mild depletion of lymphoid tissue from white pulp
(arrow) (10 X H&E stain)

Fig. 9 Spleen section of flubendiamide (200mg/kg) exposed group
(V) showing separation of splenocytes and rarefication (arrow) in
splenic parenchyma (10 X H&E stain)
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Discussion
Humans and animals are being continuously exposed to
mixture of agrochemicals and metals due to agricultural
practices, working in heavy metals infested environment
and use of ectoparasiticides and other chemicals in
household practices [50, 51]. Therefore, an interaction
study between different xenobiotics in human and ani-
mal systems due to concurrent exposure to these chem-
ical moieties along with their remedial measures seems
very important.
No information is available on the cyto-genotoxic ef-

fects of flubendiamide and its possible mechanism.
Markedly higher percentage of nonviable splenocytes in
flubendiamide and copper treated groups evidently sug-
gests cytotoxic effects of flubendiamide and copper in

rat splenocytes similar to those reported with certain
neonicotinoid insecticides in human peripheral blood
lymphocytes [52]. Increase in the number of Tunel+ve
cells in the present study are in agreement with increase
in number of Tunel+ve germ cells in seminiferous tu-
bules of imidacloprid-treated rats [53] and Tunel+ve
fragmented DNA in brain and hippocampus of copper-
treated mice and rats [54, 55]. Our findings suggest the
ability of flubendiamide and copper to interact with
double-stranded DNA (dsDNA) and induce cellular
damage which enables TdT to bind with 3’OH label
blunt ends of dsDNA and serve as a marker of
apoptosis.
Micronuclei assay is one of the most sensitive DNA

damage indicator tests and is widely used for evaluation

Fig. 10 Spleen section of flubendiamide (200 mg/kg) + copper
sulphate (33 mg/kg)-exposed group (VI) showing separation of
splenocytes and rarefication (arrow) in splenic parenchyma (40 X
H&E stain)

Fig. 11 Spleen section of rats treated with α-tocopherol (100 mg/
kg) + copper sulphate(33mg/kg) of group (VII) showing normal
histo-architecture with abundant lymphoid tissue in the white pulp
(arrow) suggestive of amelioration (40 X H&E stain)

Fig. 12 Spleen section of rats treated with α-tocopherol (100 mg/
kg) + flubendiamide (200 mg/kg) of group (VIII) showing normal
histoarchitecture, abundant lymphoid tissue in the white pulp
(arrow) suggestive of amelioration (40 X H&E stain)

Fig. 13 Spleen of rats treated with α-tocopherol (100 mg/kg) +
flubendiamide (200 mg/kg) + copper sulphate (33 mg/kg) of group
(IX) showing apparently healthy histoarchitecture with ample red
(arrow head) and white pulp (arrow) in splenic parenchyma
suggestive of amelioration (10 X H&E stain)
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of genotoxic potential of environmental contaminants
[56]. Micronuclei assay is employed to detect clastogen
and aneugen properties of xenobiotics and determine
mitotic delay, apoptosis, chromosome breakage, chromo-
some loss and non-disjunction potential of xenobiotics
[57, 58]. Increase in frequency of micronuclei formation
in flubendiamide-treated splenocytes was almost com-
parable to that induced by dexamethasone. Similar
micronuclei forming effect of chlorpyrifos in fish eryth-
rocytes [59] and imidacloprid in human peripheral blood
lymphocytes has been reported [60]. Copper-induced in-
crease in frequency of micronuclei formation in rat sple-
nocytes is also in agreement with the observations in
bone marrow cells of mice following exposure to copper,
and erythrocytes [61, 62], gill and liver cells of fish fol-
lowing exposure to cadmium and copper [63]. Other
genotoxicity studies have also suggested that copper is a
clastogenic agent [62, 64].
Apart from increase in number of Tunel+ cells and

micronuclei formation, DNA fragmentation and comet
assay studies also revealed that interaction of flubendia-
mide or copper with splenocyte cells resulted in DNA
damage which is manifested in the form of DNA strand
breaks, laddering appearance of DNA in electrophoretic
field and comet formation in alkaline conditions. Comet
may be formed due to DNA single strand breaks, DNA
double strand breaks, DNA adduct formations, DNA-
DNA and DNA-proteincross-links or due to interaction
of these xenobiotics with DNA [65, 66]. Similar DNA
fragmentation in human peripheral blood mononuclear
cells [67] and DNA fragmentation along with decrease
in cell viability in HepG2 cells following exposure to
copper has also been documented [68].
Superoxide dismutase, catalase and glutathione

peroxidase are the main defense against free
radicals-induced oxidative stress and these act in
concert with reduced glutathione and other antioxi-
dants such as α-tocopherol and selenium that pro-
tect against the adverse effects of ROS [69].
Increased lipid peroxidation, a decrease in activities
of antioxidant enzymes (SOD, GST, GPx) and GSH,
separation of splenocytes, and rearification of splenic
parenchyma revealed cellular damaging effects of flu-
bendiamide and copper due to generation of oxida-
tive stress. Depletion of GSH occurs as a result of
excessive GSH consumption during oxidative stress
[70, 71]. Further, GSH is not only a substrate for
GPx, but is also involved in electrophile detoxifica-
tion, free radical scavenging, α-tocopherol gener-
ation, phase II conjugation and other reactions [72,
73]. Glutathione-S-transferase catalyzes conjugation
of glutathione with a number of electrophilic xenobi-
otics and prevents their interaction with cellular pro-
teins and nucleic acids, and plays an important role

in cellular defense against these xenobiotics [74, 75].
Therefore, inadequate detoxification of flubendiamide
or copper or both these in combination, which amp-
lified ROS generation and resulted in oxidative dam-
age, may be responsible for these test compounds-
induced decrease in membrane potential and in-
crease in permeability to H+ and other ions, and
eventually the cell contents release [76].
Copper-induced cyto-genotoxicity in the present study

seems to be due to propensity of free Cu ions to partici-
pate in formation of ROS by redox cycling and copper-
induced formation of hydroxyl radicals from hydrogen
peroxide via Haber-Weiss reaction [77–79]. Lipid peroxy
radicals damage cells by changing the fluidity and per-
meability of cell membrane or by attacking the cellular
DNA molecule, leading to DNA strand brakes, oxidation
of its bases and other intracellular molecules such as
proteins [80, 81]. Copper-induced oxidative stress and
apoptosis in kidney via intrinsic and extrinsic apoptotic
pathways is also well documented [82].
Simultaneous treatment of splenocytes with flubendia-

mide or copper and either of these along with resveratrol,
curcumin, catechin or α-tocopherol resulted in marked
decrease in percentage of non-viable splenocytes,
Tunel+ve cells, and micronuclei and comet formation in
splenocytes. Thus evidently suggests the ameliorative po-
tential of these natural antioxidants against flubendiamide
and copper-induced cytogenotoxic effects. The protective
effect of resveratrol against xenobiotics is linked to de-
crease in intracellular ROS accumulation, reactive oxygen
intermediate (ROI) generation and lipid peroxidation [83,
84]. Attenuation of pyrogallol-induced hepatic toxicity
and oxidative stress changes in hepatic damage and alter-
ations in xenobiotic metabolizing enzymes by resveratrol
has also been reported in Swiss mice [85].
Antiapoptotic property of catechin against copper is

linked to chelation of Cu2+ and formation of an inactive
complex with this metal, and thus prevention of gener-
ation of potentially damaging free radicals [86, 87]. Simi-
lar antiapoptotic, antioxidant and neuroprotective action
of green tea extract, rich in various polyphenols, includ-
ing catechin, against deltamethrin-induced neurotoxicity
by improving oxidative status and DNA fragmentation,
and suppressing the expression of apoptotic TP53 and
COX2 genes has been reported in male rats [88]. Possi-
bility of involvement of similar protective mechanisms of
action of the test antioxidants against copper and
flubendiamide-induced cytotoxic effects cannot be ruled
out.
Curcumin has been reported to ameliorate the arsenic

and fluoride-induced genotoxicity in human peripheral
blood lymphocytes [33]. Even curcumin has been dem-
onstrated to be effective against radiations-induced haz-
ards [89]. Protective effect of curcumin against different
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xenobiotics has been attributed to its ability to decrease
ROS generation, apoptosis, DNA fragmentation, and cell
cycle arrest [33]. Anti-cytogenotoxic effect of curcumin
in the present study against flubendiamide and copper
could be attributed to its unique conjugated structure
which facilitates the coupling reaction at 3′ position of
the curcumin with lipids or due to its typical radical
trapping ability as a chain-breaking antioxidant that in-
hibits lipid peroxidation and reduces oxidative stress
[90–93].
α-tocopherol is lipophilic in nature which facilitates its

entry through cell membrane and thereby quenches free
radical species, terminates lipid peroxidation chain reac-
tion and thus interferes with initiation and progression
of xenobiotics-induced oxidative damage [94, 95]. α-
tocopherol produced protective effect against flubendia-
mide and copper-induced oxidative stress in splenic tis-
sues by modulating the oxidant-antioxidant mechanisms
as substantiated by the altered values of different oxida-
tive stress biomarkers. It also normalized the spleen his-
toarchitecture towards almost normal as observed in
rats of control groups. This evident ameliorative poten-
tial of α-tocopherol is in agreement with our previous
findings that studied flubendiamide and copper induced
testicular injury [96]. Similar preventive effects of α-
tocopherol against copper and cadmium-induced cyto-
toxicity in COS-7 cells [81] and carbofuran-induced gen-
otoxicity in human lymphocytes has also been reported
[97].

Conclusions
Summing up the findings of our in vitro and in vivo
studies, it is apparent that flubendiamide and copper-
induced alterations in oxidative stress biomarkers inter-
act with cellular subcomponents, especially DNA and re-
sult in cytotoxic-insult to splenocytes and spleen-
histoarchitecture. Resveratrol is most effective against
flubendiamide and curcumin against copper-induced
cytotoxic effects, therefore, both these natural phyotcon-
stituent antioxidants hold promising potential for their
use in fortifying the conventional food-ingredients to
prevent the adverse effects of xenobiotics on human and
animals health. However, further studies on signaling
intermediary steps and alterations in gene-expression are
also warranted.
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